Estimated Background Rates for d₂ⁿ

- MC simulation by Degtyarenko et al. (tested in Halls A and C)
- Online cuts include:
 - → BB magnet sweeps particles with p < 200 MeV/c</p>
 - → GEN BB trigger: shower+pre-shower+scint
 - provide ~10:1 online hadron rejection (or better)
 - → ~550—600 MeV threshold on shower
 - → 4-5 p.e. threshold on Cherenkov
 - heavily suppress random background
 - negl. pion contamination (~100 Hz knock-ons)
- Total estimated trigger rate (GEN trig + Cherenkov): 2—5 kHz

Online e- 2-5 kHz triggers e+ <1 kHz π- 90 kHz
π+ 90 kHz
p 50 kHz
n 50 kHz

Removed via online cuts

Cherenkov Design Parameters

- Dimensions: 200cm x 60cm x 60cm
 - → located in gap between first and second wire chamber with minimal modifications to BigBite frame
- Radiator gas: C_4F_{10} (or Freon12)
 - \rightarrow n = 1.0015 (1.0011)
 - $\rightarrow \pi$ threshold: 2.51 GeV/c (2.98 GeV/c)
 - → ~25 (16) photo-electrons / 40 cm electron track
 - Quartz PMT (5" Photonis XP4508)
 - mirror reflectivity: ~90%, 10% loss at PMT-gas interface (2 mirror reflections)
 - → >99% efficient with 4-5 p.e. threshold
 - negl. pion contamination minimum π /e rejection ratio 1000:1 online

BigBite with the Gas Cherenkov

- non-focusing, large acceptance, open geometry
- $\Delta p/p = 1 1.5\%$ (@ 1.2 T) $\sigma(W) = 50$ MeV
- angular resolution 1.5 mr, extended target resolution 6 mm
- large solid angle: 64 msr
- detector package
 - → 2 MWDCs, segmented trigger, Pb-glass shower
 - → Gas Cherenkov (new)

Cherenkov Frame

Engineer at Temple (Ed K.) is currently working on real CAD drawings – will work with Al Gavalya, etc to integrate Cherenkov into BigBite frame

Cherenkov Mirrors

- Mirror blank vendor has been located
 - Eagle Glass Specialties, Inc.
 - ~\$200/blank for spherical mirrors
- In touch with several Al coating vendors
 - Alpine Research, Esco Prod., Denton Vac.
 - no company will guarantee reflectivity below 200nm (they can't measure it)
 - three companies sending samples for our evaluation (1 here, 1 in transit, 1 pending)
 - setting up testbed in EEL building now
 - basic test involves monitoring the response of a Photonis Quartz PMT to real Cherenkov spectrum with/without mirror

Reflectivity

Cherenkov Optics

- Optics were tricky due to the large momentum acceptance of BigBite
 - we will be going with a 'two bounce' design
 - "pseudo"-Winston cones used to improve acceptance

Cherenkov Optics

- No cones on left side
- Highest 'ring' associated with low-momentum particles (larger bend angle)
- Lower rings are from high momentum particles (smaller bend angle)
- (The structure in the hit distribution is an artifact of the rendering – it is not real)

Cherenkov Optics: 20 Mirrors?

- Size limit of common coating chambers (18" diam.) may actually make 20 mirror design more cost effective in the short term and more flexible in the long term!
- We would fill 10 PMT "slots" with planned hardware
 - 2 mirrors would focus on each PMT
 - could add morePMTs if available

"Super Size"

"Original"

Cherenkov Costs

Component	Units	Cost/unit	Sub-total
Cerenkov frame/mounting hw/fittings			\$20k \$30k
Primary Mirrors (spherical)	10+2	\$2000	\$24k
Secondary Mirrors (flat)	10+2	\$1000	\$42k (\$20k) ¹ \$12k
Pseudo-Winston Cones [†]	10+2	\$500	\$6k
PMT, base, μ metal shield (UV glass) [‡]	10+2	\$3000	Purchased \$36k
Gas Handling System:			(?) \$3k
Quartz optical windows*:	10+1	\$500	\$6k
C ₄ F ₁₀ gas: (cost/fill [§])		\$2600	
Daily consumption (atm. press. fluctuations)		\$26/day	

¹ NOTE: Mirror prices are dominated by worst-case coating cost (CERN @ \$1000/mirror). If one of the local vendors proves OK the cost/mirror could drop by a factor of 4 or 5, for an overall savings of ~50% (since we would double the number of mirrors).

Gas costs: What is capital vs. running cost?