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Abstract

Nucleon spin structure has remained one of the key issues of hadronic physics since
the 1980’s. Among the unsolved questions, the neutron spin structure in the valence
quark region (the large Bjorken variable xBj region) is of particular interest. The
few data that existed in the large xBj region are very imprecise. Also, theoretical
predictions based on Quantum Chromo-Dynamics (QCD) are difficult to carry out
accurately in this non-perturbative region and having good experimental data is very
important to test the models.

Taking advantage of the polarized continuous-wave (CW) electron beam at Jef-
ferson Laboratory (JLAB) and a high-density polarized 3He target in Hall A, we
have measured the neutron spin asymmetry An

1 and spin structure function gn1 to a
good precision at three kinematics x = 0.33, 0.47 and 0.60, with Q2 = 2.7, 3.5 and
4.8 (GeV/c)2, respectively. The data at the two higher xBj points have improved
the statistical accuracy of the world data by one order of magnitude. They show
a zero crossing point around xBj = 0.47 and the datum at xBj = 0.60 is signifi-
cantly positive. To determine An

1 and gn1 , cross sections and asymmetries of inclusive
~3He(~e, e′) scattering have been measured in the deep-inelastic region. The trans-
verse spin asymmetry An

2 and structure function gn2 were also extracted from data,
though with less statistical precision. The asymmetries of pion photoproduction Aπ−

were obtained as a byproduct. Combined with world fit of proton gp1/F
p
1 data and the

quark distribution ratio d/u, the polarized quark distributions (∆u+∆ū)/(u+ ū) and
(∆d+∆d̄)/(d+ d̄) have been obtained from gn1 /F

n
1 data. Results of (∆d+∆d̄)/(d+ d̄)

at all three xBj points are negative, in disagreement with the predictions from pQCD
based hadron helicity conservation.

This dissertation will first give an introduction to the theories and formalism of
polarized deep inelastic scattering and a review of the theories of An

1 . Next the exper-
iment E99-117 at JLAB Hall A will be described, followed by the data analysis which
yields results for A

3He
1 , An

1 , g
3He
1 , gn1 , A

3He
2 , An

2 , g
3He
2 , gn2 , Aπ, (∆u+∆ū)/(u+ ū) and

(∆d+∆d̄)/(d+ d̄). The data presented greatly improve the current world fit of neu-
tron polarized structure functions and provide valuable insight in the understanding
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of the neutron spin structure.

Thesis Supervisor: William Bertozzi
Title: Professor of Physics
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Chapter 1

Introduction

Protons and neutrons are the constituents of all observable matter in the universe.
The positively charged proton is the nucleus of the hydrogen atom. Protons and neu-
trons, the protons’ uncharged analogs, are bound together to form all other atomic
nuclei and hence are called “nucleons”. A deeper layer to nuclear matter has also
been uncovered: Nucleons are composed of light weight, point-like quarks and glu-
ons. These constituents possess another type of charge, known as “color”, which is
the source of the strong interaction that clusters the quarks and gluons to make pro-
tons and neutrons, and in turn grips these nucleons to one another, forming atomic
nuclei. The fundamental theory underpinning all of these phenomena is known as
quantum chromodynamics (QCD). A central goal of nuclear physics is to understand
the structure and properties of protons and neutrons, and ultimately atomic nuclei, in
terms of the quarks and gluons of QCD. Important questions being studied include:

• How exactly are the nucleons made from the different types of quarks?

• How do various constituents of the nucleon contribute to its overall spin?

1.1 Spin Structure of the Nucleon

Interest in the spin structure of nucleons became prominent in the 1980’s when the
first spin structure function experiments at SLAC [1] and CERN [2] on the integral
of proton polarized structure function gp1 showed that the total spin carried by quarks
was very small, ∼ 12 ± 17% [2], in contrast to the simple relativistic quark model
prediction [3] in which the spin of the valence quarks carry 75% of the proton spin
and the remaining 25% comes from the orbital angular momentum. Because the
quark model is very successful in describing static properties of the hadrons, the fact
that quark spin carries only a small part of the nucleon spin was a big surprise and
generated very productive experimental and theoretical activities on this topic in the
following twenty years. Present understanding [4][5] of the nucleon spin is that the

19
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total spin is distributed among valence quarks, q− q̄ sea quarks, their orbital angular
momenta, and gluons. Only about 30% of the nucleon spin is carried by the quarks.
The nucleon spin can be written as

SN
z = Sq

z + Lq
z + Jg

z =
1

2
, (1.1)

where Sq
z and Lq

z represent the intrinsic and the orbital angular momentum of quarks,
respectively. Jg

z is the total angular momentum of gluons. Each of these three terms
can be calculated as the integral of a spin-dependent distribution function, with a
parameter of, for example, the fraction of nucleon’s momentum carried by the quark
or gluon. These distribution functions can provide more detailed information than
their integrals about how each constituent contributes to the nucleon spin and the
dynamic mechanism behind it. However, although extensive experimental and the-
oretical efforts have been made to measure and to understand the spin structure,
many questions remain and little has been understood about Eq. (1.1) and the spin-
dependent distribution functions. Namely, exactly how is the nucleon spin distributed
among all its constituents? Is it possible to separate the orbital angular momentum
of the gluons from their spin [5]? What is the spin structure in the valence quark re-
gion; can the constituent quark model (CQM) explain it? How does the QCD vacuum
contribute to the nucleon spin?

1.2 Probing Structure of the Nucleon - Experi-

mental Methods

The fundamental quark and gluon structure of strongly interacting matter is studied
primarily through experiments that emphasize hard scattering from the quarks and
gluons at sufficiently high energies. Two important ways of probing the distribution
of quarks and antiquarks inside nucleons are lepton scattering and the Drell-Yan
process.

In the case of lepton scattering, a lepton (an electron or a muon) scatters from a
single quark (antiquark) inside the target nucleon (proton or neutron) and transfers
a large fraction of its energy and momentum via an exchanged photon. Such deep
inelastic scattering measurements carried out with high energy beams have been the
primary source of experimental information on the quark and gluon structure of
matter. The lepton exquisitely probes the quark substructure of the nucleon with a
known spatial resolution. Moreover, if a scattering occurs between a polarized lepton
beam and a polarized target, the spin structure of the nucleon becomes accessible.

In the case of the Drell-Yan process, the antiquarks present in the target nucleon
are probed directly when a quark inside an incident hadron (a proton) has enough
energy to annihilate with one of the antiquarks. The energy released by the annihila-
tion produces a “virtual” photon, which then materializes as an electron-positron or
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muon-antimuon pair at very high relative energy. Such processes involve the strong in-
teraction and thus have much higher yield than pure electromagnetic (EM) reactions.
Consequently other reaction channels of proton-proton scattering at high energy have
the potential to provide new vistas on the quark and gluon structure of the proton,
with very good sensitivities. The Drell-Yan process has been widely used to study
the sea quark distribution inside the nucleon. However, it is not of interest here and
will not be discussed in the rest of this dissertation.

In the following we will first give a general picture of electron scattering focusing
on its excitation spectrum. Then the theories and the formalism of deep inelastic
scattering will be reviewed.

1.3 Electron Scattering

The simplest picture of electron scattering is the one photon exchange, as shown
in Figure 1-1 [6]. In this picture a virtual photon with four momentum q = (ν, ~q)
strikes the target nucleus (or nucleon). For the case of inclusive measurement, only

the scattered electron is detected. We denote by m the electron mass, k = (E,~k) and

Figure 1-1: Electron scattering through one-photon exchange.

k = (E,~k)
s

k′ = (E ′, ~k′)
s′

q = (ν, ~q)

P = (M,~0)
S

P ′ = (E ′
t, ~P

′)
S ′

k′ = (E ′, ~k′) the initial and final electron four-momenta; s and s′ are the initial and
final lepton covariant spin four-vectors such that s · k = 0 (s′ · k′ = 0) and s · s = −1
(s′ · s′ = −1); the target has a mass MT and its initial, final four-momenta and spin

four-vectors are, respectively, P = (Et, ~P ), P
′ = (E ′

t, ~P
′) and S, S ′. In the case of

a scattering with fixed target, one has P = (MT ,~0) in the laboratory frame. The
relativistic invariants characterizing the scattering are:

• The virtuality of the exchanged photon Q2 ≡ −q2, where q = k − k′ = (ν, ~q) is
the four momentum of the exchanged photon, ν is its energy and is also called
the ‘energy loss’ of the electron. The virtual photon can be viewed as a probe
to the structure of the target nucleus (or nucleon) and Q2 describes the spatial
resolution of the probe;
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• The invariant mass defined by

W ≡
√

M2 + 2Mν −Q2 , (1.2)

where M is usually the mass of the nucleus (or nucleon) target in the case of
elastic scattering, and is the nucleon mass in other cases, as will be described
later.

The cross section for electron scattering is a function of Q2 and ν. Figure 1-2
shows a cross section spectrum for a typical inclusive scattering off a light nuclear
target. As Q2 and ν change, the target undergoes different excitation states. The
spectrum comprises elastic scattering, quasi-elastic scattering, the resonance region
and the deep inelastic region.

Figure 1-2: Cross section (in arbitrary units) for inclusive electron scattering off a
light nuclear target. MT is the target mass, M is the nucleon mass, and W is the
invariant mass. The excitation peak positions (N, ∆, ...) change when Q2 and ν vary
but stay at constant W . For a nucleon target, there is no quasi-elastic peak.
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• Elastic scattering
At low Q2 and ν the spatial resolution of the process is not high enough to see
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the target’s composition. The target nucleus stays intact and reacts coherently
during the scattering. The momentum transfer is shared among all the nucleons.
The invariant mass of elastic scattering satisfies W 2 ≡M2

T +2MTν−Q2 =M2
T ,

withMT the mass of the nuclear (or nucleon) target. The theory and formalism

of ~e− ~3He elastic scattering will be presented in Section 5.4.1;

• Quasi-elastic scattering
When ν is larger than the nuclear binding energy, the target nucleus no longer
stays intact. The nucleus can be viewed as a set of quasi-free nucleons bound
in a mean potential (the Fermi gas model [7]). The electron scatters elastically
from a nucleon which is ejected from the nucleus. This is called quasi-elastic
scattering. Its threshold, with respect to the elastic peak, is equal to the nuclear
binding energy (5.49 MeV for 3He two body breakup and 7.72 MeV for three
body breakup). Now the scattering centers are the nucleons inside the nuclear
target. Unlike the elastic case, they are not at rest in the laboratory frame.
The nucleons have a typical momenta of 55 ∼ 250 MeV/c due to their “Fermi
motion” [7]. The motion of the nucleons causes a broadening of the quasi-
elastic peak around ν = Q2/(2M) with M the nucleon mass, which is the
energy loss of elastic scattering off a free nucleon. The invariant mass satisfies
W 2 ≡M2 + 2Mν −Q2 =M2 in the case of quasi-elastic scattering;

• Resonances
As Q2 and ν increase, electron scattering enters the resonance region, which usu-
ally refers to the region 1.2 < W < 2.0 GeV/c2. In this region the substructure
of the nucleon is explored. The nucleons are formed by quarks, which absorb
the virtual photons and form excitation states called “nucleon resonances”. The
invariant mass satisfies W 2 ≡ M2 + 2Mν − Q2 = M2

N∗ , with MN∗ the mass of
the resonance N∗.
The first resonance is the ∆(1232) with M∆ = 1.232 GeV/c2. Usually only
the ∆(1232) is unambiguously visible in inclusive experiments. Beyond W >
1.4 GeV/c2 the higher resonances and their tails overlap;

• Deep inelastic scattering
The last domain of Figure 1-2 is the deep inelastic scattering (DIS) region. It
is traditionally defined as W > 2 GeV/c2 and Q2 > 1.0 (GeV/c)2. In the DIS
region the Q2 and ν of the virtual photon are large enough so the constituents
of the nucleon – the partons – are resolved. We define a relativistically invariant
variable, the Bjorken scaling variable xBj as

x = xBj ≡
Q2

2P · q (1.3)

=
Q2

2Mν
for fixed target .
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When Q2 is large enough DIS can be interpreted as scattering off an asymptot-
ically free quark or antiquark inside the nucleon. In this case, it turns out that
the parton model can be formulated the simplest in the frame where the nucleon
is moving with momentum approaching ∞ along the direction of ~q. This frame
is an example of the many possible choices of an “infinite momentum frame”.
The Bjorken variable xBj is just the fraction of the nucleon’s momentum carried
by the struck quark in the infinite momentum frame. The DIS region is where
the nucleon’s partonic structure is explored.

