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Introduction

� Take measurements of the p(e,e′p)π0 (pion 

electroproduction) reaction

� At energies in the area of the ∆ resonance

� With low momentum transfer (Q2) between the electron 

and proton

� To better understand the Coulomb quadrupole 

transition amplitude behavior in this region and how it 

affects nucleon deformation
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Overview

� Motivation: Constituent Quark Model

� Kinematics and Transition Amplitudes

� Response Functions and Amplitude Extraction

� World Data and Models

� Experimental Setup

� Conclusions
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Motivation: Constituent Quark Model

� Three “heavy” quarks in nucleon

� Each quark has mass 1⁄3 of nucleon

� Each quark has intrinsic spin angular momentum of 1⁄2

� Combines to give S = 1⁄2 or S = 3⁄2
� If L = 0

� S = 1⁄2, J
π = 1⁄2

+ → corresponds to N(939)

� S = 3⁄2, J
π = 3⁄2

+ → corresponds to ∆(1232)

� If L = 2

� S = 1⁄2, J
π = 3⁄2

+ → corresponds to ∆(1232)

� S = 3⁄2, J
π = 1⁄2

+→ corresponds to N(939)
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Motivation: Constituent Quark Model

� Wave functions created

�
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Motivation: Constituent Quark Model

� Measure non-spherical components by measuring 

quadrupole moment

� Cannot measure quadrupole moment directly

� Measure quadrupole moment of N → ∆ transition

� Three electromagnetic transitions

� M1 – magnetic dipole

� E2 – electric quadrupole

� C2 – Coulomb/scalar quadrupole
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Motivation: Constituent Quark Model

� Magnetic Dipole

� Spin-flip

� Dominant
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Motivation: Constituent Quark Model

� Electric quadrupole

� Coulomb quadrupole

� Only with virtual photons
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Motivation: Constituent Quark Model

� One-body interactions

�

� Two-body interactions

�
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Motivation: Constituent Quark Model

� Pion Cloud
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Kinematics – Electronic Vertex

� Incoming electron

� Energy E

� Momentum ki

� Scattered electron

� Energy E′

� Momentum kf

� Angle θe

� Virtual photon

� Energy ω

� Momentum q

� Angle θq

ik
v

fk
v

q
v
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Kinematics – Electronic Vertex

� Momentum transfer, Q2

�

�
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Kinematics – Hadronic Vertex

� Recoil proton

� Energy Ep

� Momentum pp

� Angle θpq

� Recoil pion

� Energy Eπ

� Momentum pπ

� Angle θπ

� Not detected

pp
v

πp
v
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Kinematics – Planes

� Scattering plane – ki and kf

� Recoil plane – pp and pπ

� Azimuthal angle – φpq
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Multipole Amplitudes

� General form of πN Multipoles: 

� X – type of excitation (M, E, S)

� I – isospin of excited intermediate state

� ℓ± – J∆ = ℓ ± 1⁄2

� Magnetic dipole – M1 / 

� Electric quadrupole – E2 / 

� Coulomb quadrupole – C2 / 

�
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Multipole Amplitudes
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Multipole Amplitudes

� E1+ and S1+ at same magnitude as background 

amplitudes

� Measure ratio to dominant M1+

� EMR = 

� CMR = 
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Response Functions

� Unpolarized cross section made up of four 

independent partial cross sections
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Response Functions

� Unpolarized cross section made up of four 

independent partial cross sections
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Response Functions

�

�

�

�

{ } ( ){ } { }( )−++−++−+−++ ++++−++= 1

*

1

2

1

2

11

*

01

*

1

2

1

2

1

2

02

2

Recos124Recos2Re44 LLLLLLLLLLL
Q

R cm
L θθ

ω

( ){ }−+++−++−++ −+++−+++= 111

*

0

2

1112
1

2

112
1

2

0 3Recos232 MMEEMMEMMERT θ

( )2

1112
1

2

112
1

2

111

2 323cos −++−+−++ −−−+−−++ MMEMMMMEθ

( ) ( ) ( )( ){ }+−−++++−+−+++ ++−+−−+−−= 1

*

1111

*

10

*

1

*

1111

*

02

2

cos623Resin ELMMELELLMMEL
Q

R cm
LT θθ

ω

( ){ }( )−+−++++ +−−−= 1

*

111

*

1

2

12
1

2

12
32 Resin3 MMMMEMERTT θ

David Anez – April 20th, 2010 20/29



Response Functions

� Truncated Multipole Expansion

�

�

�

�

� Model Dependent Extraction

� Fit theoretical model to existing data

� Insert model values for background amplitudes
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World Data and Models

� Models

� MAID

� SAID

� DMT

� Sato-Lee

� Chiral EFT

� Lattice QCD

� p(e,e′p)π0 experiments

� CEA – 1969

� DESY – 1970-1972

� NINA – 1971

� ELSA – 1997

� MIT-Bates – 2000

� MAMI – 2001

� CLAS – 2002

� MAMI – 2005-2006
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World Data and Models
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World Data and Models
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World Data and Models
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World Data and Models

� Q2 = 0.040 (GeV/c)2

� New lowest CMR value

� θe = 12.5°
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World Data and Models

� Q2 = 0.040 (GeV/c)2

� New lowest CMR value

� θe = 12.5°

� Q2 = 0.125 (GeV/c)2

� Validate previous 

measurements
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World Data and Models

� Q2 = 0.040 (GeV/c)2

� New lowest CMR value

� θe = 12.5°

� Q2 = 0.125 (GeV/c)2

� Validate previous 

measurements

� Q2 = 0.090 (GeV/c)2

� Bridge previous 

measurements
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World Data and Models

� Sato and Lee

� Suggest separating nucleon 

into quark core and pion 

cloud

� “bare” quark core links to 

lattice QCD

� “full” nucleon links to 

experimental data

David Anez – April 20th, 2010 25/29



The Experiment

� Jefferson Lab, Hall A

� April 3rd – April 8th, 2011

� 1115 MeV, 75µA e− beam

� 6 cm LH2 target

� Two high resolution 

spectrometers

� HRSe and HRSh
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High Resolution Spectrometers

� Vertical drift chambers

� Particle tracking

� Scintillators

� Timing information

� Triggering DAQ

� Cerenkov detectors

� Aerogel and gas

� Particle identification

� Lead glass showers

� Particle identification
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Settings

72Total:

8Calibrations

17Configuration changes

2622.6334.06750.1622.29012000.125

3575.5737.31788.0521.74011700.125

3.5596.4349.19708.6922.945512320.125

3.5596.4312.52708.6922.945512320.125

7649.2341.03708.6922.943012320.125

7649.2320.68708.6922.943012320.125

3.5672.5630.86708.6922.94012320.125

4.5589.0843.74729.9619.144012300.090

3589.0814.99729.9619.144012300.090

1.5627.9129.37729.9619.14012300.090

1.5614.4421.08716.4212.96012600.040

3.5528.1236.48767.9912.523012210.040

2528.1212.52767.9912.523012210.040

1.5547.5424.50767.9912.52012210.040

Time (hrs)(MeV/c)(MeV/c)W (MeV)Q2 (GeV/c)2 °*

pqθ °eθ eP′ °pθ pP′
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Conclusion

� Important step forward in understanding 

nucleon’s internal structure

� Help bridge and validate experimental world data

� Help theoretical models better understand 

� role of pion cloud in nucleon deformation

� role of QCD in low momentum transfer region
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