Measurement of the Coulomb quadrupole amplitude in the γ \ast *p*→ $\Delta(1232)$ reaction in the low momentum transfer region

David AnezDalhousie UniversityApril 20, 2010

Introduction

- Take measurements of the $p(e,e'p)\pi^0$ (pion electroproduction) reaction
	- At energies in the area of the [∆] resonance
	- \Box \Box With low momentum transfer (Q^2) between the electron and proton
	- □ To better understand the Coulomb quadrupole transition amplitude behavior in this region and how it affects nucleon deformation

Overview

- **Motivation: Constituent Quark Model**
- Kinematics and Transition Amplitudes
- **Response Functions and Amplitude Extraction**
- World Data and Models
- **Experimental Setup**
- **Conclusions**

- Three "heavy" quarks in nucleon
	- □ Each quark has mass ¹ $\frac{1}{3}$ $\frac{1}{3}$ of nucleon
	- \Box Each quark has intrinsic spin angular momentum of $\frac{1}{2}$ $\frac{1}{2}$
	- Combines to give S = 1 $\frac{1}{2}$ or $S =$ 3 $\frac{3}{2}$
		- $\overline{\mathcal{L}}$ **If** $L = 0$ $S = \frac{1}{2}, J^{\pi} = \frac{1}{2}$ $S = \frac{3}{2}, J^{\pi} = \frac{3}{2}$ + \rightarrow corresponds to $N(939)$
 \rightarrow + $^+$ \rightarrow corresponds to $\Delta(1232)$ **If** $L = 2$ $S = \frac{1}{2}, J^{\pi} = \frac{3}{2}$ $S = \frac{3}{2}, J^{\pi} = \frac{1}{2}$ + \rightarrow corresponds to $\Delta(1232)$ +⁺→ corresponds to *N*(939)

 Wave functions created \Box \Box (939) = a_S $(S = \frac{1}{2}, L = 0)J^{\pi} = \frac{1}{2} + a_D$ $(S = \frac{3}{2}, L = 2)$ $= a \left[(S = \pm I) = 0 \right] I^{\pi} = \pm^{+} \pm a \left[(S = \pm I) = 0 \right] I^{\pi} = \pm^{+}$ ===+=== 2 $\frac{3}{2}$, $L = 2$) $J^{\pi} = \frac{1}{2}$ $\frac{1}{2}^{+}$ + a_D $(S = \frac{3}{2}$ $\frac{1}{2}$, $L = 0$) $J^{\pi} = \frac{1}{2}$ 939)) = a_S $(S = \frac{1}{2}, L = 0)J^{\pi} = \frac{1}{2}I^+$ + a_D $(S = \frac{3}{2}, L = 2)$ π $N(939) = a_c$ $(S = \frac{1}{2}, L = 0)J'' = \frac{1}{2}$ $+ a_c$ $(S = \frac{3}{2}, L = 2)J'$ *aSLJaSLJ* $S(N^2)$ 2, $D(N^2)$ 2 $\binom{N}{2}$ N^2 2, $D(N^2)$ (1232)) = b_s $(S = \frac{3}{2}, L = 0)J^{\pi} = \frac{3}{2}^{+}$ + b_p $(S = \frac{1}{2}, L = 2)$ $|\Delta(1232)\rangle = b_{S} |(S=\frac{3}{2}, L=0)J^{\pi} = \frac{3}{2}^{+}\rangle + b_{D} |(S=\frac{1}{2}, L=2)J^{\pi} = \frac{3}{2}^{+}$ $\frac{1}{2}, L=2$ $J^{\pi}=\frac{3}{2}$ $\frac{3}{2}^{+}\rangle + b_D |(S=\frac{1}{2})$ $\frac{3}{2}, L=0$ $J^\pi=\frac{3}{2}$ (1232)) = b_S $(S = \frac{3}{2}, L = 0)J^{\pi} = \frac{3}{2}^+$ $+ b_D$ $(S = \frac{1}{2}, L = 2)$ π b_s $(S = \frac{3}{2}, L = 0)J'' = \frac{3}{2}$; $\rightarrow b_s$ $(S = \frac{1}{2}, L = 2)J'$ b_n $(S = \frac{1}{2}, L = 2)J$ $S \begin{bmatrix} 0 & 2 \\ 2 & 1 \end{bmatrix}$ $S \begin{bmatrix} 0 & 2 \\ 0 & 1 \end{bmatrix}$ $S \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$