Our experiment was carried out in the DIS domain so in the rest of this disserta-
tion, we will focus on deep inelastic scattering.

1.4 Deep Inelastic Scattering

In the following sections the formalism of deep inelastic scattering will be reviewed
according to the convention given in [8].

In the deep inelastic regime, the virtual photon strikes a quark or an antiquark
inside the nucleon, which at large four momentum transfer can be considered free.
The differential cross-section for detecting the final polarized lepton in the solid angle
dΩ and in the final energy range (E ′, E ′+dE ′) in the laboratory frame can be written
as

d2σ

dΩdE ′
=

α2

2Mq4
E ′

E
LµνW

µν , (1.4)

where α is the fine structure constant. Lµν and Wµν are the leptonic and hadronic
tensors, respectively.

The leptonic tensor Lµν is given by

Lµν(k, s; k
′, s′) =

[

ū(k′, s′)γµu(k, s)
]∗[

ū(k′, s′)γνu(k, s)
]

, (1.5)

and can be split into symmetric (S) and antisymmetric (A) parts under µ, ν inter-
change:

Lµν(k, s; k
′, s′) = L(S)

µν (k; k
′) + iL(A)

µν (k, s; k
′)

+L′(S)
µν (k, s; k′, s′) + iL′(A)

µν (k; k′, s′) . (1.6)

The unknown hadronic tensor Wµν is similarly defined as

Wµν(q;P, S) = W (S)
µν (q;P ) + iW (A)

µν (q;P, S) (1.7)
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with

1

2M
W (S)

µν (q;P ) =
(

− gµν +
qµqν
q2

)

W1(P · q, q2)

+
[(

Pµ −
P · q
q2

qµ

)(

Pν −
P · q
q2

qν

)]W2(P · q, q2)
M2

(1.8)

1

2M
W (A)

µν (q;P, S) = ǫµναβq
α

{

MSβG1(P · q, q2)

+
[

(P · q)Sβ − (S · q)P β
]G2(P · q, q2)

M

}

, (1.9)

where W1, W2 and G1, G2 are the unpolarized and the polarized structure functions,
respectively. Then one obtains

d2σ

dΩdE ′
=

α2

2Mq4
E ′

E

[

L(S)
µν W

µν(S) + L′(S)
µν W

µν(S)

−L(A)
µν W

µν(A) − L
′(A)
µν W µν(A)

]

. (1.10)

The cross section with particular initial and final polarizations can in principle always
be expressed as a combination of W1, W2 and G1, G2. The usual unpolarized cross-
section is proportional to L

(S)
µν W µν(S):

d2σu

dΩdE ′
(k, P ; k′) =

α2

2Mq4
E ′

E
2L(S)

µν W
µν(S) . (1.11)

In the polarized case, the differences of cross sections with opposite target spins are

∑

s′

[ d2σ

dΩdE ′
(k, s, P,−S; k′, s′) − d2σ

dΩdE ′
(k, s, P, S; k′, s′)

]

=
α2

2Mq4
E ′

E
4L(A)

µν W
µν(A) . (1.12)

1.5 Unpolarized Structure Functions

From Eq. (1.11) the cross section for scattering unpolarized electrons from an unpo-
larized target is

d2σ

dΩdE ′
=

(d2σ

dΩ

)

Mott

[

W2(P · q,Q2) + 2W1(P · q,Q2) tan2 θ

2

]

, (1.13)
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with θ the scattering angle of the electron in the laboratory frame. The four momen-
tum transfer Q2 can be calculated as

Q2 = 2EE ′(1− cos θ) . (1.14)

The Mott cross section is given by

(d2σ

dΩ

)

Mott
=

α2 cos2 θ
2

4E2 sin4 θ
2

, (1.15)

which is the cross section for scattering relativistic electrons from a point-like infinitely
heavy target. Consequently, the unpolarized structure functions W1(P · q,Q2) and
W2(P · q,Q2) describe the structure of the target. For a fixed target, P · q = Mν,
they can be written as W1(ν,Q

2) and W2(ν,Q
2).

The structure functions W1 and W2 are commonly expressed in terms of functions
F1 and F2, which are functions of Q2 and the Bjorken variable x:

MW1(ν,Q
2) = F1(x,Q

2) ; (1.16)

νW2(ν,Q
2) = F2(x,Q

2) . (1.17)

They satisfy

F1(x,Q
2) =

F2(x,Q
2)(1 + γ2)

2x
(

1 +R(x,Q2)
) , (1.18)

with γ2 =
Q2

ν2
=

(2Mx)2

Q2
. (1.19)

R is the ratio of longitudinal to transverse virtual photon cross sections:

R ≡ σL
σT

. (1.20)

The unpolarized cross section can then be expressed as

d2σ

dΩdE ′
=

(d2σ

dΩ

)

Mott

[1

ν
F2(x,Q

2) +
2

M
F1(x,Q

2) tan2 θ

2

]

. (1.21)

Note that for a nuclear target with mass number A, there are two commonly used
definitions for the unpolarized structure function F1 and F2. These two definitions
differ by a factor of A. We write them as F

(1)
1 = AF

(2)
1 and F

(1)
2 = AF

(2)
2 , with (1) and

(2) in the superscripts a label to distinguish between the two definitions. To clarify,

we call the F
(1)
1 and F

(1)
2 the unpolarized structure functions not per nucleon, and the

F
(2)
1 and F

(2)
2 the unpolarized structure functions per nucleon. In this dissertation

only the first definition will be used, unless otherwise notified.
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1.6 Polarized Structure Functions

In the polarized case, the difference between cross sections for scattering a polarized
lepton with spin s from a polarized target with spin S and that with spin −S is

d2σs,S
dΩ dE ′

− d2σs,−S

dΩ dE ′

=
∑

s′

[

d2σ

dΩ dE ′
(k, s, P, S; k′, s′)− d2σ

dΩ dE ′
(k, s, P − S; k′, s′)

]

=
8mα2E ′

q4E

{

[

(q · S)(q · s) +Q2(s · S)
]

MG1(P · q,Q2)

+ Q2
[

(s · S)(P · q)− (q · S)(P · s)
]G2(P · q,Q2)

M

}

, (1.22)

where G1(P · q,Q2) and G2(P · q,Q2) are the polarized structure functions. They can
be rewritten as functions of x and Q2 as

ν

(P · q)G1(P · q,Q2) = g1(x,Q
2) ; (1.23)

ν2

(P · q)2G2(P · q,Q2) = g2(x,Q
2) . (1.24)

In the case where the lepton spin is longitudinally polarized, i.e., polarized along
or opposite to the direction of motion, while the target nucleons are at rest and are
polarized with spin S or −S, one obtains

d2σ↑,S
dΩ dE ′

− d2σ↑,−S

dΩ dE ′
= −4α2

Q2

E ′

E
(1.25)

×
{

[

E cos β + E ′ cosΘ
]

MG1 + 2EE ′
[

cosΘ− cos β
]

G2

}

,

with β the angle between the incident electron momentum ~k and the target spin
direction ~S. Θ is the angle between the outgoing electron momentum ~k′ and ~S, given
by

cosΘ = sin θ sin β cosφ+ cos θ cos β . (1.26)

where θ is the scattering angle formed by ~k and ~k′, φ is the angle between the
scattering plane (~k, ~k′) and the polarization plane (~k, ~S). The angles β, φ, θ and Φ
are illustrated in Figure 1-3.

For particular values of β one finds familiar results. If the target nucleons are
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Figure 1-3: Kinematics of polarized electron scattering.
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β

longitudinally polarized, then one has β = 0 and Θ = θ and

d2σ↑⇑
dΩdE ′

− d2σ↑⇓
dΩdE ′

=
4α2E ′

νEQ2

[

(E + E ′ cos θ)g1(x,Q
2)− 2Mxg2(x,Q

2)
]

. (1.27)

If the target nucleons are transversely polarized, then β = π/2, Θ = arccos(sin θ cosφ)
and

d2σ↑⇒
dΩdE ′

− d2σ↑⇐
dΩdE ′

=
4α2E

′2

νEQ2
sin θ

[

g1(x,Q
2) +

2ME

ν
g2(x,Q

2)
]

. (1.28)

1.7 Bjorken Scaling

A very interesting feature of structure functions is their scaling behavior in the Bjorken
limit. The Bjorken limit [9] is defined as

Q2 → ∞, and ν → ∞, with x =
Q2

2Mν
fixed . (1.29)

In the Bjorken limit, x is just the fraction of the nucleon momentum carried by the
struck quark in the infinite momentum frame. It turns out that in the Bjorken limit
these structure functions are independent of Q2 and can be written as F1(x), F2(x),
g1(x) and g2(x). Moreover, since σL vanishes [6] and R(x,Q2) = 0 in the Bjorken
limit, Eq. (1.18) reduces to

F2(x) = 2xF1(x) , (1.30)

known as the Callan-Gross relation.
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1.8 Structure Functions in the Quark-Parton Model

While the phenomenon of scaling had been anticipated by Bjorken [9] and was put
to the test by the original SLAC data [10], the quark-parton model [11] gives the
clearest physical idea of what scaling means. Any object with a finite size must have
a form factor and hence introduce some Q2 dependence. Thus the scaling behavior
of structure functions implies that the proton must contain point-like objects, the
‘partons’, which absorb the virtual photon. In the quark-parton model the nucleon
is viewed as a collection of non-interacting, point-like constituents, one of which has
fraction x of the nucleon’s longitudinal momentum and absorbs the virtual photon.

Within the quark-parton model, the nucleon cross section is just the sum of the
cross sections for scattering from individual partons, weighted by their number densi-
ties. Since partons interact with virtual photons through the electromagnetic interac-
tion, each term should also be weighted by its electric charge squared. Therefore F1(x)
and g1(x) can be related to the spin-averaged and spin-dependent quark distributions
as [6]

F1(x) =
1

2

∑

i

e2i qi(x) =
1

2

∑

i

e2i

[

q↑i (x) + q↓i (x)
]

; (1.31)

g1(x) =
1

2

∑

i

e2i∆qi(x) =
1

2

∑

i

e2i

[

q↑i (x)− q↓i (x)
]

, (1.32)

where qi(x) = q↑i (x) + q↓i (x) is the unpolarized parton distribution function of the
ith parton, defined as the probability that the ith quark inside nucleon carries the
fraction x of the nucleon’s momentum. ∆qi(x) = q↑i (x)−q↓i (x) is the polarized parton
distribution function, where q↑i (x) (q↓i (x)) is the number density, or the probability
that the spin of the ith quark is aligned parallel (anti-parallel) to the nucleon spin,
when it carries the fraction x of the nucleon’s momentum.

