Quark - Gluon correlations and Color Polarizabilities in the Nucleon

A precision measurement of the neutron d₂

Brad Sawatzky Temple University

JLab User Group Meeting

Motivation in 60s or less...

- 1960s: Parton/Quark model proposed
 - "8-fold way" (Gell-Mann)
 - Quarks confirmed (SLAC)
- 1970s: QCD refined/developed
 - quarks, gluons, color fields
 - valence-quark dominated models/thinking

• 1987: CERN measures the quark contribution to the proton spin

naïve expectation:	100%
after relativistic corrections:	75%
➡ measured:	12 ± 16%

Spin structure in the nucleon

- Total nucleon spin $\frac{1}{2} = (\frac{1}{2}) \Delta q + \Delta G + L_q + L_G$
 - $\rightarrow \Delta q$ = quark spin (valence + sea quarks)
 - $\rightarrow \Delta G$ = gluon spin
 - \rightarrow L_G + L_q = orbital angular momenta of gluons and quarks

Valence quark contribution: ~20%
 Sea quark contribution: <5%
 RHIC/COMPASS/HERMES: △G

- Understanding the gluon contribution is still underway
 - But how do we explore the gluon field?
 direct hadronic probe (ie. RHIC)
 exploit the spin interaction!

Polarized deep inelastic cross sections

$$\frac{d^{2}\sigma}{dE'd\Omega}(\downarrow \Uparrow - \uparrow \Uparrow) = \frac{4\alpha^{2}}{MQ^{2}}\frac{E'}{\nu E}\left[(E + E'\cos\theta)g_{1}(x,Q^{2}) - \frac{Q^{2}}{\nu}g_{2}(x,Q^{2})\right] = \Delta\sigma_{\parallel}$$

$$\frac{d^{2}\sigma}{dE'd\Omega}(\downarrow \Rightarrow - \uparrow \Rightarrow) = \frac{4\alpha^{2}\sin\theta}{MQ^{2}}\frac{E'^{2}}{\nu^{2}E}\left[\nu g_{1}(x,Q^{2}) + 2Eg_{2}(x,Q^{2})\right] = \Delta\sigma_{\perp}$$

$$Q^{2} = 4 \text{-momentum transfer squared of the virtual photon.}$$

$$\nu = \text{energy transfer.}$$

$$\theta = \text{scattering angle.}$$

$$x = \frac{Q^{2}}{2M\nu} \text{ fraction of nucleon momentum carried by the struck quark}$$

JLab User Group Meeting

E

fraction of nucleon momentum

carried by the struck quark.

nucleon

M

g₂ and Quark-Gluon Correlations

QCD allows the helicity exchange to occur in two principle ways

Carry one unit of orbital angular momentum

Couple to a gluon

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + ar{g}_2(x,Q^2)$$

a twist-2 term (Wandzura & Wilczek, 1977):

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$

a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 92):

$$\overline{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \left(\frac{m_{q}}{M} h_{T}(y,Q^{2}) + \xi(y,Q^{2}) \right) \frac{dy}{y}$$
transversity
JLab User Group Meeting
$$JLab User Group Meeting$$

$$June 18, 2008$$

Moments of Structure Functions

$$\Gamma_1(Q^2) = \int_0^1 g_1(x, Q^2) \, dx = \mu_2 + \frac{\mu_4}{Q^2} + \frac{\mu_6}{Q^4} + \cdots$$

leading twist higher twist

 $\mu_2^{p,n}(Q^2) = (\pm \frac{1}{12}g_A + \frac{1}{36}a_8) + \frac{1}{9}\Delta\Sigma$ + pQCD corrections

 $g_A = 1.257$ and $a_8 = 0.579$ are the triplet and octet axial charge, respectively $\Delta \Sigma$ = singlet axial charge

(Extracted from neutron and hyperon weak decay measurements)

$$g_{A} = \Delta u - \Delta d$$

$$a_{8} = \Delta u + \Delta d - 2\Delta s$$

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$

pQCD radiative corrections

Moments of Structure Functions (continued)

$$\mu_4(Q^2) = \frac{M^2}{9} \left[a_2(Q^2) + 4d_2(Q^2) + 4f_2(Q^2) \right]$$

$$Twist - 2 Twist - 3 Twist - 4$$

$$(TMC)$$

where a_2 , d_2 and f_2 are higher moments of g_1 and g_2

e.g.
$$d_2(Q^2) = \int_0^1 x^2 [2g_1(x,Q^2) + 3g_2(x,Q^2)] dx = 3\int_0^1 x^2 \overline{g_2}(x,Q^2) dx$$

 $a_2(Q^2) = \int_0^1 x^2 g_1(x,Q^2) dx$

• To extract f_2 , d_2 needs to be determined first.

