The Spin Structure of the Nucleon d_2^n : Higher Twist Effects The Experiment Preliminary Analysis Projected Results Summary

Precision Measurement of the Neutron d_2 : The Color Field Response to the Polarized Nucleon

Graduate Students: D. Flay¹ M. Posik¹ D. Parno²

¹Temple University, Philadelphia, PA ²Carnegie Mellon University, Pittsburgh, PA

7/11/09

ъ

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

・ロット (雪) ・ (日) ・ (日)

э

Outline

- The Spin Structure of the Nucleon
 - Current Status of the Spin Structure
- 2 d_2^n : Higher Twist Effects
 - Quark-Gluon Correlations
 - Expressions of d_2^n
- 3 The Experiment
 - The Measurement of d_2^n
 - The Experimental Setup
- Preliminary Analysis
 - Left High-Resolution Spectrometer
 - BigBite Spectrometer
 - Compton Polarimeter
- 5 Projected Results
- 6 Summary

 d_2^n : Higher Twist Effects

The Experiment Preliminary Analysis Projected Results Summary

・ロット (雪) ・ (日) ・ (日)

э

Outline

- The Spin Structure of the Nucleon Current Status of the Spin Structure
- - Quark-Gluon Correlations
 - Expressions of d_2^n
- - The Measurement of d_2^n
 - The Experimental Setup
- - Left High-Resolution Spectrometer
 - BigBite Spectrometer

000

Current Status of the Spin Structure

- For the nucleon, the total spin is broken down (in the light-cone gauge) into its constituents:
 - $\frac{1}{2} = \frac{1}{2}\Delta q + \Delta G + L_q + L_G$
 - $\Delta q =$ valence and sea quark spin
 - $\Delta G =$ aluon spin
 - $L_{a,G}$ = orbital angular momenta of quarks and gluons
 - Measurements show that guark contribution to the nucleon spin is $\sim 30\%$ (CERN, DESY, SLAC)
 - Measurements of the gluon contribution are negligible (BNL)
- All of this work corresponds to the investigation of q_1 under the interpretation of the Feynman Parton Model and pQCD
- The *q*₂ structure function is not as well known. It contains guark-gluon correlations inside the initial nucleon
 - Subsequently, q₂ does not have a simple interpretation in the Parton Model (日) (日) (日) (日) (日) (日) (日)

The Spin Structure of the Nucleon $\circ \circ \bullet$

 d_2^n : Higher Twist Effects

The Experiment Preliminary Analysis Projected Results Summary

Polarized DIS

Allows access to the spin structure functions:

$$\frac{d^2 \sigma^{(\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow)}}{dE'd\Omega} = \frac{4\alpha^2}{MQ^2} \frac{E'}{\nu E} \left[\left(E + E'\cos\theta \right) g_1\left(x,Q^2\right) - \frac{Q^2}{\nu} g_2\left(x,Q^2\right) \right] \\ \frac{d^2 \sigma^{(\downarrow\Rightarrow\uparrow\uparrow\Rightarrow)}}{dE'd\Omega} = \frac{4\alpha^2\sin\theta}{MQ^2} \frac{E'^2}{\nu^2 E} \left[\nu g_1\left(x,Q^2\right) + 2Eg_2\left(x,Q^2\right) \right]$$

 We can write g1 and g2 in terms of these measurable asymmetries and unpolarized cross sections

 d_2^n : Higher Twist Effects 000000

The Experiment Preliminary Analysis Projected Results Summary

・ロット (雪) (日) (日)

э

Outline

- Current Status of the Spin Structure
- d_2^n : Higher Twist Effects 2
 - Quark-Gluon Correlations
 - Expressions of d_2^n
- - The Measurement of d_2^n
 - The Experimental Setup
- - Left High-Resolution Spectrometer
 - BigBite Spectrometer

・ロット (雪) ・ (日) ・ (日)

Quark-Gluon Correlations (1)

- The *g*₂ structure function provides a direct probe into quark-gluon interactions, and is given by a spin-flip Compton amplitude
 - Seen in the imaginary part of virtual Compton scattering:

Figure: Higher twist contributions to virtual Compton scattering

The Spin Structure of the Nucleon d_n^n : Higher Twist Effects The Experiment Preliminary Analysis Projected Results Summary

TEMPLE

Quark-Gluon Correlations (2) The q_2 Structure Function

• q_2 can be broken into two parts:

$$g_2\left(x,Q^2\right) = g_2^{WW}\left(x,Q^2\right) + \overline{g_2}\left(x,Q^2\right)$$

where:

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 \frac{g_1(y,Q^2)}{y} dy$$

$$\overline{g_2}\left(x,Q^2\right) = -\int_x^1 \frac{1}{y} \frac{\partial}{\partial y} \left[\frac{m_q}{M} h_T\left(y,Q^2\right) + \xi\left(y,Q^2\right)\right] dy$$