By measuring unpolarized and polarized cross sections on different target nucle-
ons, one is able to extract partly how different quarks form a nucleon and how the
quarks’ spins are aligned along the nucleon spin direction. In addition to the method
of electron scattering, neutral particles (e.g., neutrinos) interact with partons through
the weak interaction, hence the structure functions measured in neutral particle scat-
tering do not involve the electric charge of the partons [12]. Moreover information
of antiquark distributions can be provided by the Drell-Yan process. Therefore by
combining results from electron scattering, neutrino scattering and the Drell-Yan pro-
cess, one can separate quark and antiquark distributions of each quark flavor in the
nucleon. Eventually one will be able to pin down the nucleon structure to each con-
stituent and find the answer to the two main questions listed at the beginning of this
chapter.

The transverse polarized structure function g2(x) does not have a simple interpre-
tation within the quark parton model [6]. However, it carries information about the
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quark-gluon interaction inside the nucleon, which will be introduced in Section 1.10.

1.9 Scaling Violation

As been stated in Section 1.7, the scaling behavior of structure functions and Callan-
Gross relation are exact only in the Bjorken limit; at finite Q2 they are only ap-
proximations. This is because although Figure 1-1 describes the major process of
electron scattering, there are higher order hard processes that occur which cannot
be separated from the one-photon exchange process. These processes are due to the
fact that both the initial and scattered quarks can emit soft gluons. Figure 1-4 shows
the leading order gluon radiative effects. These soft gluon radiations give rise to an

Figure 1-4: Higher orders processes of electron scattering which cannot be separated
from one-photon exchange.
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q

q′
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e′

e

(ν,~q)

q

q′

g

infinite cross section which can only be treated consistently when all other processes
(Feynman graphs) at the same order are included. Consequently when we calculate
a cross section for charged particle scattering there are gluon radiative corrections
to be made, which gives to the cross section a logarithmic dependence on Q2. Fig-
ure 1-5 shows data on the proton structure function F p

2 (x,Q
2) from the New Muon

Collaboration (NMC) [13] which clearly shows a Q2 dependence. This relatively weak,
logarithmic variation is why Bjorken scaling is only “a good approximation”. The
Q2 dependence of structure functions can be well calculated in QCD using evolu-
tion equations first developed by Dokshitzer, Gribov, Lipatov, Altarelli, and Parisi
(DGLAP equations) [15].

By incorporating the Q2 dependence into the definition of the parton distributions
one can generalize

F1(x,Q
2) =

1

2

∑

i

e2i

[

q↑i (x,Q
2) + q↓i (x,Q

2)
]

; (1.33)

g1(x,Q
2) =

1

2

∑

i

e2i

[

q↑i (x,Q
2)− q↓i (x,Q

2)
]

. (1.34)

Now q
↑(↓)
i (x,Q2) should be interpreted as the probability of finding the ith quark with
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Figure 1-5: Q2 dependence of F p
2 (x,Q

2) data [13] and fit from global analysis [14].
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momentum fraction x and spin parallel (anti-parallel) to the nucleon spin when viewed
with a spatial resolution determined by Q2.

The physical picture associated with this interpretation is very simple. If one
looks at the proton with low Q2 and hence with a large wavelength (λ ∼ 1/

√

Q2)
and poor spatial resolution, one cannot resolve much of its internal structure. Thus
one expects the proton structure functions at low Q2 to be dominated by the three
current quarks “dressed” by the sea quarks and gluons. However, as Q2 increases so
does the resolving power and one expects to see more and more of the “bare” current
quarks, qq̄ pairs and gluons which make up the proton in QCD.

1.10 From Bjorken limit to finite Q2 - Operator

Product Expansion

In order to calculate the cross section at finite Q2, a method called the Operator
Product Expansion is applied to deep inelastic scattering (DIS) which can separate
the non-perturbative part of cross section from its perturbative part.

The Operator Product Expansion (OPE) [16] was introduced in 1969 by Wilson
in an attempt to introduce a substitute to Quantum Field Theory (QFT), in order to
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carry out the QFT non-perturbative calculations. The OPE separates the perturba-
tive part of a product of local operators from the non-perturbative part. In the limit
of small distance d→ 0 the product of two operators can be written as

σa(d)σb(0) =
∑

k

Cabk(d)σk(0) , (1.35)

where Cabk are the Wilson coefficients which contain the perturbative part and are
perturbatively calculable. Operators σk contain the non-perturbative information
and are not perturbatively calculable. In DIS this formalism is used to develop a
product of currents on a local operator basis. It has been shown that any operator σk
contributes to the cross section as a factor x−n(M/Q)D−2−n, with n the spin and D
the dimension of the operator [16], M the nucleon mass and Q =

√

Q2. One defines
the “twist” t ≡ D−n. At large Q2 the leading twist t = 2 dominates. While at small
Q2 higher twist operators need to be taken into account.

The structure function g2(x,Q
2) has a special meaning because it can be separated

cleanly into twist-2 and higher twist terms, and that the twist-2 term is determined
by the structure function g1(x,Q

2). Ignoring quark mass effects, g2(x,Q
2) can be

written as [17]:

g2(x,Q
2) = gWW

2 (x,Q2) + ḡ2(x,Q
2) , (1.36)

where gWW
2 (x,Q2) is a purely twist-2 contribution and is entirely determined by

g1(x,Q
2) as

gWW
2 (x,Q2) = −g1(x,Q2) +

∫ 1

x

g1(y,Q
2)

y
dy . (1.37)

Hence g2(x,Q
2) contains information about the higher twist effects which can be

related to the quark-gluon interaction.

1.11 The Virtual Photon-Nucleon Asymmetries

Virtual photon asymmetries are defined in terms of a helicity decomposition of the
virtual photon-nucleon scattering cross sections [18]. Figure 1-6 shows scattering of
a circularly polarized virtual photon (with helicity ±1) off a longitudinally polarized
nucleon. There are two helicity cross sections σ1/2 and σ3/2. The subscript 1/2(3/2)
is the projection of the total spin along the direction of virtual photon momentum
~q, corresponding to the scattering with virtual photon spin anti-parallel (parallel) to
the nucleon spin.
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Figure 1-6: Definition of virtual photon asymmetry A1.
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The longitudinal asymmetry A1 is given by

A1(x,Q
2) ≡ σ1/2 − σ3/2

σ1/2 + σ3/2
. (1.38)

A2 is a virtual photon asymmetry that results from an interference between trans-
verse and longitudinal virtual photon-nucleon amplitudes

A2(x,Q
2) ≡ 2σLT

σ1/2 + σ3/2
. (1.39)

σLT results from the decomposition of the total virtual photo-absorption cross sec-
tions [18]. Unlike σ1/2 and σ3/2, σLT cannot be interpreted as the cross section for a
real physics process.

There exists a Soffer’s bound on the value of A2 [19]:

A2(x,Q
2) 6

√

R

2

[

1 + A1(x,Q2)
]

, (1.40)

where R = σL/σT .

These two virtual photon asymmetries, in general functions of x and Q2, are
related to the nucleon spin structure functions g1(x,Q

2), g2(x,Q
2) and F1(x,Q

2) via

A1(x,Q
2) =

g1(x,Q
2)− γ2g2(x,Q

2)

F1(x,Q2)
; (1.41)

A2(x,Q
2) =

γ
[

g1(x,Q
2) + g2(x,Q

2)
]

F1(x,Q2)
. (1.42)

with γ given by Eq. (1.19). A1, A2 and g1(x,Q
2)/F1(x,Q

2) can be related as

A1(x,Q
2) + γA2(x,Q

2) = (1 + γ2)
g1(x,Q

2)

F1(x,Q2)
. (1.43)
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At high Q2, one has γ2 ≪ 1 and from Eq. (1.41)

A1(x,Q
2) ≈ g1(x,Q

2)

F1(x,Q2)
. (1.44)

As a ratio of the structure functions, theoretically the asymmetry A1 has less Q2

dependence than the structure functions since the leading order (LO) Q2 evolutions of
g1(x,Q

2) and F1(x,Q
2) follow the same QCD evolution described by DGLAP equa-

tions and tend to cancel. Experimental data on the proton and neutron asymmetries
Ap

1 and An
1 showed little Q2 dependence [20]. Also from an experimental point of

view, it is usually easier to measure an asymmetry since it doesn’t require an abso-
lute cross section measurement. If one can predict the value of A1 from theories, then
in addition to structure functions, A1 can be another important tool to study the
nucleon spin structure, and is somewhat more convenient than structure functions
because of the features described above.

1.12 Electron Asymmetries

In an experiment it is usually difficult to align the virtual photon spin direction along
the target spin direction, while keeping some flexibility in other kinematic variables.
Alternatively the incident electron spin is aligned parallel (anti-parallel) or perpen-
dicular (anti-perpendicular) to the target spin. The virtual photon asymmetries can
be related to the measured lepton asymmetries through polarization and kinematic
factors. For a target polarized parallel to the beam direction, the experimental lon-
gitudinal electron asymmetry is given by [12]

A‖ ≡ σ↓⇑ − σ↑⇑
σ↓⇑ + σ↑⇑

=
1− ǫ

(1− ǫR)W1

[

M(E + E ′ cos θ)G1 −Q2G2

]

, (1.45)

where σ↓⇑(σ↑⇑) is the cross section for scattering off a longitudinally polarized target,
with incident electron spin anti-parallel (parallel) to the target spin. Similarly the
transverse electron asymmetry is defined for a target polarized perpendicular to the
beam direction as [12]

A⊥ ≡ σ↓⇒ − σ↑⇒
σ↓⇒ + σ↑⇒

=
(1− ǫ)E ′

(1− ǫR)W1

[

MG1 + 2EG2

]

cos θ , (1.46)

where σ↓⇒(σ↑⇒) is the cross section for scattering off a transversely polarized target,
with incident electron spin anti-parallel (parallel) to the beam direction, and the
scattered electrons being detected on the same side of the beam as that to which the
target spin is pointing. The electron asymmetries can be given in terms of A1 and
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A2 as

A‖ = D(A1 + ηA2) ; (1.47)

A⊥ = d(A2 − ξA1) . (1.48)

The virtual photon polarization factor D is given by

D =
1− (1− y)ǫ

1 + ǫR
≈ y , (1.49)

where y ≡ ν/E is the fraction of energy loss of the scattered electron, ǫ is the
magnitude of the virtual photon’s transverse polarization:

ǫ = 1/
[

1 + 2(1 + 1/γ2) tan2(θ/2)
]

. (1.50)

Other kinematic factors are

η = (ǫ
√

Q2)/(E − E ′ǫ) , (1.51)

ξ = η(1 + ǫ)/(2ǫ) and (1.52)

d = D
√

2ǫ/(1 + ǫ) . (1.53)

1.13 Extracting Polarized Structure Functions from

Asymmetries

From Eq. (1.47) and (1.48) the virtual photon asymmetries A1 and A2 can be ex-
tracted from measured electron asymmetries A‖ and A⊥ as

A1 =
1

D(1 + ηξ)
A‖ −

η

d(1 + ηξ)
A⊥ and (1.54)

A2 =
ξ

D(1 + ηξ)
A‖ +

1

d(1 + ηξ)
A⊥ . (1.55)

If the unpolarized structure function F1(x,Q
2) is known, then the polarized struc-

ture functions can be extracted from measured electron asymmetries A‖ and A⊥ as [8]

g1(x,Q
2) =

F1(x,Q
2)

D′

[

A‖ + tan(θ/2) · A⊥

]

and (1.56)

g2(x,Q
2) =

F1(x,Q
2)

D′

y

2 sin θ

[E + E ′ cos θ

E ′
A⊥ − sin θ · A‖

]

, (1.57)
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where the kinematic factor D′ is given by

D′ =
(1− ǫ)(2− y)

y[1 + ǫR(x,Q2)]
. (1.58)



Chapter 2

Neutron Asymmetry An1 at Large
xBj

As described in Chapter 1, the virtual photon asymmetry A1 is an important physical
quantity which can provide information about the spin structure of the nucleon. The
value of An

1 at large x is of particular interest because of the following reasons:

• Valence quarks dominate at large x, as shown in Figure 2-1. Hence there is less
contribution from q-q̄ sea quarks and gluons to the physical quantity, An

1 , that
is being measured. So it is a relatively simple region to study the spin structure
of the nucleon;

• Several theoretical calculations are available, which give different predictions.
These calculations will be described in Sections 2.2 to 2.9;

• The world data for An
1 available before 2001 did not have the precision to dis-

tinguish among different predictions. This is mainly due to two technical diffi-
culties in carrying out the experiment: (1) There exists no free neutron target;
(2) High polarized luminosity is required in the large x region.

