

A Precision Measurement of d_2^n : Color Field Response to Nucleon Polarization

Matthew Posik Temple University

Nucleon Spin Structure Functions and d_2^n

- g_1 and g_2 are spin dependent structure functions of the nucleon.
- g_1 describes scattering in terms of incoherent parton scattering.
- g_2 describes parton scattering in which more than one parton takes place in the interaction.
- From the optical theorem g_2 is the imaginary part of Virtual Compton Scattering.

▶ The matrix element d_2^n can be expressed in terms of measurable structure functions

$$d_2^n = \int_0^1 x^2 \left[2g_1\left(x, Q^2\right) + 3g_2\left(x, Q^2\right) \right] dx = \int_0^1 \overline{d_2^n} dx$$
where Q^2 is the momentum transfer and $x = \frac{Q^2}{2m(E - E_{scattered})}$

• g_1 and g_2 can be expressed in terms of the absolute cross section and asymmetries of ³He

$$g_{1} = \frac{MQ^{2}}{4\alpha^{2}} \frac{y^{2}}{2(1-y)(2-y)} 2\sigma_{0} \left(A_{\parallel} + tan\frac{\theta}{2}A_{\perp}\right)$$

$$g_{2} = \frac{MQ^{2}}{4\alpha^{2}} \frac{y^{2}}{2(1-y)(2-y)} 2\sigma_{0} \left(-A_{\parallel} + \frac{1+(1-y)cos\theta}{(1-y)sin\theta}A_{\perp}\right)$$

What is d_2^n

• d_2^n has the physical interpretation of being the averaged transverse (Lorentz) force acting on the struck quark immediately after being struck by a virtual photon.

 Decomposing this Lorentz color force into it's electric and magnetic components, d_2^n can be expressed as the so called "color polarizabilites":

$$d_2^n = \frac{1}{8} (\chi_E + 2\chi_B).$$

► Such a representation give information about the color field response to the polarized nucleon

EXPERIMENTAL SETUP

- ► The source is a CW polarized electron beam with an average ploarization of 75%.
- ► Target is polarized ³He
- ► LHRS is used to measure absolute cross section $\sigma_0^{\circ He}$.
- ▶ Big Bite is used to measure the asymmetries $A_{\parallel}^{3}He$, $A_{\parallel}^{3}He$.

TARGET

- ► Target is polarized by spin exchange between optically pumped Rb-K gas and ³He nuclei.
- ▶ Rb electrons accumulate in the $(5S_{1/2}, m = +1/2)$ sub level, via the D1 transition.
- ► Rb polarization is then transferred to ³*He* nuclei through spin exchange interactions.

- ► Three 30W Coherent lasers are used to create circularly polarized light at 795nm.
- ► Polarization holding field is created using 25G Helmholtz coils.
- ► Target polarization is measured using two techniques, NMR and EPR.
- ► Average target polarization of 60%

LHRS

- ▶ Momentum resolution $1x10^{-4}$.
- ► Solid angle acceptance 6.7msr.
- Contains Vertical Drift Chamber for momentum and scattering determination.
- ► Gas Cerenkov and Pb-Glass Calorimeter used for pion rejection.
- Scintillators used for charged particle triggering.

BIG BITE

- ► Large acceptance non-focusing magnet.
- ► Solid angle 64msr.
- ► Contains 3 MWDC (used for track reconstruction)
- ► Pb-Glass Calorimeter (pre-shower, shower)
- Gas Cerenkov used as pion rejecter.

BIG BITE CERENKOV ANALYSIS

Cerenkov timing cuts were made to select good electrons.

Using TDC and Cerenkov Mirror cuts, the Photo Electron yield was

PROJECTED RESULTS

- ► Except for QCD Sum Rules all nucleon bag models and chiral solution models are consistent with Lattice QCD and a zero value.
- Experimental result is positive and 2σ away from zero.
- g_2^n in these models is negative at large x, so poor precision may be affecting the overall sign of the result.

- ▶ Data point for d_2^n at $Q^2 = 3GeV^2$ will be measured and added to the Q^2 evolution of d_2^n (evolution plot shown without nucleon elastic contribution).
- ► Measurement of d_2^n at $Q^2 = 3GeV^2$ will allow a comparison to Lattice QCD calculation.

▶ Precision measurement of d_2^n will provide a better test for g_2^{ww} (twist-two contribution to g_2^n) model calculations as well as quark and chiral solution models.

▶ Precision measurements of d_2^n along with $f_2^n = \frac{1}{3}(\chi_E - \chi_B)$ will yield measurements for χ_E and χ_B .

ACKNOWLEDGEMENTS

▶ I would like to thank Zein-Eddine Meziani and Brad Sawatzky for there continuing suggestions, time and support.

REFERENCES

- ▶ Seonho Choi, Z.-E. Meziani, B. Sawatzky, X. Jiang et.al., Jefferson Lab, 2005; PR-06-014
- ► Solvignon, Patricia H., Ph.D., Temple University, 2006; AAT 3247311.
- M. Burkardt, arXiv:0902.0163v1 [hep-ph]

http://hallaweb.jlab.org/experiment/E06-014/ quarks.temple.edu/~matt