• Both d_2 and f_2 are required to determine the color polarizabilities

JLab User Group Meeting

Color "polarizabilities"

How does the gluon field respond when a nucleon is polarized ?

Define color magnetic and electric polarizabilities (in nucleon rest frame):

$$\chi_E^n = (4d_2^n + 2f_2^n)/3$$
$$\chi_B^n = (4d_2^n - f_2^n)/3$$

 χ_E and χ_B represent the response of the color \vec{B} & \vec{E} fields to the nucleon polarization

JLab User Group Meeting

Model evaluations of d_2

JLab User Group Meeting

The Experiment

- A 4.6 and 5.7 GeV polarized electron beam scattering off a polarized ³He target
- Measure unpolarized cross section for ${}^{3}\vec{\mathrm{He}}(\vec{e},e')$ reaction $\sigma_{0}^{{}^{3}\mathrm{He}}$ in conjunction with the parallel asymmetry $A_{\parallel}^{{}^{3}\mathrm{He}}$ and the transverse asymmetry $A_{\perp}^{{}^{3}\mathrm{He}}$ for 0.23 < x < 0.65 with 2 < Q² < 5 GeV².
 - Asymmetries measured by BigBite at a single angle: θ = 45°
 - Absolute cross sections measured by L-HRS
- Determine d_2^n using the relation

$$\tilde{d}_{2}(x,Q^{2}) = x^{2}[2g_{1}(x,Q^{2}) + 3g_{2}(x,Q^{2})]$$

$$= \frac{MQ^{2}}{4\alpha^{2}} \frac{x^{2}y^{2}}{(1-y)(2-y)} \sigma_{0} \left[\left(3\frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} + \frac{4}{y}\tan\frac{\theta}{2} \right) A_{\perp} + \left(\frac{4}{y} - 3 \right) A_{\parallel} \right]$$

where,

$$A_{\perp} = \frac{\sigma^{\downarrow \Rightarrow} - \sigma^{\uparrow \Rightarrow}}{2\sigma_{0}} \qquad \qquad A_{\parallel} = \frac{\sigma^{\downarrow \uparrow} - \sigma^{\uparrow \uparrow}}{2\sigma_{0}}$$
$$A_{\perp}^{^{3}He} = \frac{\Delta_{\perp}}{P_{b}P_{t}\cos\phi} \qquad \qquad A_{\parallel}^{^{3}He} = \frac{\Delta_{\parallel}}{P_{b}P_{t}}$$
$$\Delta_{\perp} = \frac{(N^{\uparrow \Rightarrow} - N^{\uparrow \Rightarrow})}{(N^{\uparrow \Rightarrow} + N^{\uparrow \Rightarrow})} \qquad \qquad \Delta_{\parallel} = \frac{(N^{\downarrow \uparrow} - N^{\uparrow \uparrow})}{(N^{\downarrow \uparrow} + N^{\uparrow \uparrow})}$$

JLab User Group Meeting

Kinematics of the measurement

Floor configuration for this experiment

BigBite Configuration

- Non-focusing, Large acceptance, Open geometry
- Δp/p = 1 1.5% (@ 1.2 T) σ(W) = 50 MeV
- Angular resolution 1.5 mr, extended target resolution 6 mm
- Large solid angle: ~64 msr
- Detector package:
 - ➡ 3 MWDCs, scintillator plane,
 - Pb-glass pre-shower + shower

⇒ Gas Cherenkov (new)

JLab User Group Meeting

Cherenkov Design Parameters

- Dimensions: 200cm x 60cm x 60cm
 - sandwiched between wire chambers
- Radiator gas: C₄F₈O
 - $\Rightarrow \pi$ threshold: 2.51 GeV/c
 - ~20 photo-electrons / 40 cm electron track
 Quartz PMT (Photonis XP4518)
 mirror reflectivity: ~90%, 10% loss at PMT-gas interface
- >99% efficient with 3-4 p.e. threshold
 negl. pion contamination minimum π/e rejection ratio 1000:1 online

BB Cerenkov During Assembly (viewed from rear)