In this chapter we first clarify the meaning of the x → 1 limit discussed in this
dissertation. Results from several models and calculations for An

1 are presented in
Sections 2.2 to 2.9. An overview of existing An

1 data is presented in Section 2.11.

2.1 The x→ 1 Limit

In Section 1.3 we have listed different kinematic regions of the excitation spectrum for
electron scattering. Only in the deep inelastic region can the nucleon’s substructure
be resolved and its constituents – the partons – be seen. Therefore, to study the
partonic structure of the nucleons, only the deep inelastic domain is of interest. The
measurement of An

1 described by this dissertation was carried out in the deep inelastic

37
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Figure 2-1: A global fit [21] of parton distribution functions (pdf’s) for the proton at
Q2 = 5 (GeV/c)2; u(d): valence uV (dV ) quark, ū(d̄): sea u(d) quark; s(= s̄): strange
sea quarks; g: gluons; Valence quark distributions are measured up to x = 0.8.

region and the theoretical predictions presented are made for the behavior of An
1 in

the deep inelastic region. In the rest of this dissertation, the “x→ 1 limit” is always
referring to that of the deep inelastic domain.

2.2 Basic SU(6) Model

In the non-relativistic constituent quark model [34], the nucleon is described in terms
of a symmetric SU(6) wavefunction, as shown in Figure 2-2. The only assumptions
are that isospin and spin are 1/2 and that the non-color part of the wavefunction is

Figure 2-2: SU(6) wavefunction for the neutron.

+
3
2

Polarized

Neutron

d

u

d

d
u

1
3

d

perfectly symmetric. More explicitly the wavefunction of a neutron polarized in the
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+Z direction (S = 1/2, SZ = +1/2) has the form [22]:

|n ↑〉S=1/2,SZ=+1/2 =
1√
2
|d ↑ (ud)S=0,SZ=0〉+

1√
18

|d ↑ (ud)S=1,SZ=0〉

−1

3
|d ↓ (ud)S=1,SZ=1〉 −

1

3
|u ↑ (dd)S=1,SZ=0〉

−
√
2

3
|u ↓ (dd)S=1,SZ=1〉 , (2.1)

where S in the subscript denotes the total spin of the ‘diquark’ state and SZ is its
projection along the +Z direction. For the case of the proton one needs to merely
exchange the u and d quarks in Eq. (2.1). In this limit where SU(6) is an exact
symmetry, both diquark spin states with S = 1 and S = 0 contribute equally to the
observables of interest, leading to the predictions:

Ap
1 =

5

9
; and An

1 = 0 . (2.2)

Data for Ap
1, A

n
1 , g

p
1/F

p
1 and gn1 /F

n
1 are shown in Figure 2-3. In this chapter

Figure 2-3: Ap
1 and An

1 as predicted from SU(6) symmetry, shown as a black line at
5/9 for the proton and 0 for the neutron.

we plot data for gp1/F
p
1 and gn1 /F

n
1 along with Ap

1 and An
1 since within the kine-

matics of most of the available measurements A1 ≈ g1/F1. Proton Ap
1 data are

from E143 [23] and E155 [20] experiments at Stanford Linear Accelerator (SLAC),
the European Muon Collaboration (EMC) experiment [24] and the Spin Muon Col-
laboration (SMC) experiment [25] at CERN ; Neutron An

1 data are from E142 [26]
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and E154 [27] experiments at SLAC using a 3He target, the SMC experiment [28] at
CERN using a deuteron (2He) target, and the HERMES experiment [29] at Deutsches
Elektronen-Synchrotron (DESY) using a 3He target; Proton gp1/F

p
1 data include those

from E143 [23] and E155 [20] experiments at SLAC and the HERMES experiment [30]
at DESY; Neutron gn1 /F

n
1 data are from E143 [23] and E155 [20] experiments at SLAC

using a 2H target.

In the region of x > 0.4, the Ap
1(x) data have large errors and are consistent

with the SU(6) prediction 5/9. The statistical accuracy of An
1 (x) data is even worse

than that of the proton. The An
1 (x) data at x > 0.4 are consistent with being zero

everywhere.

We denote u(x) ≡ up(x), d(x) ≡ dp(x) and s(x) ≡ sp(x) the parton distribution
functions (PDF) for the proton. For a neutron one has un(x) = dp(x) = d(x),
dn(x) = up(x) = u(x) based on isospin symmetry. The strange quark distribution for
the neutron is assumed to be the same as that of the proton, sn(x) = sp(x) = s(x). In
the following all PDF’s are for the proton, unless specified by a superscript ‘neutron’.

In deep inelastic scattering, exact SU(6) symmetry implies equivalent shapes for
the valence quark distributions, related simply by u(x) = 2d(x) for all x. Using
Eq. (1.18) and (1.31), one can write the ratio of neutron and proton F2 structure
functions as

Rnp ≡ F n
2

F p
2

=
u(x) + 4d(x)

4u(x) + d(x)
. (2.3)

Applying u(x) = 2d(x) gives

Rnp =
2

3
. (2.4)

Data for Rnp [31] are shown in Figure 2-4. In this case, they agree poorly with the
SU(6) prediction. Rnp(x) is a straight line starting with Rnp(0) = 1 but constantly
dropping to approximately Rnp(1) = 1/4 at large x. In addition, Ap

1(x) is small at low
x, as shown in Figure 2-3. The fact that Rnp(0) = 1 may be explained by the presence
of a large amount of sea quarks in the low x region and the fact that An,p

1 (0) ∼ 0 is
because these sea quarks are not highly polarized. At large x, however, there are few
sea quarks and data indicate there must be problems with the SU(6) wavefunction.
In fact, SU(6) symmetry is well known to be broken [32] and the details of possible
SU(6)-breaking mechanism is a basic question in hadronic physics.
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Figure 2-4: SLAC data [31] on the F n
2 /F

p
2 ratio. The horizontal line at 2/3 shows the

SU(6) prediction.

F2

n
F2

p

SU(6)

2.3 SU(6) Breaking and Hyperfine Perturbed Con-

stituent Quark Model

A natural explanation of SU(6) symmetry breaking based on phenomenological argu-
ments [32] is the so called hyperfine interaction, or chromomagnetic interaction among

the quarks, described as ~Si · ~Sj δ
3(~rij), where ~Si is the spin of ith quark. It is this in-

teraction that explains the 300 MeV difference between the nucleon and the ∆(1232)
masses. The effect of this perturbation on the wavefunction is to lower the energy of
the S = 0 diquark state, allowing the first term of Eq. (2.1), |d ↑ (ud)S=0,SZ=0〉neutron,
to be more stable and hence dominate the high energy tail of the quark momentum
distribution that is probed as x→ 1. Since the struck dneutron quark in this term has
its spin parallel to that of the neutron, the dominance of this term at x → 1 implies
(∆d/d)neutron → 1, (∆u/u)neutron → −1/3, or

∆u/u→ 1;∆d/d→ −1/3 as x→ 1 , (2.5)

where ∆u(∆d) and u(d) are the polarized and the unpolarized quark distribution
functions for the proton. They are functions of x; however in the following the
argument x will not be explicitly written if only the limiting behavior at x → 1 is
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discussed. One also obtains

Rnp =
F n
2

F p
2

→ 1

4
as x→ 1 , (2.6)

which could explain the deviation of Rnp(x) data from the SU(6) prediction. Based
on the same mechanism, we can give predictions for Ap

1(x) and A
n
1 (x):

Ap
1 → 1, An

1 → 1 as x→ 1 . (2.7)

The constituent quark model (CQM) [34] is the best model so far to describe the
phenomenology of low energy hadronic physics. Constituent quarks share with the
fundamental QCD quarks their conserved charges and quantum numbers; they have
angular momentum 1/2 and are fermions. On the other hand, constituent quarks are
supposed to have effective masses exceeding the current quark masses of perturbative
QCD. Qualitatively, a constituent quark may be viewed as an object in which a “bare”
(current) valence quark is dressed by clouds of quark-antiquark pairs and gluons.
Although it is not clear from QCD - the theory of strong interaction - how current
quarks are dressed through the strong interactions and form constituent quarks, the
CQM has been accepted for a long time because of its success in describing many
aspects of low energy hadronic physics, especially in constructing hadron spectroscopy
and structure. On the other hand, QCD has been successful in explaining some
detailed behaviors of structure functions, for example, their Q2 evolution. However
so far QCD has been unsuccessful in constructing structure functions.

Figure 2-5: Ap
1 and An

1 as predicted from the CQM [36] and the comparison to world
data.
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A CQM incorporating the hyperfine interaction has been developed by Isgur and
Karl [35] which can adequately describe the baryon spectrum. The same idea can
be used to construct structure functions in the large x region. This can be justified
by valence quark dominance in this region. That is, in the large x region almost
all quantum numbers, momentum and spin of the nucleon are carried by the three
valence quarks, which can therefore be identified as constituent quarks. Results for the
asymmetries Ap

1 and A
n
1 from hyperfine perturbed CQM [36] are shown in Figure 2-5,

the relativistic effect has been included. There are two additional assumptions in this
calculation. The first one is d(x)/u(x) ≈ κ(1−x) as x→ 1 with κ ≈ 0.5 ∼ 0.6, which
satisfies the fact that the d(x) vanishes at x = 1 because of the hyperfine interaction.
The second assumption is cA(x) = nx(1 − x)n, n = 2 ∼ 4 and cA(x) describes the
probability that the spin of a quark is flipped because of relativistic effects.