- The transverse polarization density (h_T) is suppressed by the ratio of the guark and target masses
- ξ is a twist-3 term arising from quark-gluon correlations ・ロット (雪) (日) (日)

The Spin Structure of the Nucleon d_n^n : Higher Twist Effects occore o

・ロット (雪) (日) (日)

э

Outline

 Current Status of the Spin Structure d_2^n : Higher Twist Effects 2 Quark-Gluon Correlations • Expressions of d_2^n • The Measurement of d_2^n The Experimental Setup Left High-Resolution Spectrometer BigBite Spectrometer

The Spin Structure of the Nucleon d_2^n : Higher Twist Effects The Experiment Preliminary Analysis Projected Results Summary $c_{0000000}$ **Expressions of** d_2^n (1) d_2^n From the Structure Functions

 dⁿ₂ is expressed as the second moment of a linear combination of g₁ and g₂:

$$d_{2}^{n}(Q^{2}) = \int_{0}^{1} x^{2} \left[2g_{1}(x,Q^{2}) + 3g_{2}(x,Q^{2}) \right] dx$$

= $6 \int_{0}^{1} x^{2} \overline{g_{2}}(x,Q^{2}) dx$

ヘロン 人間 とくほど 人ほど 一日

• d_2^n is a direct measure of twist-3 effects in the neutron

 The expression for the transverse (color) force on the active quark right after it is struck by the virtual photon in the interaction reads:

$$F^{y}(0) \equiv -\frac{\sqrt{2}}{2P^{+}} \langle P, S | \bar{\psi}_{q}(0) G^{+y}(0) \gamma^{+} \psi_{q}(0) | P, S \rangle$$

= $-\frac{1}{2} M^{2} d_{2}^{n}$

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

 dⁿ₂ is a measure of this transverse Lorentz color force (M. Burkardt)

Expressions of d_2^n (3) The Color Field Polarizabilities

• Considering OPE in the rest frame of the nucleon and introducing color singlet operators *O*_{*B*,*E*},

$$O_B = \psi^{\dagger} g \vec{B} \psi \quad O_E = \psi^{\dagger} \vec{\alpha} \times g \vec{E} \psi$$

a relation containing the gluon color field polarizabilities χ is obtained:

$$\langle P, S \mid O_{B,E} \mid P, S \rangle = 2\chi_{B,E} M^2 \vec{S}$$

 d_2^n can be written as a linear combination of $\chi_{B,E}$

$$d_2^n = \frac{1}{8} \left(\chi_E + 2\chi_B \right)$$

TEMPLE

dⁿ₂ can be seen as a measure of the response of the gulon color fields to the polarization of the nucleon (X. Ji)

The Spin Structure of the Nucleon	d ₂ ⁿ : Higher Twist Effects	The Experiment	Preliminary Analysis	Project
	000000	• 0 0000000		

ed Results Summary

・ロット (雪) ・ (日) ・ (日)

ъ

Outline

 Current Status of the Spin Structure Quark-Gluon Correlations • Expressions of d_2^n The Experiment 3 • The Measurement of d_2^n The Experimental Setup Left High-Resolution Spectrometer BigBite Spectrometer

 The Spin Structure of the Nucleon
 d_2^n : Higher Twist Effects
 The Experiment
 Preliminary Analysis
 Projected Results
 Summary

 000
 00000000
 000000000
 000000000
 000000000
 000000000

The Measurement of d_2^n

• Writing g_1, g_2 in terms of $\sigma_0, A_{\parallel}, A_{\perp}$ we obtain the explicit form of d_2^n to be evaluated:

$$g_{1} = \frac{MQ^{2}}{4\alpha^{2}} \frac{2y}{(1-y)(2-y)} \sigma_{0} \left[A_{\parallel} + \tan(\theta/2) A_{\perp} \right]$$

$$g_{2} = \frac{MQ^{2}}{4\alpha^{2}} \frac{y^{2}}{(1-y)(2-y)} \sigma_{0} \left[-A_{\parallel} + \frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} A_{\perp} \right]$$

$$d_{2}^{n} = \int_{0}^{1} \frac{MQ^{2}}{4\alpha^{2}} \frac{x^{2}y^{2}}{(1-y)(2-y)} \sigma_{0}$$

$$\times \left[\left(3\frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} + \frac{4}{y}\tan(\theta/2) \right) A_{\perp} + \left(\frac{4}{y} - 3\right) A_{\parallel} \right] dx$$

$$A_{\parallel} = \frac{\sigma^{\downarrow\uparrow} - \sigma^{\uparrow\uparrow\uparrow}}{2\sigma_{0}} \quad A_{\perp} = \frac{\sigma^{\downarrow\Rightarrow} - \sigma^{\uparrow\Rightarrow}}{2\sigma_{0}}$$