JLab User Group Meeting

- MC simulation by Degtyarenko et al. (tested in Halls A and C)
- Online cuts include:
 - ➡ BB magnet sweeps particles with p < 200 MeV/c
 - GeN BB trigger: shower+pre-shower+scint
 provide ~10:1 online hadron rejection (or better)
 - ~550—600 MeV threshold on shower
 - → 4—5 p.e. threshold on Cherenkov
 ↓ heavily suppress random background
 ↓ negl. pion contamination (~100 Hz knock-ons)
- Total estimated trigger rate (GeN trig + Cherenkov): 2—5 kHz

JLab User Group Meeting

Projected $x^2g_2(x,Q^2)$ results

- g₂ for ³He is extracted directly from L and T spin-dependent cross section measurements within the same experiment.
- The nuclear corrections will be applied to the moments not to the structure functions.
- SLAC E155x g₂ data points at high x are evolved from Q² as large as 16 GeV² to 5 GeV²

JLab User Group Meeting

Systematic Error Contributions to d_2^n

JLab User Group Meeting

Item description	Subitem description	Relative uncertainty
Target polarization		3 %
Beam polarization		3 %
Asymmetry (raw)		
	• Target spin direction (0.1°)	$< 5 \times 10^{-4}$
Cross section (raw)	• Beam charge asymmetry	< 50 ppm
	• PID efficiency	≈1%%
	Background Rejection efficiency	$\approx 1\%$
	• Beam charge	< 1%
	 Beam position 	< 1 %
	Acceptance cut	2-3 %
	• Target density	< 2%
	Nitrogen dilution	<2%
	• Dead time	<1%
	• Finite Acceptance cut	<1%
Radiative corrections		≤5 %
From ³ He to Neutron correction		5 %
Total systematic uncertainty		\leq 10 %
Estimate of contributions to d_2 from unmeasured regions	$\int_{0.003}^{0.23} \tilde{d}_2^n dx$	4.8×10^{-4}
	$\int_{0.70}^{0.999} \tilde{d}_2^n dx$	5.0×10^{-5}
Projected absolute statistical uncertainty on d_2		$\Delta d_2 \approx 5 \times 10^{-4}$
Projected absolute systematic uncertainty on d_2 (assuming $d_2 = 5 \times 10^{-3}$)		$\Delta d_2 \approx 5 \times 10^{-4}$

Expected Error on d_2

Summary (part 1)

- We will precisely measure the neutron d_2^n at $Q^2 \approx 3.0 \text{ GeV}^2$.
 - Determine asymmetries in conjunction with an absolute cross section measurement over the region (0.23 < x < 0.65)</p>
 - Also, measure Q^2 evolution of $x^2 \overline{g}_2$ over the same x region
- Provide a benchmark test for theory (lattice QCD).
 ⇒ we can achieve a statistical uncertainty of ∆dⁿ₂ = 5 x 10⁻⁴

four times better then existing world average!

- Dramatically improve our knowledge of $g_2^n(x)$
 - double the data points for x > 0.2, all with better precision
- Scheduled for Jan 20 Feb 22, 2009.

12 GeV Measurement

The proposal for Hall C and SHMS/HMS

- An Experiment in Hall C: (approved! Pac30, 2007)
 - ➡ A polarized electron beam of 11.0 GeV and polarized ³He target
 - → Measure $\Delta \sigma_{\perp} = \sigma^{\downarrow \Rightarrow} \sigma^{\uparrow \Rightarrow}$, $\Delta \sigma_{\parallel} = \sigma^{\downarrow \uparrow} \sigma^{\uparrow \uparrow}$ for ³He(\vec{e}, e') reaction using both the SHMS and HMS running in parallel for 3 kinematic settings each

SHMS: (p_0 = 8.0 GeV/c, θ = 11.0°), (p_0 = 7.0 GeV/c, θ = 13.3°), (p_0 = 6.3 GeV/c, θ = 15.5°) → HMS: (p_0 = 4.2 GeV/c, θ = 13.5°), (p_0 = 5.0 GeV/c, θ = 16.4°), (p_0 = 3.4 GeV/c, θ = 20.0°)

• Determine d_2^n and g_2^n using the relations:

$$\begin{split} \tilde{d}_2 &= x^2 (2g_1 + 3g_2) = \frac{MQ^2\nu}{8\alpha_e^2} \frac{E}{E'} \frac{x^2(4 - 3y)}{(E + E')} \left[\Delta \sigma_{\parallel} + \left(\frac{4 - y}{(1 - y)(4 - 3y)\sin\theta_e} - \cot\theta_e \right) \Delta \sigma_{\perp} \right] \\ g_2 &= \frac{MQ^2\nu^2}{4\alpha_e^2} \frac{1}{2E'(E + E')} \left[-\Delta \sigma_{\parallel} + \frac{E + E'\cos\theta_e}{E'\sin\theta_e} \Delta \sigma_{\perp} \right] \\ \text{where} \quad \Delta \sigma_{\parallel} &= \sigma^{\downarrow\uparrow} - \sigma^{\uparrow\uparrow}, \ \Delta \sigma_{\perp} = \sigma^{\downarrow\Rightarrow} - \sigma^{\uparrow\Rightarrow} \quad \text{and} \ y = \nu/E. \end{split}$$