2.4 Perturbative QCD

Another approach focuses directly on relativistic quarks instead of the non-relativistic
quarks of the above discussion. Farrar and Jackson [37] in the early 1970’s, in one
of the first applications of perturbative QCD (pQCD), noted that at x → 1, the
scattering is from a high energy quark, and the process can be treated perturbatively.
Assuming the orbital angular momentum of quarks is zero and based on angular
momentum conservation, Farrar and Jackson proceeded to show that a quark carrying
nearly all the momentum of the nucleon (i.e. x → 1) must have the same helicity as
the nucleon. This mechanism is usually referred to as Hadron Helicity Conservation
(HHC). In this picture, quark-gluon interactions cause only the S = 1, Sz = 1 diquark
spin projection component, rather than the full S = 1 diquark system to be suppressed
as x→ 1. It gives

d↓/d↑ → 0, u↓/u↑ → 0; ∆u/u→ 1, ∆d/d→ 1 as x→ 1 ; (2.8)

d

u
=
d↑

u↑
→ 1

5
as x→ 1 ; (2.9)

Ap
1 → 1, An

1 → 1; Rnp → 3

7
as x→ 1 . (2.10)

This is one of the few places where QCD can make an absolute prediction for the
x dependence of the structure functions (here a ratio of structure functions). It is
uncertain how low in x and Q2 this picture is reliable. This pQCD prediction has been
imposed in the fits to polarized DIS data by Brodsky, Burkhardt and Schmidt [38],
known as the BBS parameterization. In this calculation, the first moment of the
proton gp1 data from polarized DIS experiments was used in the fitted data set and
the neutron data were not included. However their treatment was rough and the Q2

evolution was not included. This was improved by E. Leader, Sidorov and Stamenov,
known as LSS(BBS) parameterization [39]. They fit to proton and neutron A1 data
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Figure 2-6: An
1 as predicted from pQCD HHC based BBS (curve (1)) and LSS(BBS)

parameterization (curve (2)).

(1)
(2)

directly and the Q2 evolution was carefully treated. Results for An
1 using BBS and

LSS(BBS) parameterizations are shown in Figure 2-6.

2.5 Angular Momentum and Quark Helicity Con-

servation

However, hadron helicity conservation was deduced from angular momentum conser-
vation based on the assumption that the orbital angular momentum of the quarks
is zero. As recently pointed out [40], quarks do not necessarily have a vanishing
orbital angular momentum. Consequently the struck quark can flip its helicity by
transferring a unit of orbital angular momentum. Hence it becomes questionable
to apply the pQCD based HHC to the struck quark in deep inelastic scattering.
This mechanism has been used to interpret the observation that the ratio of pro-
ton Pauli and Dirac form factors data F p,el

2 (Q2)/F p,el
1 (Q2) is proportional to 1/Q

above Q2 = 2 (GeV/c)2 [41][42], in contrast to the pQCD HHC based prediction that
F p,el
2 (Q2)/F p,el

1 (Q2) ∼ 1/Q2 [43]. Calculations of gp1/F
p
1 and gn1 /F

n
1 without pQCD

based HHC constraint were performed using a world fit of polarized and unpolarized
parton distribution functions, the LSS parameterizations [44]. Results for gp1/F

p
1 and

gn1 /F
n
1 for Q2=3, 5, 100 (GeV/c)2 [45] are shown in Figure 2-7.

In addition to SU(6), hyperfine-perturbed constituent quark models and pQCD
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Figure 2-7: gp1/F
p
1 and gn1 /F

n
1 from LSS parameterization. Curves (bottom, mid-

dle and top) correspond to calculations of gp1/F
p
1 and gn1 /F

n
1 at Q2=3, 5, and 100

(GeV/c)2, respectively.

based models, there are a few other models which can give a prediction for An
1 at

large x, as will be described in the following sections.

2.6 Statistical Approach for Polarized Structure

Functions

In the statistical approach the nucleon is viewed as a gas of massless partons (quarks,
antiquarks, gluons) in equilibrium at a given temperature in a finite volume [46]. The
parton distribution p(x), at an input energy scale Q2

0, is proportional to

{e
x−X0p

x̄ ± 1}−1. (2.11)

The plus sign is for quarks and antiquarks and corresponds to a Fermi-Dirac distri-
bution. The minus sign is for gluons and corresponds to a Bose-Einstein distribution.
X0p is a constant which plays the role of the thermo-dynamical potential of the par-
ton p. x̄ is the universal temperature and is the same for all partons. Based on this
statistical picture of the nucleon, a global Next-to-Leading Order (NLO) QCD anal-
ysis of unpolarized and polarized DIS data is performed, and a good description has
been obtained in a broad range of x and Q2, of all measured structure functions F p

2 ,
FD
2 , gp1, g

D
1 , and g

n
1 [46].
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Figure 2-8: Predictions of Ap
1 and A

n
1 from statistical model. Curves (bottom, middle

and top for Ap
1, and bottom, middle and top at x > 0.6 for An

1 ) correspond to
calculation at Q2=4, 10, and 10 (GeV/c)2, respectively.

For the asymmetry A1, first consider the ratio g1/F1. Assuming that the u quark
dominates at large x, from Eq. (1.18), (1.31) and (1.32) one obtains

g1(x,Q
2)

F1(x,Q2)
∼ g1(x,Q

2)

F2(x,Q2)

[1 +R(x,Q2)]

[1 + γ2(x,Q2)
. (2.12)

Next, assuming higher twist effects are small, the structure function g2(x,Q
2) can

be estimated by its twist-2 term gWW
2 (x,Q2) in Eq. (1.37). Once both g1(x,Q

2) and
g2(x,Q

2) are known, A1 can be calculated using Eq. (1.41).

In the statistical approach ∆u/u → 0.77, ∆d/d → −0.46 and Ap,n
1 < 1 at x → 1.

Results of Ap
1 and An

1 at Q2=4, 10, 100 (GeV/c)2 [47] are shown in Figure 2-8.

Because the statistical model is more focused on the global behavior of partons
inside the nucleon, in this sense it is a good approximation at low x region where
the q − q̄ sea and gluons dominate and form a ‘parton zoo’ with valence quarks. In
the large x region valence quarks dominate so one should see more individual aspects
of partons, rather than global ones. Hence in the large x region (a conservative
estimation is x > 0.6), the calculations based on the statistical approach become
questionable.
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2.7 Local Duality

Quark-hadron duality was first established by Bloom and Gilman [48]. In early 1970s
it has been observed that the unpolarized F2 structure function at low W generally
follows a global scaling curve which describes high W data, to which the resonance
structure function averages. Furthermore, the equivalence of the averaged resonance
and scaling structure functions appears to hold for each resonance, over restricted
regions in W , so that the resonance-scaling duality also exists locally.

For elastic scattering, the connection between the elastic form factors at large Q2

and the x→ 1 behavior of structure functions was established by Drell and Yan [49],
and West [50]. Recently more interest has arisen in connection with the asymmetry
A1 and the F n

2 /F
p
2 ratio, whose x → 1 limits reflect mechanisms for the breaking

of spin-flavor SU(6) symmetry in the nucleon. Based on local duality, one can use
measured structure functions in the resonance region at large ξ to directly extract
elastic form factors [51]. Here ξ is a counterpart of x in DIS, with a correction factor
taking into account the finite target mass effect.

Conversely, empirical elastic electromagnetic form factors at large Q2 can be used
to predict the x → 1 behavior of deep-inelastic structure functions [52]. It has been
shown that asymptotically in the Q2 → ∞ limit each of the structure functions F1, F2

and g1 are determined by the slope of the square of the elastic magnetic form factor
GM , while g2 (which in deep-inelastic scattering is associated with higher twists) is

Figure 2-9: Predictions of Ap
1 and An

1 from the local duality method (green curves)
compared with world data.

determined by a combination of GE and GM . As a ratio of structure functions, the
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x → 1 behavior of the asymmetry A1 has been predicted from a parameterization of
global form factor data [53]. Results of Ap

1 and An
1 [54] are shown in Figure 2-9.

There is one precaution that needs to be made for a local duality calculation. For
the prediction shown in Figure 2-9, although the curves are plotted for x > 0.7, one
should note that the region below the pion threshold x = xth ≈ 0.8 corresponds to
Q2 ≈ 1 GeV2, where duality is not expected to be a good approximation, so the
reliability of the local duality predictions there would be questionable. Moreover,
duality itself is more motivated by phenomenology and has not been well understood
on a theoretical basis. A robust prediction of local duality, however, is that A1 → 1
as x→ 1.

2.8 Chiral Soliton Model

Whereas perturbative QCD works well in the high energy hadronic physics, theo-
ries suitable for hadronic phenomena in the low energy, non-perturbative regime are
much more difficult to construct. Promising models in this regime are chiral effective
theories and the lattice QCD method. There exist predictions for the structure func-
tions and the moments of structure functions from these non-perturbative theories.
Experimental data can help to improve these theories by providing more constraints.

In this section, the theories of chiral dynamics [55] and the concepts of baryons
as chiral solitons [61] will be briefly reviewed first, then chiral soliton calculations for
A1 will be presented.

The QCD Lagrangian with Nf massless flavors is known to possess a large global
symmetry, namely a symmetry under unitary flavor transformations of the corre-
sponding left- and right-handed quark fields, or under UL(Nf ) × UR(Nf ) rotations.
This symmetry is called chiral [56]. If this symmetry were exact, one would observe
parity degeneracy of all states with all other quantum numbers being the same. In
reality the splittings between states with the same quantum numbers but opposite
parities are huge. For example, the splitting between the vector ρ and the axial
meson a1 is (1260-770) ≈ 500 MeV. The splittings are too large to be explained
by the existence of small current quark masses (mu ≈ 4 MeV, md ≈ 7 MeV and
ms ≈ 150 MeV), which break the chiral symmetry explicitly. These facts in hadron
phenomenology lead to the conclusion that the chiral symmetry of the QCD La-
grangian is broken spontaneously [55]. The role of chiral symmetry, its spontaneous
breaking and its consequences in hadron physics, have served as a basis for modeling
the strong interactions.

Additional guidance can be obtained if one generalizes QCD from the gauge group
SU(3) to SU(NC) with an arbitrary large number of colors NC [58] [59]. For large NC ,
1/NC might be considered as an implicit expansion parameter and QCD can be
treated perturbatively in the low-energy regime. In this case QCD reduces to an
effective theory of infinitely many weakly interacting mesons and glueballs. Although
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one might wonder at this point whether this provides a sound basis for a perturbative
analysis since NC = 3 in the real world, models can be constructed based on this
idea and it turns out to be fruitful. In this effective meson theory baryons can be
built from NC quarks, and moreover can be identified as solitonic solutions of the
field equations [57].

In 1961 Nambu and Jona-Lasinio (NJL) [60] constructed a local four fermion
interaction with a global U(1)×SU(2)L×SU(2)R chiral symmetry. Later all chirally
invariant models with local four-fermion (uL, dL, uR and dR) interactions (or even
six-fermion interactions) were called NJL models. Using a special technique called the
functional integral, the NJL model can be converted to an effective meson theory and
therefore it has a QCD basis in the large NC limit. This model can directly construct
the quark flavor dynamics and baryons emerge as chiral solitons of the pseudo-scalar
fields [61]. Although the NJL model has some difficulties in explaining hyperon static
properties (using six-fermion version, i.e., three flavors), it is successful in the case
of nucleons. A collective wave-function for the nucleon with good flavor and spin
quantum numbers has been achieved [62].