- Measure non-spherical components by measuring quadrupole moment
	- Cannot measure quadrupole moment directly
	- Measure quadrupole moment of *N* [→] [∆] transition
- **Three electromagnetic transitions**
	- *M*1 magnetic dipole
	- **□** $E2$ electric quadrupole
	- -*C*2 Coulomb/scalar quadrupole

 $\mathcal{L}_{\mathcal{A}}$ Magnetic Dipole

- \Box Spin-flip
- Dominant

- i. Electric quadrupole
- F Coulomb quadrupole
	- \Box Only with virtual photons

П One-body interactions

$$
\mathbf{Q}_{[1]} = \sqrt{\frac{16\pi}{5} \sum_{i=1}^{3} e_i r_i^2 Y_0^2(\vec{r}_i)} = \sum_i e_i (3z_i^2 - r_i^2)
$$

 \mathbb{R}^3 Two-body interactions

■ Pion Cloud

Kinematics – Electronic Vertex

- **Incoming electron**
	- Energy *E*
	- \Box Momentum $\vec{k_i}$
- Scattered electron
	- Energy *E*′
	- Momentum *kffk* $\overline{}$
	- \Box Angle θ_e
- Virtual photon
	- \Box Energy ω
	- Momentum *qq*v \Box
	- \Box Angle θ *q*

Kinematics – Electronic Vertex

■ Momentum transfer, Q^2

$$
Q^{2} = -q^{2} = -(\omega^{2} - \bar{q}^{2})
$$
\n
$$
Q^{2} \approx 4EE' \sin^{2} \frac{\theta_{e}}{2}
$$
\n
$$
Q^{2} \approx 4EE' \sin^{2} \frac{\theta_{e}}{2}
$$
\n
$$
Q^{2} = -\frac{1}{2} \cos^{2} \frac{\theta_{e}}{\theta_{e}^{2}}
$$
\n
$$
Q^{2} \approx 4EE' \sin^{2} \frac{\theta_{e}}{2}
$$
\n
$$
Q^{2} \approx 4EE' \sin^{2} \frac{\theta_{e}}{2}
$$

 $\sim_{\scriptscriptstyle\mathsf{\gamma^*}}$

Kinematics – Hadronic Vertex

Recoil proton

- \Box Energy E_p
- *p*_{*p*}
- \Box Angle θ_{pq}
- **Recoil pion**
	- \Box Energy E_{π}
	- **□** Momentum $\bar{p}_π$
	- \Box Angle θ_{π}
	- **Not detected**

Kinematics – Planes

- Scattering plane $-k_i$ and k_j $\overline{}$ *fk* $\overline{}$
- **Recoil plane** \overline{p}_p and \overline{p}_p $\overline{}$ $\overline{\rho}_{_{\scriptscriptstyle{P}}}$ and $\overline{\rho}_{_{\mathcal{R}}}$
- **Azimuthal angle** ϕ_{pq}

Multipole Amplitudes

- **General form of** πN **Multipoles:** $X_{\ell_{\pm}}^{\ell_{\pm}}$
	- \Box *X* type of excitation (M, E, S)
	- *I* isospin of excited intermediate state

$$
\Box \ \ell \pm -J_{\Delta} = \ell \pm \frac{1}{2}
$$

- Magnetic dipole *M*1 / $M_{1+}^{3/2}$ M $_{1+}^{\circ}$
- Electric quadrupole $E2 / E_{1+}^{3/2}$ $E_{1+}^{\mathcal{S}\prime}$
- **Coulomb quadrupole C2 /** $S_{1+}^{3/2}$ a $\omega S_{1+} = |\vec{q}| L_{1+}$ $S_{1+}^{\, \circ \prime}$ ω S₁ = α