JLab User Group Meeting

Floor layout for Hall C

<u>Hall C</u>

One beam energy

➡ 11 GeV

- Each arm measures a total cross section independent of the other arm.
- Experiment split into three pairs of 200 hour runs with spectrometer motion in between.
- SHMS collects data at Θ = 11°, 13.3° and 15.5° for 200 hrs each
 - data from each setting divided into 4 bins
- HMS collects data at Θ = 13.5°, 16.4° and 20.0° for 200 hrs each

Kinematics for Hall C (cont...)

JLab User Group Meeting

Projected $x^2g_2(x,Q^2)$ results from Hall C

- g₂ for ³He is extracted directly from L and T spin-dependent cross sections measured within the same experiment.
- Strength of SHMS/HMS: nearly constant Q² (but less coverage for x < 0.3)

The End

Nuclear corrections

- Convolution method using the impulse approximation and realistic ground state wave functions of ³He (in Bjorken limit: $g_1^{^{3}He}$ related to $g_1^{^{N}}$).
 - ➡ Variational Method,
 - \bigcirc C. Ciofi degli Atti & S. Scopetta, Phys. Lett. B 404 (1997) 223, for g_1 ,

for g_2 S. Scopetta. private communication

Faddeev

F. Bissey et al. Phys. Rev. C 64 (2001) 024004

- Finite Q² effects (both g_1^N and g_2^N contribute to $g_1^{3_{He}}$ and to $g_2^{3_{He}}$)
 - S.A. Kulagin and W. Melnitchouk

Nuclear corrections (continued)

$$S(\vec{p}, E) = \frac{1}{2} \left(f_0 + f_1 \vec{\sigma}_N \cdot \vec{\sigma}_A + f_2 \left[\vec{\sigma}_N \cdot \hat{p} \ \vec{\sigma}_A \cdot \hat{p} \ -\frac{1}{3} \vec{\sigma}_N \cdot \vec{\sigma}_A \right] \right)$$

$$\begin{aligned} x \boldsymbol{g}_{1}^{^{3}\text{He}}(x,Q^{2}) &+ (1-\gamma^{2}) x \boldsymbol{g}_{2}^{^{3}\text{He}}(x,Q^{2}) \\ &= \sum_{N=p,n} \int d^{3}p \ dE \ (1-\frac{\epsilon}{M}) \left\{ \left[\left(1+\frac{\gamma p_{z}}{M}+\frac{p_{z}^{2}}{M^{2}} \right) f_{1} + \left(-\frac{1}{3}+\hat{p}_{z}^{2}+\frac{2\gamma p_{z}}{3M}+\frac{2p_{z}^{2}}{3M^{2}} \right) f_{2} \right] \ z \boldsymbol{g}_{1}^{N}(z,Q^{2}) \\ &+ (1-\gamma^{2})(1+\frac{\epsilon}{M} \left[f_{1} + \left(\frac{p_{z}^{2}}{\vec{p}^{2}} - \frac{1}{3} \right) f_{2} \right] \frac{z^{2}}{x} \boldsymbol{g}_{2}^{N}(z,Q^{2}) \right\} \end{aligned}$$

$$\begin{aligned} x \boldsymbol{g}_{1}^{^{3}\text{He}}(x,Q^{2}) + x \boldsymbol{g}_{2}^{^{3}\text{He}}(x,Q^{2}) \\ &= \sum_{N=p,n} \int d^{3}p \ dE \ (1 - \frac{\epsilon}{M}) \left\{ \left[\left(1 + \frac{p_{x}^{2}}{M^{2}} \right) f_{1} + \left(\vec{p}_{x}^{2} - \frac{1}{3} + \frac{2p_{x}^{2}}{3M^{2}} \right) f_{2} \right] z \boldsymbol{g}_{1}^{N}(z,Q^{2}) \right. \\ &+ \left[\left(1 + \frac{p_{x}^{2}}{M^{2}}(1 - z/x) \right) f_{1} + \left(\vec{p}_{x}^{2} - \frac{1}{3} + \frac{2p_{x}^{2}}{3M^{2}}(1 - z/x) - \frac{\gamma p_{z} \hat{p}_{x}^{2}}{M} \frac{z}{x} \right) f_{2} \right] z \boldsymbol{g}_{2}^{N}(z,Q^{2}) \right\} \end{aligned}$$

with $\gamma = \sqrt{1 + 4M^2 x^2/Q^2}$ a kinematical factor parameterizing the finite Q^2 correction, $\epsilon \equiv \vec{p}^2/4M - E$, and $z = x/(1 + (\epsilon + \gamma p_z)/M)$.