Based on the chiral soliton picture of the nucleons, a calculation has been done
for gn1 /F

n
1 using the four-fermions NJL model at Q2 = 0.4 (GeV/c)2 [63], as shown in

Figure 2-10. Note that this is a pure model calculation and does not require any fit
to world data. The result can be evolved to higher Q2 using the DGLAP equations.
Calculations for An

1 and gn2 /F
n
1 are in progress and reliable results will be available in

2003.

Figure 2-10: gn1 /F
n
1 as predicted from chiral soliton model at Q2=0.4 (GeV/c)2.

One open issue is that there is no quark confinement in the NJL models. However,
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soliton models are very attractive because of their connection to QCD in the limit of
largeNC mentioned above, and the possibility to generalize them to three flavors. Also
they provide a very comprehensive picture of baryons ranging from static properties
of nucleons and meson-nucleon scattering involving systems with a heavy quark, to
applications in the context of nuclear matter. These models use only a very limited
number of parameters. Present studies of chiral soliton models apparently serve to
further complete this comprehensive picture.

2.9 Instanton and Polarized Structure functions

The non-perturbative vacuum fluctuations of the gluon fields, so-called instantons, are
widely used in the description of the non-perturbative effects in strong interactions.
The instantons describe the sub-barrier transitions between different classical QCD
vacuum states, that have different values of quark helicities. Therefore they can
remove helicity from valence quarks and transfer it to gluons and quark-antiquark
pairs, introducing quark depolarization inside the nucleon. Based on this motivation,
the instanton model was introduced to explain the observed violation of the Ellis-Jaffe
sum rule, or the so-called ‘spin-crisis’ of the proton [64].

The contribution of the quark-quark and quark-gluon interactions induced by in-
stantons to the valence quarks and to the proton spin-dependent structure functions
gp1(x,Q

2) have been estimated within the instanton liquid model for the QCD vac-
uum [64]. The result shows that contributions to the nucleon spin from instanton
induced q-q and q-g interactions are both negative, and are x-dependent. They give a
reasonable Ellis-Jaffe sum rule violation for the proton, and can explain the decrease
of the gp1(x) structure function at large x. On the other hand, the prediction of the
instanton model for the neutron gn1 structure function is very sensitive to the details
of the violation of the SU(6) symmetry for the valence quark distribution function
and was not discussed in [64]. However, if negative contributions are formed by q-q
and q-g interactions for the neutron, as they do for the proton, then it is possible that
An

1 is near zero or even negative in the large x region [65].

2.10 Lattice QCD and Polarized Structure Func-

tions

It has been mentioned that lattice QCD provides the only known QCD simulation for
non-perturbative calculation of hadron structure in the low-energy regime. A lattice
QCD calculation has been done for the moments of the nucleon polarized structure
functions gp1 and gn1 [66]. However there is no calculation available for A1 yet.
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2.11 Existing Measurements of An
1 at large x

The world data for An
1 available before 2001 have poor statistical accuracy at x > 0.4

and cannot distinguish among different models, see Figure 2-11. Table 2.1 gives a
summary of all measurements. Clearly, there is a great need for data at x > 0.4.

Table 2.1: Measurements of An
1 before 2001.

Experiment Beam Target x Q2 in (GeV/c)2)
E142 [26] 19.42, 22.66, 25.51 GeV e− 3He 0.03∼0.6 2
E154 [27] 48.3 GeV e− 3He 0.014∼0.7 1∼17

HERMES [29] 27.5 GeV e+ 3He 0.023∼0.6 1∼15
E143 [23] 9.7, 16.2, 29.1 GeV e− Ammonia 0.024∼0.75 0.5∼10
E155 [20] 48.35 GeV e− Ammonia 0.014∼0.9 1∼40
SMC [28] 190 GeV µ− deuterated 0.003∼0.7 1∼60

butanol
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Figure 2-11: Existing data on An
1 in comparison to various theoretical predictions

including: An
1 from CQM (yellow band (1)); g1/F1 at Q2 = 5 (GeV/c)2 from LSS

parameterization (red curve (2)); An
1 from pQCD based BBS parameterization (blue

curve (3)); An
1 from pQCD based LSS(BBS) parameterization (cyan curve (4)); An

1

from statistical model at Q2 = 4 (GeV/c)2 (blue curve (5)); An
1 from local duality

(green curve (6)); An
1 from chiral soliton model at Q2 = 0.4 (GeV/c)2 (purple curve

(7)); and An
1 from E155 g1/F1 experimental fit at Q2 = 4 (GeV/c)2 (black curve (8)).

(1)

(2)

(3)

(4)

(5)

(6)
(7)
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Chapter 3

Experimental Setup

During the summer of 2001 in Hall A of the Thomas Jefferson National Accelera-
tor Facility (Jefferson Lab, or JLAB; formerly known as Continuous Electron Beam
Accelerator Facility, or CEBAF), the neutron asymmetry An

1 was measured at three
kinematics x = 0.33, 0.47 and 0.60, with Q2 = 2.71, 3.52 and 4.83 (GeV/c)2, respec-

tively. To determine An
1 , both electron asymmetries A‖ and A⊥ of inclusive ~3He(~e, e′)

scattering have been measured in the deep inelastic region. This chapter describes the
experimental setup and most of the instrumentation. The polarized 3He target will
be described in Chapter 4. Data analysis associated with part of the instrumentation
will be presented in the beginning of Chapter 5.

3.1 Overview

As mentioned in Chapter 2, the experimental difficulties to measure An
1 in the large x

region are the following

• There exists no free neutron target which is dense enough to carry out a scatter-
ing experiment. This is mainly because of neutron’s short lifetime (∼ 886 sec);

• High polarized luminosity is required for precision measurements in the large x
region.

Because there exists no dense free neutron target, polarized nuclear targets such as
2H or 3He are commonly used as effective polarized neutron targets. Consequently,
nuclear corrections need to be made to extract neutron information from nuclei target.
For a polarized deuteron, approximately half of the deuteron spin comes from the
proton and the other half comes from the neutron. Therefore the neutron results
extracted from the deuteron have a large uncertainty coming from the uncertainty of
proton data.

Compared to a polarized deuteron, the spin of a polarized 3He comes mainly from
the neutron (∼ 86%). Figure 3-1 shows the 3He ground state wavefunction which

53
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consists of S, S ′ and D states. The two protons’ spins cancel in the dominant S state
(∼ 88.2%). Therefore there is less model dependence in the 3He nuclear correction
for the spin-dependent observables.

At large x, the advantage of using a polarized 3He target is more clear in the case
of the neutron spin asymmetry An

1 . The neutron asymmetry in this region is much
smaller than that of the proton, therefore the procedure of extracting An

1 is more
sensitive to the nuclear model being used.

Figure 3-1: The 3He wavefunction.
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Table 3.1: Development of ~3He target technology.

Lab/Exp year beam I[µA] ρ[cm−2] L[s−1cm−2] Ptarg

MIT/Bates(I) 90 e− 6 7.5×1020 2.8×1034 0.19
MIT/Bates(IIa) 90 e− 11 1.1×1019 7.6×1032 0.30

TRIUMF 91 p 3.5×10−3 20×1021 4.4×1031 0.60
SLAC(E142) 92 e− 1.5 7×1021 6.6×1034 0.35

MIT/Bates(IIb) 93 e− 25 3.3×1018 5.1×1032 0.38
IUCF 93 p 70 1.5×1014 6.6×1028 0.46

HERMES 95 e+ 20×103 3.3×1014 4.1×1031 0.46
NIKHEF 95 e− 80×103 7×1014 3.5×1032 0.50

SLAC(E154) 95 e− 1.5 8×1021 7.5×1034 0.38
MAMI 97 e− 7 5×1020 2.2×1032 0.50
JLAB 98∼ e− 12∼15 (8∼10)×1021 6.7×1035 0.35∼0.45

In the large x region, the cross section is low because of the high Q2. To achieve a
good statistical precision, high luminosity is required. Table 3.1 shows a comparison
in luminosity of all laboratories which have used a polarized 3He target and are able
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to perform a measurement of neutron asymmetry An
1 . The polarized electron beam

at JLAB, combined with the polarized 3He target in Hall A, provides the highest
polarized luminosity in the world. Hence it is the best place to measure the neutron
spin structure in the large x region.

The experiment E99-117 [67] was carried out in Hall A at JLAB in the summer of
2001 to measure An

1 at three kinematics at x =0.33, 0.47 and 0.60. In the following
sections it will be referred to as “the An

1 experiment”. The kinematic coverage of
this experiment is shown in Figure 3-2. The average values of x, Q2 and W 2 of
each kinematics are listed in Table 3.2. To measure An

1 , the asymmetries A‖ and

Figure 3-2: Kinematic coverage of the An
1 experiment - Q2, W2 and xBj.

x=0.33

x=0.47

x=0.60

x=0.33

x=0.47

x=0.60

Table 3.2: Kinematics of the An
1 experiment.

xBj Q2 (GeV/c)2 W 2 (GeV)2

0.327 2.709 6.462
0.466 3.516 4.908
0.601 4.833 4.090

A⊥ of polarized e− scattering off a polarized 3He target have been measured. The
polarized electron beam at JLAB was used at the highest available energy 5.7 GeV
and the Hall A polarized 3He target was used as an effective neutron target. The
two standard Hall A High Resolution Spectrometers (HRS) were used to detect the
scattered electrons.
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3.2 The Accelerator and the Polarized Electron

Source

JLAB operates a radio frequency (RF) electron accelerator that re-circulates the beam
five times through two super-conducting linear accelerators (linac). This beam is sent
to three experimental halls, named Hall A, B, and C. The primary mission of JLAB
is to probe the nucleus of the atom to study the quark structure of matter. It was
commissioned during the early 1990s and produced the first experimental beam in
October of 1994.

The accelerator uses a state-of-the-art photocathode gun system that is capable
of delivering continuous-wave (CW) beams of high polarization and high current to
Hall A and Hall C while maintaining high polarization low current beam delivery to
Hall B. The source of the injector is a strained GaAs cathode providing polarized beam
of above 70% polarization and maximum current of ∼200 µA. Polarized electrons from
the source are first accelerated to 45 MeV, then are injected into the north linac. The
north and south linacs are joined by two 180◦ arcs with a radius of 80 m, forming a

Figure 3-3: The Jefferson LAB accelerator.
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unique recirculating beamline that looks like a “racetrack”, as shown in Figure 3-3.
Twenty RF cryomodules, each containing eight super-conducting niobium cavities,
comprise the two linacs. Liquid helium, produced at the Central Helium Liquefier
(CHL), keeps the accelerating cavities super-conducting at a temperature of 2 K.
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The linac energies are each set identically and the RF cavities are phased to provide
maximum acceleration. Quadrupole and dipole magnets in each arc provide the field
which focuses and steers the beam as it passes through each arc. More than 2,200
magnets are necessary to keep the beam on a precise path and tightly focused. The
nominal gain of each linac was designed to be 400 MeV. However, this gain can be
tuned up to about 500 MeV, if required by the experimental halls. This brings the
maximum beam energy to about 5.7 GeV.

After passing through the south linac, the beam can either circle around the west
recirculation arc for another pass around the accelerator, or be directed into a hall’s
transport channel using magnetic or RF extraction. For the first four passes the
accelerator can provide beam at a particular energy to one hall only. The fifth pass
can be sent to all three halls simultaneously. The beam received by each hall is made
of bunches at a frequency of 499 MHz, with the bunch length being 1.7 ps.