Multipole Amplitudes

Multipole Amplitudes

 E_{1+} and S_{1+} at same magnitude as background amplitudes

• Measure ratio to dominant M_{1+}

•
$$
\text{EMR} = R_{EM}^{3/2} = \text{Re}\left(\frac{E_{1+}^{3/2}}{M_{1+}^{3/2}}\right) = \frac{\text{Re}\left(E_{1+}^{*}M_{1+}\right)}{\left|M_{1+}\right|^{2}}
$$

•
$$
\text{CMR} = R_{CM}^{3/2} = \text{Re}\left(\frac{S_{1+}^{3/2}}{M_{1+}^{3/2}}\right) = \frac{\text{Re}\left(S_{1+}^{*}M_{1+}\right)}{\left|M_{1+}\right|^{2}}
$$

David Anez – April 20th, ²⁰¹⁰

Unpolarized cross section made up of four independent partial cross sections

$$
\frac{d^5 \sigma}{dk_f d\Omega_e d\Omega^*} = \Gamma_\gamma \frac{k}{q_0} \left(\sigma_L + \sigma_T + \sigma_{LT} + \sigma_{TT} \right)
$$

$$
\Gamma_\gamma = \frac{\alpha}{2\pi^2} \frac{k_f}{k_i} \frac{k_\gamma}{Q^2} \frac{1}{1-\epsilon} \qquad \varepsilon_s = \frac{Q^2}{q^2} \varepsilon \qquad k = \sqrt{\frac{W^2 + m_\pi^2 - m_\rho^2}{4W^2} - m_\pi^2}
$$

$$
k_\gamma = \frac{W^2 - m_\rho^2}{2m_\rho} \qquad \varepsilon = \left(1 + 2\frac{q^2}{Q^2} \tan^2 \frac{\theta_e}{2}\right)^{-1} \qquad \qquad q_0 = \frac{W^2 - m_\rho^2}{2W}
$$

David Anez – April 20th, ²⁰¹⁰

Unpolarized cross section made up of four independent partial cross sections

$$
\frac{d^5\sigma}{dk_f d\Omega_e d\Omega^*} = \Gamma_{\gamma} \frac{k}{q_0} \left(\sigma_L + \sigma_T + \sigma_{LT} + \sigma_{TT} \right)
$$

$$
\sigma_L = \varepsilon_s R_L \qquad \sigma_{LT} = \sqrt{2\varepsilon_s (1 + \varepsilon)} R_{LT} \sin \theta_{pq}^* \cos \phi_{pq}^*
$$

$$
\sigma_T = R_T \qquad \sigma_{TT} = \varepsilon R_{TT} \sin^2 \theta_{pq}^* \cos 2\phi_{pq}^*
$$