JLab User Group Meeting

From ³He to Neutron

✓Correction large for g_2 but much smaller for d_2

✓ About 5% difference between additive or convolution methods or between potential models $d_2^n = d_2^{^3He}/(1 - \delta^c) \quad \text{with} \quad \delta^c \approx 0.35$ $\Delta \delta^c \approx 0.15\delta^c \approx 0.05 \quad \Rightarrow \quad \Delta d_2^n/d_2^n \approx 5\%$

JLab User Group Meeting

Nuclear corrections (continued)

JLab User Group Meeting

How $g_2(x,Q^2)$ is usually obtained

$$g_2(x,Q^2) = \frac{\nu}{2E} \left[\frac{\nu \left[1 + \epsilon \mathbf{R}(x,Q^2) \right] (1 + \gamma^2) \mathbf{F_2}(x,Q^2) \mathbf{A_\perp}(x,Q^2)}{(1 - \epsilon) 2x \left[1 + \mathbf{R}(x,Q^2) \right] E' \sin \theta_e} - \mathbf{g_1}(x,Q^2) \right]$$

where
$$\nu = E - E'$$
, $\gamma^2 = Q^2/\nu^2$ and $\epsilon^{-1} = 1 + 2 [1 + \gamma^{-2}] \tan^2 \theta/2$

$F_2(x, Q^2)$ NMC fit $g_1(x, Q^2)$ Fit to the data and evolution to a constant Q^2

 ${old R}(x,Q^2)$ SLAC fit

d_2 integrand evolution from g_1 and g_2^{WW}

Effect of evolving d_2 integrand to $Q^2=3 \text{ GeV}^2$

d₂ and g₂ evolution (both Halls)

JLab User Group Meeting

X. Zheng Argonne National Laboratory, Argonne, IL 60439, USA

P. Bertin Université Blaise Pascal De Clermont-Ferrand, Aubiere 63177, France

J.-P. Chen, E. Chudakov, C. W. de Jager, R. Feuerbach, J. Gomez, J. -O. Hansen, D.W. Higinbotham, J. LeRose, W. Melnitchouk, R. Michaels, S. Nanda, A. Saha, B. Wojtsekhowski Jefferson Lab, Newport News, VA 23606, USA

S. Frullani, F. Garibaldi, M. Iodice, G. Urciuoli, F. Cusanno Istituto Nazionale di Fiscica Nucleare, Sezione Sanità, 00161 Roma, Italy

> R. DeLeo, L. Lagamba Istituto Nazionale di Fiscica Nucleare, Bari, Italy

> > A.T. Katramatou, G.G. Petratos Kent State University, Kent, OH 44242

W. Korsch University of Kentucky, Lexington, KY 40506, USA

W. Bertozzi, Z. Chai, S. Gilad, M. Rvachev, Y. Xiao Massachusetts Institute of Technology, Cambridge, MA 02139, USA

> L. Gamberg Penn State Berks, Reading, PA, 19610 USA

F. Benmokhtar, R. Gilman, C. Glashausser, E. Kuchina, X. Jiang (co-spokesperson), G. Kumbartzki, R. Ransome *Rutgers University, Piscataway, NJ 08855, USA*

> Seonho Choi(co-spokesperson) University of Seoul, Seoul, South Korea

B. Sawatzky (co-spokesperson), F. Butaru, A. Lukhanin, Z.-E. Meziani (co-spokesperson), P. Solvignon, H. Yao Temple University, Philadelphia, PA 19122, USA

S. Binet, G. Cates, N. Liyanage, J. Singh, A. Tobias University of Virginia, Charlottesville, VA 22901, USA

D. Armstrong, T. Averett, J. M. Finn, K. Griffioen, T. Holmstrom, V. Sulkosky College of William and Mary, Williamsburg, VA 23185, USA

Precision Measurement of the neutron d_2 : Towards the Electric χ_E and Magnetic χ_B Color Polarizabilities

JLab User Group Meeting