The polarized electron source is a strained GaAs cathode evolved from the source
used at the Stanford Linear Accelerator Center (SLAC) [68]. The cathode is created
by growing layers of various GaAs combinations, as shown in Figure 3-4. The top
layer is pure GaAs, then the layer below is made of GaAs0.72P0.28. The shorter lattice
spacing of GaAs0.72P0.28 (5.5968 Å) causes the natural spacing of the GaAs (5.6533 Å)
to shrink slightly, hence creates strain [69]. The strain induces a gap in the different
sublevels of the P3/2 electrons in the valence band of the GaAs. By tuning a left-
handed circularly polarized laser (helicity −1, denoted as σ−) to the proper frequency,
electrons from the P3/2 m = 3/2 state can be excited to the S1/2 m = 1/2 level of
the conduction band. From there the polarized electrons diffuse to the surface and
escape into the surrounding vacuum. Because the strain creates a sufficiently wide

Figure 3-4: Structure of strained GaAs cathode and the level diagram of the conduc-
tion and valence bands.
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gap between the P3/2 sublevels, the electrons from the P3/2 m = 1/2 state will not
be excited by the tuned laser. The consequence is that the electrons leaving the
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surface of the cathode are all from the S1/2 m = 1/2 state and hence are nearly 100%
polarized.

3.3 Hall-A Overview

Among the three experimental halls at JLAB, Hall A is the biggest one with a diam-
eter of 53 m. The basic layout of Hall A is shown in Figure 3-5. Figure 3-6 shows

Figure 3-5: Hall-A floor plan during the An
1 experiment.
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the two coordinate systems [86], the hall frame and the spectrometer frame, that are
commonly used in Hall A. The major instrumentation includes beamline equipment,
target, and two high resolution spectrometers (HRS).
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Figure 3-6: Hall coordinate system (left): Z is the beam direction, Y is vertically
pointing up; and the spectrometer coordinate system (right): Z is the HRS central
ray direction, X is vertically pointing down and is called the dispersive direction, Y
is called the transverse direction, φ (θ) is the in-plane (out-of-plane) scattering angle
with respective to the HRS central ray direction.
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3.4 Beamline

The Hall-A beamline starts after the arc section (for beam energy measurement) and
ends at the beam dump. The arc section can be used for beam energy measurement,
as will be described in Section 3.5.1. The beamline consists of a Compton beam
polarimeter, two Beam Current Monitors (BCM) between which located an Unser
monitor (for absolute beam current measurement), a fast raster, the eP device for
beam energy measurement, a Møller beam polarimeter, and a number of Beam Po-
sition Monitors (BPM). These beamline elements will be described in details in the
following sections.

3.5 Beam Energy Measurement

The energy of the beam is measured absolutely by two independent methods [70],
the Arc measurement based on beam deflection in a known magnetic field in the arc
section of the beamline, and the eP measurement, based on elastic electron-proton
scattering. Both methods can provide a precision of δEbeam/Ebeam ∼ 2× 10−4.

3.5.1 Arc Measurement

The Arc measurement is based on the principle that an electron in a magnetic field
moves in a circular pattern, the radius of which depends on the magnitude of the
magnetic field and of the electron’s momentum. The Arc method measures the de-
flection of the beam in the arc section of the beamline, which can be made when
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the beam is tuned in either dispersive or non-dispersive mode in the arc section. A
detailed description of the instrumentation for the Arc energy measurement can be
found in [71]. The nominal bend angle of beam in the arc section is φ = 34.3◦, see
Figure 3-7. The momentum of electrons (p in GeV/c) is then determined by the field

Figure 3-7: The arc section of the beamline.
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integral of the eight dipoles (
∫

~B ·d~l in T·m), and the net bend angle through the arc
section (θ in radians) by

p = c

∫

~B × d~l

θ
or c

∫

B⊥ · dl
θ‖

, (3.1)

where c = 0.299792 GeV· rad/Tm is speed of light, B⊥ is the magnetic field com-
ponent perpendicular to the electron motion, dl is the path length of the electron,
and θ‖ is the angle by which the electron is deflected. The integral on the right hand
side of Eq. (3.1) is called the Bdl value of the arc section. The dispersive (inva-
sive) mode provides better precision (δEbeam/Ebeam ∼ 2× 10−4) than non-dispersive
(non-invasive) mode (δEbeam/Ebeam ∼ 5× 10−4).

The Arc method consists of two simultaneous measurements. One is for the mag-
netic field integral Bdl of the bending elements (eight dipoles in the arc) based on
a reference magnet (9th dipole) measurement. The other measurement is for actual
bend angle of the arc, based on superharps (a set of wire scanners). The superharp is
moved across the beam path. When the beam strikes a wire, the particles scattering
off the wire are collected by a simple ion chamber, hence a current is generated and
the beam’s position is recorded [72].



3.5. BEAM ENERGY MEASUREMENT 61

3.5.2 eP Measurement

The instrumentation for the eP energy measurement is a stand-alone device along the
beamline located 23 m upstream of the target. In the eP method the beam energy
is determined by the measurement of the scattered electron angle θe and the recoil
proton angle θp in the H(e, e′p) elastic reaction according to the kinematic formula

E = Mp
cos(θe) + sin(θe)/ tan(θp)− 1

1− cos(θp)
+O(m2

e/E
′2) . (3.2)

A three-dimensional schematic diagram of the eP system [72] is shown in Figure 3-8.

Figure 3-8: Layout of eP device
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A detailed description of the instrumentation for the eP energy measurement can
be found in [73]. The target is a CH2 film enclosed by an aluminum cover. Two
identical arms, each consisting of an electron and a proton detector system, are placed
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symmetrically with respect to the beam direction along the vertical plane. Each
proton detector system is made up of a set of two silicon micro-strip detectors (SSD),
called the front and the back SSD. The active area of one SSD for the proton detector
is 51.2 × 25.6 mm2. Each electron detector system is made up of a set of 7 × 2
SSD in the reaction plane. The active area of one SSD for the electron detector is
12.8× 12.8 mm2. The trajectories of the scattered electrons and the recoiled protons
depend on the beam energy, as well as the position and the direction of the beam.
Making simultaneous measurements of the beam energy with both arms cancels to
the first order any uncertainty arising from the knowledge of the beam position and
direction.

Repeated measurements of the beam energy with both eP and Arc methods show
good agreement with each other within their respective uncertainties (discrepancy
6 3× 10−4) except at around 3 GeV. The discrepancy at 3 GeV originates from the
systematic effect related to the position of the silicon micro-strip detector in the eP
apparatus corresponding to a beam energy of 3 GeV [72][74].

3.5.3 Beam Energy During the An
1 Experiment

Table 3.3 shows the result of beam energy measurements during the An
1 experi-

Table 3.3: Beam energy measurement for the An
1 experiment, all energies are given

in MeV.

Date Arc eP Tiefenbach† Set Energy‡

06/04/01 1196.84±0.68 1196.52 1197.33
06/06/01 5729.35±1.72 5727.61 5738.42
07/13/01 5727.4±3.3 5726.68 5738.42

† The “Tiefenbach” energy uses the current values of Hall A arc Bdl value and Hall A
arc beam position monitors (BPMs) to calculate the beam energy. This number is
continuously recorded in the data stream and is calibrated against the Arc energy of
the 9th dipole regularly.
‡ The set energy is the beam energy the accelerator is setup to run. This number is
based on the field maps of the recirculation magnets and the Hall’s energy measure-
ment results.

ment [75]. Two beam energies have been used: 1.2 GeV for commissioning and
5.7 GeV for DIS. For DIS analysis, we will use the weighted average of Arc and eP
measurements: Eb = 5728.94±1.52 MeV.
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3.6 Beam Polarization Measurement

There are three methods to measure the electron beam polarization: (1) Mott method;
(2) Møller polarimetry; and (3) Compton polarimetry. The Mott measurement is
performed at the polarized electron source, the other two polarimetries belong to
Hall A instrumention and will be discussed in this section.

3.6.1 Møller Polarimetry

The Møller polarimeter [76] measures the process of Møller scattering of the polarized
beam electrons off polarized atomic electrons in a magnetized foil ~e−+~e− → e−+ e−.
Its cross section depends on the beam and target polarizations Pb and Pt as

σ ∝
(

1 +
∑

i=X,Y,Z

(AiiPb,iPt,i)
)

,

where i = X, Y, Z defines the projections of the polarizations. The analyzing power
Aii depends on the scattering angle in the center of mass (CM) frame θCM . Assuming
that the beam direction is along the Z-axis and that the scattering happens in the
ZX plane

AZZ = −sin2 θCM · (7 + cos2 θCM)

(3 + cos2 θCM)2
and

AXX = −AY Y = − sin4 θCM

(3 + cos2 θCM)2
. (3.3)

At θCM = 90◦ the analyzing power has its maximum AZZ,max = 7/9. A beam
polarization transverse to the scattering plane also leads to an asymmetry, though the
analyzing power is lower: AXX,max = AZZ,max/7. The main purpose of the polarimeter
is to measure the longitudinal component of the beam polarization.

The polarized electron target used by the Møller polarimeter is a ferromagnetic
foil. The target polarization can be adjusted to any direction with respect to the
beamline. The beam polarization may have a horizontal transverse component, which
would couple to the horizontal transverse component of the target polarization. The
way to cancel the influence of the transverse component is to take an average of the
asymmetries measured at two complimentary target angles, for example 20◦ and 160◦.
The target polarization is derived from the foil magnetization measurements. For the
supermendur foil used in 1998-2000 a polarization of 7.95± 0.24% was obtained [77].

The Møller scattering events are detected with the help of a magnetic spectrom-
eter, as shown in Figure 3-9. The spectrometer consists of a sequence of three
quadrupole magnets and a dipole magnet. The detector consists of scintillators and
lead-glass calorimeter modules, split into two arms in order to detect the two scattered
electrons in coincidence.
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Figure 3-9: Layout of the Møller polarimeter
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The Møller polarimeter can be used at beam energies from 0.8 to 6 GeV. It has
to use a low beam current (∼0.5 µA) and is invasive. One measurement typically
takes an hour, providing a statistical accuracy of about 0.2%. The systematic error
in Møller polarimetry mainly comes from the ferromagnetic foil target polarization.
An extra systematic error is due to the fact that the beam current used during a
Møller measurement is lower than that used during the real experiment. The total
relative systematic error is about 3.4% [77].

3.6.2 Compton Polarimetry

The Compton polarimeter [78] measures the process of Compton scattering. It was
designed to measure the beam polarization concurrently with experiments running in
the hall. The polarization is extracted from the measurement of the counting rate
asymmetry for opposite beam helicities in the scattering of a circularly polarized pho-
ton beam off the electron beam. The Compton polarimeter is located at the entrance
to the hall. It consists of a magnetic chicane (to deviate the electron beam from the
scattered photons), a photon source (not shown in the figure), an electromagnetic
calorimeter (photon detector), and an electron detector, as shown in Figure 3-10.
The photon source is a 200 mW laser amplified by a resonant Fabry-Perot cavity.
The maximum gain of the cavity is determined by the reflectivity R and the trans-
mittivity T of the two ultra-reflecting mirrors used for the cavity. Currently [79] the
mirrors are made of several layers of SiO2, Ta2O5 and Si, which have R = 99.988%



3.6. BEAM POLARIZATION MEASUREMENT 65

Figure 3-10: Layout of the Compton polarimetry.
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and T = 95 ppm. This gives a maximum gain of Gmax = T/(1 − R)2 = 7500. So
for an infra-red (IR) photon source of 200 mW, the laser power inside the cavity
can reach a power of 1500 W at the Compton Interaction Point (CIP). The circular
polarization of the laser beam is > 99% for each of the right and left photon helicity
states. The electron beam is deflected vertically by the four dipoles of the chicane and
crosses the photon beam at the CIP. After interaction, the back-scattered photons
are detected in the calorimeter and the electrons in the silicon strip electron detector.
Electrons that did not interact exit the polarimeter and reach the target in the hall.
The asymmetry measured in Compton scattering can vary within a wide range for
different beam characteristics. For example, it reaches ∼ 75% for SLAC but only
∼ 1.5% at JLab for a beam energy of 4 GeV (with a 1.165 eV photon beam) [79].
This low asymmetry makes Compton polarimetry measurements at JLab challenging.