David Anez – April 20th, ²⁰¹⁰

$$
R_{L}\sqrt{\frac{\omega_{cm}^{2}}{Q^{2}}} = |L_{0+}|^{2} + 4|L_{1+}|^{2} + |L_{1-}|^{2} - 4 \text{Re}\{L_{1+}^{*}L_{1-}\} + 2 \cos\theta \text{Re}\{L_{0+}^{*}(4L_{1+} + L_{1-})\} + 12 \cos^{2}\theta (L_{1+}|^{2} + \text{Re}\{L_{1+}^{*}L_{1-}\})
$$
\n
$$
R_{T} = |E_{0+}|^{2} + \frac{1}{2}|2M_{1+} + M_{1-}|^{2} + \frac{1}{2}|3E_{1+} - M_{1+} + M_{1-}|^{2} + 2 \cos\theta \text{Re}\{E_{0+}^{*}(3E_{1+} + M_{1+} - M_{1-})\}
$$
\n
$$
+ \cos^{2}\theta (3E_{1+} + M_{1+} - M_{1-}|^{2} - \frac{1}{2}|2M_{1+} + M_{1-}|^{2} - \frac{1}{2}|3E_{1+} - M_{1+} - M_{1-}|^{2})
$$
\n
$$
R_{LT}\sqrt{\frac{\omega_{cm}^{2}}{Q^{2}}} = -\sin\theta \text{Re}\{L_{0+}^{*}(3E_{1+} - M_{1+} + M_{1-}) - (2L_{1+}^{*} - L_{1-}^{*})E_{0+} + 6 \cos\theta (L_{1+}^{*}(E_{1+} - M_{1+} + M_{1-}) + L_{1-}^{*}E_{1+})\}
$$

$$
R_{TT} = 3\sin^2\theta \Big(\tfrac{3}{2}|E_{1+}|^2 - \tfrac{1}{2}|M_{1+}|^2 - \text{Re}\Big\{E_{1+}^*(M_{1+} - M_{1-}) + M_{1+}^*M_{1-}\Big\}\Big)
$$

\mathbb{R}^n Truncated Multipole Expansion

$$
R_L \approx 0
$$

\n
$$
R_T \approx \frac{5}{2} |M_{1+}|^2 + 2 \cos \theta \text{Re} \{E_{0+}^* M_{1+}\} - \frac{3}{2} \cos^2 \theta |M_{1+}|^2
$$

\n
$$
R_{LT} \approx \sin \theta \text{Re} \{L_{0+}^* M_{1+}\} - 6 \cos \theta (L_{1+}^* M_{1+})
$$

\n
$$
R_{TT} \approx -3 \sin^2 \theta (\frac{1}{2} |M_{1+}|^2 + \text{Re} \{E_{1+}^* M_{1+} + M_{1+}^* M_{1-}\})
$$

- $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ Model Dependent Extraction
	- Fit theoretical model to existing data
	- Insert model values for background amplitudes

- $\mathcal{L}^{\mathcal{L}}$ Models
	- MAID
	- SAID
	- DMT
	- Sato-Lee
	- Chiral EFT
	- Lattice QCD
- $p(e,e'p)\pi$ 0 experiments
	- \Box CEA 1969
	- DESY 1970-1972
	- NINA ¹⁹⁷¹
	- ELSA ¹⁹⁹⁷
	- \blacksquare MIT-Bates 2000
	- MAMI ²⁰⁰¹
	- \Box CLAS 2002
	- \Box MAMI – 2005-2006

- **T** Sato and Lee
	- \Box Suggest separating nucleon into quark core and pion cloud
	- "bare" quark core links to lattice QCD
	- \Box "full" nucleon links to \Box experimental data

The Experiment

- \mathcal{L}_{max} Jefferson Lab, Hall A
- April 3rd April 8th, 2011 H
- \mathbb{R}^3 1115 MeV, 75µA *e*− beam
- H -6 cm LH_2 $_2$ target
- **Two high resolution** $\mathcal{O}(\mathbb{R}^d)$ spectrometers
	- HRSe and HRSh

High Resolution Spectrometers

- **Vertical drift chambers**
	- **D** Particle tracking
- $\mathcal{L}^{\text{max}}_{\text{max}}$ Scintillators
	- \Box Timing information
	- \Box Triggering DAQ
- **Cerenkov** detectors
	- Aerogel and gas
	- \Box Particle identification
- **Lead glass showers**
	- **n** Particle identification

Settings

Conclusion

- Important step forward in understanding nucleon's internal structure
- Help bridge and validate experimental world data
- Help theoretical models better understand n role of pion cloud in nucleon deformation □ role of QCD in low momentum transfer region