 The Spin Structure of the Nucleon
 d_2^n : Higher Twist Effects
 The Experiment
 Preliminary Analysis
 Projected Results
 Summary

 000
 0000000
 00000000
 000000000
 000000000
 000000000

・ロット (雪) ・ (日) ・ (日)

э

Outline

 Current Status of the Spin Structure Quark-Gluon Correlations • Expressions of d_2^n The Experiment 3 • The Measurement of d_2^n The Experimental Setup Left High-Resolution Spectrometer BigBite Spectrometer

000000000

The Spin Structure of the Nucleon d_2^n : Higher Twist Effects The Experiment Preliminary Analysis Projected Results Summary

The Experimental Setup (1)

000000000

dⁿ₂: Higher Twist Effects The Experiment Preliminary Analysis Projected Results Summary

The Experimental Setup (1)

 d_2^n : Higher Twist Effects

000000000

The Experiment Preliminary Analysis Projected Results Summary

The Experimental Setup (1)

000000000

dⁿ₂: Higher Twist Effects The Experiment Preliminary Analysis Projected Results Summary

(日)

The Experimental Setup (2) LHRS Detectors

Figure: Drawings of the Gas Cerenkov and Pion Rejector in the Left **High-Resolution Spectrometer**

00000000

The Spin Structure of the Nucleon d_2^n : Higher Twist Effects The Experiment Preliminary Analysis Projected Results Summary

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

The Experimental Setup (3) **BigBite Gas Cerenkov**

Figure: Drawings of the Gas Cerenkov in the BigBite Spectrometer

э

00000000

d2ⁿ: Higher Twist Effects The Experiment Preliminary Analysis Projected Results Summary

Kinematic Range

- The two bands represent the angular acceptance of the BigBite Spectrometer
- The ten colored stripes represent the different momentum settings in the LHRS for each beam energy

The Spin Structure of the Nucleon	d ₂ ⁿ : Higher Twist Effects	The Experiment	Preliminary Analysis	Projected
	000000		• 000 000000	

Results Summary

・ロット (雪) ・ (日) ・ (日)

ъ

Outline

 Current Status of the Spin Structure Quark-Gluon Correlations • Expressions of d_2^n The Measurement of d_2^n The Experimental Setup **Preliminary Analysis** Left High-Resolution Spectrometer BigBite Spectrometer

The Spin Structure of the Nucleon dⁿ₂: Higher Twist Effects The Experiment Preliminary Analysis Projected Results Summary 0000000000

Left High-Resolution Spectrometer (1) Gas Cerenkov Calibration

- Gain-match
 - 1 photoelectron (p.e.) peaks
- Determine avg. # of p.e. for each PMT

Mirror	1 p.e.	n _{p.e.}	<i>⋕</i> p.e.
1	196.8	967.3	4.45
2	198.6	715.3	3.48
3	198.4	1335	6.73
4	197.8	1344	6.75
5	198.5	1154	5.83
6	199.7	1184	5.93
7	199.5	1212	6.08
8	198.6	1225	6.17
9	194.9	1072	5.50
10	196.7	1010	5.13

ヘロト ヘポト ヘヨト ヘヨト

TEMPLE

d₂ⁿ: Higher Twist Effects

The Experiment

Preliminary Analysis Projected Results Summary

Left High-Resolution Spectrometer (2) Pion Rejector Calibration

- We want each block in the pion rejector to have the same response for any given p
- Gain-match each PMT
 - Do this for the pions in the ADC spectra, since pions deposit the same amount of energy in the calorimeter for any *p* for the kinematic range of our experiment

(日)

 d_2^n : Higher Twist Effects

The Experiment

Preliminary Analysis Projected Results Summary

・ロット (雪) (日) (日)

Left High-Resolution Spectrometer (3) Pion Rejector Calibration

- A cut on the Cerenkov ADC spectrum (sum) is applied to the shower to select good electrons
- Clean separation of e^-, π

The Spin Structure of the Nucleon d_2^n : Higher Twist Effects The Experiment **Preliminary Analysis** Projected Results Summary

・ロット (雪) (日) (日)

э

Outline

 Current Status of the Spin Structure Quark-Gluon Correlations • Expressions of d_2^n • The Measurement of d_2^n The Experimental Setup **Preliminary Analysis** Left High-Resolution Spectrometer BigBite Spectrometer Compton Polarimeter

The Spin Structure of the Nucleon d_2^n : Higher Twist Effects The Experiment **Preliminary Analysis** Projected Results Summary

BigBite Spectrometer (1) Gas Cerenkov Calibration

• 1 p.e. gain-matching using LED runs:

Plots provided by M. Posik

The Spin Structure of the Nucleon d_2^n : Higher Twist Effects The Experiment October October

BigBite Spectrometer (2) Gas Cerenkov Calibration

• Applying to production runs:

The Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore the Spin Structure of the Nucleon d_2^n : Higher Twist Effects occore occore occore the Nucleon d_2^n : Higher Twist Effects occore o

・ロット (雪) (日) (日)

э

Outline

 Current Status of the Spin Structure Quark-Gluon Correlations • Expressions of d_2^n • The Measurement of d_2^n The Experimental Setup **Preliminary Analysis** Left High-Resolution Spectrometer BigBite Spectrometer Compton Polarimeter

The Spin Structure of the Nucleon d_2^n : High

 d_2^n : Higher Twist Effects

The Experiment

Preliminary Analysis Projected Results Summary

A D > A P > A D > A D >

Compton Polarimeter (1) Schematic Diagram

- Polarization of the beam is measured using the Compton Polarimeter
- Relies on the asymmetry of the Compton cross section, due to the relative orientations of the e⁻, γ polarizations

 The Spin Structure of the Nucleon
 d_2^n : Higher Twist Effects
 The Experiment
 Preliminary Analysis
 Projected Results
 Summary

 000
 00000000
 000000000
 000000000
 000000000
 000000000

Compton Polarimeter (2) Asymmetries and Cross Sections

- The final Compton asymmetry is the weighted average of the mean asymmetries for the two polarization states (L,R)
- Compton spectrum shows a measurement of the scattered photon energy, proportional to the Compton cross section. The plot shows the Compton edge – the maximum amount of energy a photon can acquire

TEMPLE

d₂ⁿ: Higher Twist Effects

The Experiment Prelimin

Preliminary Analysis Projected Results Summary

・ロット (雪) (日) (日)

Projected Error on $x^2g_2(x,Q^2)$

 The experiment is designed to minimize the moment of g₂, so as to improve the accuracy of dⁿ₂

 d_2^n : Higher Twist Effects

The Experiment Preliminar

Preliminary Analysis Projected Results Summary

(日)

Projected Measurement of d_2^n

- This experiment is expected to have a statistical uncertainty of $\Delta d_2^n = 5 \times 10^{-4}$
 - Four times better than the current world average
 - Provides a benchmark test for Lattice QCD

 The Spin Structure of the Nucleon
 d_2^n : Higher Twist Effects
 The Experiment
 Preliminary Analysis
 Projected Results
 Summary

 000
 00000000
 000000000
 0000000000
 0000000000
 0000000000
 No
 <t

Summary

- Interested in quark-gluon correlations
- Investigate this by exploting transverse spin interactions through the g_2 structure function leading to higher twist effects seen in the matrix element d_2^n
- Sheds light upon the Lorentz color force inside the nucleon
- This measurement provides a benchmark test on Lattice QCD

Future Work

- Short term goals:
 - Continue work on calibrations in LHRS, BB, and Compton
 - Work towards extracting preliminary $\sigma_0, A_{\parallel}, A_{\perp}$

 $\begin{array}{c} \text{The Spin Structure of the Nucleon} \\ \text{oo} \\ \end{array} \\ \begin{array}{c} d_2^n: \text{Higher Twist Effects} \\ \text{oo} \\ \end{array} \\ \begin{array}{c} \text{The Experiment} \\ \text{oo} \\ \text{oo} \\ \end{array} \\ \begin{array}{c} \text{Preliminary Analysis} \\ \text{oo} \\ \text{oo} \\ \end{array} \\ \begin{array}{c} \text{Prejected Results} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \text{Summary} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \text{Summary} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \text{Summary} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \text{Summary} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \text{Summary} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \{Summary} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \\\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \\\ \{Summary} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \\\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Summary} \\ \end{array} \\ \end{array} \\

Acknowledgements

- I would like to thank the spokespeople X. Jiang, S. Choi, B. Sawatzky, and Z.-E. Meziani
- I would also like to thank P. Solvignon, V. Sulkosky, and the rest of the dⁿ₂, Transversity and the Hall A Collaborations, and the Hall A Staff at Jefferson Lab for their advice, suggestions, and continued support. I would also like to thank Temple University and Carnegie Mellon University.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 This work is supported by: DOE Award #DE-FG02-94ER40844.
 The Spin Structure of the Nucleon
 d_2^n : Higher Twist Effects
 The Experiment
 Preliminary Analysis
 Projected Results
 Summary

 000
 00000000
 000000000
 0000000000
 0000000000
 0000000000
 Summary

³He Target

 Vaporized Rb is optically pumped using circularly polarized light to polarize its electrons

TEMPLE

・ロト ・ 同ト ・ ヨト ・ ヨト

 Through collision mixing the Rb electrons transfer their spin to the ³He nuclei