
1 E06-014

A Precision Measurement of dn2 : Probing the Lorentz Color Force

S. Choi, X. Jiang, Z.-E. Meziani, B. Sawatzky, spokespersons, and
the dn2 and Hall A Collaborations.

Contributed by D. Flay.

1.1 Overview

1.1.1 Physics Motivation

To date, extensive work has been done investigating the spin structure function g1 within the context of
the Feynman Parton Model and pQCD. However, far less is known about the g2 structure function. It is
known to contain quark-gluon correlations, and its study could possibly yield a better understanding of the
nature of confinement. It represents a spin-flip Compton amplitude, and may be written as:

g2
(
x,Q2

)
= gWW

2

(
x,Q2

)
+ ḡ2
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where gWW
2 is the Wandzura-Wilczek term, which may be expressed entirely in terms of g1 [1]:
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The second term is given as:

ḡ2
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where hT is the transverse polarization density, and ξ is a twist-3 dominated term arising from quark-gluon
correlations. Here, hT is suppressed by the ratio of the quark mass mq to that of the target mass M .
Therefore, a measurement of ḡ2 provides access to twist-3 effects inside the nucleon [2].

Subsequently, a measurement of both g1 and g2 allows for the determination of the quantity dn2 , which is
formed as the second moment of a linear combination of g1 and g2:
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dn2 also appears as a matrix element in the operator product expansion [3]:

g〈P, S | ψ̄q (0)G+y (0) γ+ψq (0) | P, S〉 = 2MP+P+Sxdn2 , (5)

where G+y = 1√
2

(Bx − Ey). We see from Eq. 4 that dn2 is a direct measure of quark-gluon interactions.
Eq. 5 may be written in component form,

〈P, S | ψ†q~α× g ~Eψq | P, S〉 = 2M2χE ~S and 〈P, S | ψ†qg ~Bψq | P, S〉 = 2M2χB ~S, (6)

from which dn2 may be written as dn2 = 1
8 (χE + 2χM ).

In the limit of low Q2 where the virtual photon wavelength is larger than the nucleon size, the electro-
magnetic field of the virtual photons associated with g2 in the interaction will appear as uniform over the
nucleon volume. Consequently, dn2 is seen to be connected with spin polarizabilities [4].

Recent work has shown [4, 5] that at high Q2, dn2 is more appropriately seen as a color Lorentz force
averaged over the volume of the nucleon. This is given by the expression of the transverse (color) force on
the active quark immediately following its interaction with a virtual photon:

F y (0) ≡ −
√

2
2P+

〈P, S | ψ̄q (0)G+y (0) γ+ψq (0) | P, S〉 = −1
2
M2dn2 . (7)

This theoretical interpretation reveals how g2 and subsequently dn2 will allow us to examine some of the
properties of confinement with great precision.
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1.1.2 Current Status and Goals

While bag and soliton model calculations of d2 for the neutron yield numerical values consistent with those
of Lattice QCD, current experimental data differs by roughly two standard deviations. One of the intentions
of our experiment is to improve the experimental error on the value of dn2 by a factor of four. It subsequently
provides a benchmark test on Lattice QCD calculations.

Figure 1: On the left is the current world data on d2 [6]. There is a need for more precise neutron data, which
E06-014 addresses. On the right is the projected error on both g2 (x) (top) and dn2

(
≈ 3GeV2

)
(bottom).

1.2 The Experiment

The experiment ran in Hall A of Jefferson Lab from February to March of 2009, with two beam energies
of E = 4.73 and 5.89 GeV, covering the resonance and deep inelastic valence quark regions, characterized
by 0.2 ≤ x ≤ 0.7 and 2 ≤ Q2 ≤ 6 GeV2.

In order to calculate dn2 , we scattered a longitudinally polarized electron beam off of a 3He target, in
two polarization configurations – longitudinal and transverse. 3He serves as an effective neutron target since
roughly 86% of the polarization is carried by the neutron. This is due to the two protons in the nucleus
being primarily bound in a spin singlet state [7, 8].

We measured the unpolarized total cross section σ0 and the asymmetries A‖ and A⊥. The cross section
was measured by the Left High-Resolution Spectrometer (LHRS), while the asymmetries were measured by
the BigBite Spectrometer. Both the LHRS and BigBite were oriented at scattering angles of θ = 45◦ to the
left and right of the beamline, respectively.

Expressing the structure functions entirely in terms of these experimental quantities, we have the expres-
sion for dn2 :
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where x = Q2/2Mν, ν = E−E′ is the energy transfer to the target, E′ is the scattered electron energy, and
y = ν/E is the fractional energy transfer to the target. The asymmetries are given by:

A‖ =
σ↓⇑ − σ↑⇑

2σ0
and A⊥ =
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2σ0
.
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1.3 Analysis Progress

1.3.1 The Left High-Resolution Spectrometer

Before we can begin to identify particles in the LHRS, we need to calibrate our detectors. Both the gas
Čerenkov and the pion rejector have been calibrated so that we may be able to discern electrons from pions.

First, each of the ten photomultiplier tubes (PMTs) in the gas Čerenkov were gain-matched by use of our
Hall A Analyzer database, so that each of their one photoelectron peaks aligns to a specified value in their
corresponding ADC spectrum. This allows us to determine the average photoelectron yield of each PMT.
In the pion rejector, a similar process was followed for each PMT corresponding to each of the thirty four
blocks in each layer of the pion rejector. We used the gas Čerenkov to identify pions in the pion rejector,
and gain-matched each block’s pion ADC spectrum to an arbitrary specified value. This was carried out for
one particular momentum setting in the LHRS [9]. The resulting calibration coefficients were then applied
to all other kinematics. The calibration is carried out in this fashion since pions will deposit roughly the
same amount of energy in the pion rejector regardless of their momentum.

Currently, work is being done to determine the electron detection, pion rejection, and cut efficiencies
for both the gas Čerenkov and the pion rejector. Fig. 2 shows the pion rejection (cut) efficiency of the
gas Čerenkov in the LHRS. A pion sample is selected in the pion rejector (Ni) and those events that pass
the given cut in the Čerenkov (Nf ) have their corresponding Čerenkov spectrum plotted. Then the ratio
r = Nf/Ni is calculated. The formula for the efficiency of rejecting pions for the particular cut position in
the gas Čerenkov is then written as επ−rej.

cer = 1− r, as this quantity reflects the percentage of pions removed
by a cut in the gas Čerenkov. These quantities will be a contributing factor in the determination of the
unpolarized total cross section, σ0.

Simulation work concerning the pion rejector is also being carried out to better understand the momentum
dependence observed in our E/p distribution as a function of p (Fig. 2).

Figure 2: Gas Čerenkov pion rejection efficiency study for 4- and 5-pass data.

1.3.2 The BigBite Spectrometer

In addition to the multiwire drift chambers and the shower calorimeters, this experiment was one of the
first to use the gas Čerenkov detector in the BigBite detector package. The Čerenkov detector uses C4F10 as
the radiator gas. The Čerenkov radiation is focused from two sets of ten mirrors into twenty PMTs, each of
which views one mirror. The Čerenkov detector is needed for electron detection and added pion rejection.

The Čerenkov detector is calibrated by gain-matching the one photoelectron peak for each PMT to a
particular ADC channel by adjusting the gain of the PMT during LED runs taken during the running of dn2 .
The photoelectron yield per electron track during the production mode of the experiment is approximately
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six. Fig. 3 shows the ADC signal from one of the PMTs. The plot on the left shows an electron signal. The
green curve has no TDC cuts, while the blue curve has cuts on the main timing peak of the corresponding
TDC spectrum. The red curve has a cut outside the main timing peak in its TDC spectrum. The plot on
the right shows the effect of mirror cuts in addition to the aforementioned TDC cuts. The electron signal
is shown in green, which requires a reconstructed track to pass through the mirror associated with that
particular PMT. The red curve shows background effects, and requires a reconstructed track to not pass
through the mirror associated with this particular PMT.

Figure 3: Sample histograms of a calibrated Čerenkov ADC spectrum for one of the mirrors. The plot on
the left shows the effect of TDC cuts. The plot on the right shows the effect of TDC and mirror cuts.

Currently, work is being done to calibrate the preshower and shower calorimeters. Once this detector is
calibrated, a study of electron detection, pion rejection, and cut efficiencies will be carried out. In addition
to identifying electrons for the calculation of the asymmetries A‖ and A⊥, this study will also determine
the magnitude of the pion background which may be removed from the gas Čerenkov and the total shower
calorimeter.

1.3.3 The Compton Polarimeter

During the experiment, beam polarization was measured by the Møller polarimeter and by a partially
upgraded Compton polarimeter. Although the Compton electron detector was disabled, the photon detector
– a single cylinder of GSO crystal – allowed much higher resolution than the lead tungstenate array it
replaced, especially at low energies. A comparison between Compton photon data from dn2 and a Monte
Carlo simulation led to the discovery of a misalignment in the Compton photon beamline, which was corrected
over the summer.

This experiment also saw the commissioning of a new, integrating data acquisition system for the photon
detector signal, as well as a corresponding suite of analysis software. Fig. 4 shows preliminary results from
this analysis for a month of dn2 running. The four accelerator configurations for the experiment – each
with a different nominal polarization – can be clearly distinguished. We are refining our Monte Carlo to
compute the analyzing power of the Compton polarimeter, which will allow us to translate the raw Compton
asymmetries to absolute beam polarizations.

4



Figure 4: The Compton Asymmetry during the running of dn2 .
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