The time required to reach a certain statistical error also depends on the beam
current, which is determined by the running experiment. During the An

1 experiment,
for a 12 µA beam at 5.7 GeV, one hour was needed to reach a relative statistical
accuracy of (∆Pb)stat/Pb ∼ 1% [79]. The systematic error on the Compton measure-
ment comes mostly from its low analyzing power. The total systematic error is about
(∆Pb)sys/Pb = 1.6% [80].
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3.6.3 Beam Polarization Measurements during An
1 Experi-

ment

During the An
1 experiment, Møller measurements were performed regularly and the

Compton polarimetry was running continuously to monitor the beam polarization.
Table 3.4 and 3.5 show the results from Møller [81] and Mott polarimetries [82],

Table 3.4: Møller beam polarization measurements during the An
1 experiment.

Date Beam Energy Beam λ/2 Plate Møller Result ± stat. ± sys.(%)
06/07/01 1.197 GeV IN 82.4±0.30±2.4
06/09/01 5.738 GeV IN 82.9±0.20±2.4
06/14/01 5.731 GeV OUT -80.7±0.15±2.4

-82.3±0.15±2.4
06/18/01 5.731 GeV IN 82.4±0.15±2.4
07/13/01 5.731 GeV OUT -83.0±0.17±2.4
07/29/01 5.731 GeV IN 82.0±0.15±2.4

Table 3.5: Mott beam polarization measurements during the An
1 experiment.

Date Beam Energy Beam λ/2 Plate Mott Result ± tot.(%)
06/03/01 1.197 GeV OUT 74.7±2.0
06/11/01 5.738 GeV IN -79.1±2.0

respectively. Also listed is the status of the beam half-wave plate which is related to
the absolute sign of electron helicity, as will be described in Section 3.6.4.

Figure 3-11 shows results from the Compton continuous monitoring [80]. The
beam polarization for DIS measurements is determined from the weighted average of
the Compton and Møller results: Pb = 79.73± 2.4 %.
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Figure 3-11: Beam polarization during the An
1 experiment.

3.6.4 Beam Helicity

Knowing the helicity state of the beam pulse is crucial to any asymmetry experiments.
For the An

1 experiment this was achieved by the Hall A helicity electronics. The helic-
ity circuitry in Hall A uses a helicity ‘+’ signal from Machine Control Center (MCC)
as input, generates its complementary (negative) signal and sends both signals down
to the two HRS detector stacks. Circuitry in each arm then generates a shortened
pulse for each helicity, chops off the leading edge to allow the helicity to stabilize, and
sends these stabilized pulses to the detector Data Acquisition (DAQ) System. The
data from the detector DAQ and scalers are all gated by these helicity signals. There
is a variable helicity assigned to all events in the detector data stream, events gated
by H+ pulses have helicity = +1 and those gated by H− pulses have helicity = −1.
However they are not necessarily the real helicity state of the electron beam, as will
be described later

The helicity signal from MCC has a pulse width of 33 ms. There are two modes –
toggle and pseudorandom – which can be used for the pulse sequence. In the toggle
mode, the helicity pulse lengths are fixed and the helicity alternates every 33 ms.
The signal frequency is therefore 30 Hz for both H+ and H−. In the pseudorandom
mode, the helicity alternates with a random probability for each 33 ms. This means
one may get two successive pulses of the same helicity, generating a single double
length pulse. The net effect of pseudorandom mode is to reduce the frequency by
25%, so the scaler measures 25 Hz for H+ and 25 Hz for H−.

For each helicity signal generated by the HRS circuitry, the leading edge of H+
(H−) is a delayed one of the leading edge of H+ (its complement) from MCC. The
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Figure 3-12: Helicity signals in toggle (left) and pseudorandom (right) modes. The
four signals are: H+ from MCC, H+ and H− generated by the HRS helicity circuitry,
and the DAQ helicity state.
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delayed time for each pulse, so called ‘blank off’ time, is usually 0.2 ms during which
the helicity state of DAQ is defined as ‘undetermined’. Then the H+ (H−) signal
is cleared by the leading edge of the next pulse in the opposite signal H− (H+).
Therefore only one of the signals H+ or H− is valid during each 33 ms.

Figure 3-12 shows the helicity H+ signal from MCC, the two shortened (to allow
helicity stabilization) signals H+ and H− generated by the HRS helicity circuitry,
and the helicity states of the DAQ system.

If the helicity circuitry were ideal, then one would expect the time asymmetry
between opposite helicity states to vanish. If the beam current is stable compared
to the time scale of the helicity pulses, charge asymmetry vanishes. During the An

1

experiment, there was a period during which this was not true. The H+ signal on
the left HRS was not always cleared by the H− pulse and for every one second, there
was about 1.5 ms during which both helicity signals were valid. This caused some
helicity = +2 events in the data stream and a 1500 ppm charge asymmetry on the
left HRS DAQ. Fortunately this can be mostly corrected by the BCM readings and
the remaining second order effect is small compared to the statistical error (1300 ∼
2200 ppm) of the measured raw asymmetries. It did not affect the data quality.

As mentioned at the beginning of this section, the variable helicity in the detector
data stream does not necessarily equal to the real helicity state of the electron beam.
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The absolute sign of the electron helicity state can be determined by measuring a well
known asymmetry and comparing the measured asymmetry to its prediction. For the
An

1 experiment this was achieved by measuring the parallel asymmetry of ~e− − ~3He
elastic scattering; see Section 5.4.

3.7 Beam Charge Measurement

The beam current is measured by the Beam Current Monitor (BCM) in Hall A,
which provides a stable, low-noise, non-intercepting measurement [77]. It consists of
an Unser monitor and two RF cavities, which are located 25 m upstream of the target.
The BCM system is described in details in the Hall A Operations Manual [83]. The
Unser monitor is a parametric current transformer which provides an absolute but
non-continuous reference. The two resonant RF cavity monitors on both sides of the
Unser Monitor are stainless steel cylindrical high Q (∼ 3000) waveguides which are
tuned to the frequency of the beam (1.497 GHz) resulting in voltage levels at their
outputs which are proportional to the beam current. Each of the RF output signals
from the two cavities is split into two parts - sampled and integrated data.

The sampled data are processed by a high-precision digital AC voltmeter HP 3458A
(Digital Multi-Meter, or DMM), which provides an output representing the RMS
value of the input signal once every second. Signals are transported through GPIB [84]
cables and are recorded by the data logging process. The integrated data are sent to

Figure 3-13: Schematic of beam current monitors.
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an RMS-to-DC converter and a voltage-to-frequency converter. The output frequency
is fed to VME scalers and then injected into the data stream. The scalers accumulate
during the run and each gives a number proportional to the time-integrated voltage
level and therefore accurately record the integral of the current, i.e., the total beam
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charge. The regular RMS to DC output is linear for currents from 5 µA to above
200 µA. A set of amplifiers has been introduced with gain factors of 1, 3 and 10, to
extend the linear region to lower currents at the expense of saturating at high cur-
rents. Hence there is a set of three signals coming from each BCM. These six signals
are fed to scaler inputs of each spectrometer and provide redundant beam charge
information for each run.

The beam charge can be derived from BCM scaler reading as

QBCM×A,H(µC) =

NBCM×A,H

clockH
− offset×A,H

constant×A

clockH , (3.4)

where A=1, 3, 10 is the gain factor of the amplifiers, H=plus, minus, ungated is the
beam helicity state, clockH is the helicity gated clock time for each run (in seconds),
NBCM×A,H is the helicity gated BCM scaler reading for each gain factor. The offsetH
and normalization factors constant×A are regularly calibrated from calibration runs.
The latest calibration before the An

1 experiment gave [85]:

Table 3.6: Calibration for BCM’s, January 12th, 2001.

upstream
Ampl. offsets constant

ungated plus minus
1 92.072596 92.21067 92.069586 1345
3 167.05738 167.0949 166.95239 4114
10 102.62361 102.62498 102.46542 12515

downstream
Ampl. offsets constant

ungated plus minus
1 72.190291 72.309803 72.176298 1303
3 91.080796 91.145465 90.984981 4034
10 199.50698 199.57484 199.34949 12728

3.8 Beam Charge Asymmetry Feedback

The beam charge measured in Hall A is gated by helicity signals and is used to
extract raw asymmetries from data, see Eq. (5.29) in Section 5.4.8. The helicity H+
and H− gated beam charge Q+ and Q− can be different. This difference is usually
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characterized by the beam charge asymmetry, defined as

AQ =
Q+ −Q−

Q+ +Q−
. (3.5)

Q+(Q−) can be written as Q+ = I+t+ (Q− = I−t−), where I+(I−) is the beam
intensity, i.e., the beam current, during H+(H−) pulses and t+(t−) is the time interval
of H+(H−) pulses. There are two sources for beam charge asymmetry. The first one
is the time asymmetry of helicity signals, i.e. t+ 6= t−, caused by the imperfection of
the helicity circuitry. The second source is the beam intensity asymmetry, I+ 6= I−,
originated from the polarized electron source. In this section we discuss the beam
intensity asymmetry from the polarized electron source, its effect on the measured
asymmetries and how to minimize it using charge asymmetry feedback.

3.8.1 Beam Charge Asymmetry

The beam intensity asymmetry at the polarized electron source is due to the fact that
the intensity of the circularly polarized laser used to strike the photocathode has an
asymmetry between different helicity states. When extracting cross section asymme-
tries, raw data for different helicity states are normalized by helicity-dependent beam
charges, see Eq. (5.29) in Section 5.4.8. After this correction, the helicity-dependent
beam intensity asymmetry does not affect the measured physics asymmetries to first
order. However, there exist second order effects and the beam intensity asymmetry
needs to be minimized because of the following reasons:

• A beam intensity asymmetry at the polarized electron source induces differences
in other beam parameters. For example the accelerator turns intensity differ-
ences into energy differences through beam loading. In turn, energy differences
become beam position drifts due to achromatic transport through the machine.

• Nonlinearity of the BCM system introduces a systematic error in the asymmetry
measurement which is proportional to the beam intensity difference.

3.8.2 PITA Effect

The intensity asymmetry in the electron beam that originates from the intensity dif-
ferences of the circularly polarized laser beam striking the photocathode can be min-
imized by using the Polarization-Induced Transport Asymmetry (PITA) effect [87].

Consider an optical transport system as shown in Figure 3-14. The laser light is
first polarized by a linear polarizer, then the linearly polarized light passes a quarter-
wave (λ/4) plate and becomes circularly polarized. The imperfection of the λ/4
plate is denoted by a symmetric offset α and an antisymmetric offset ∆, i.e., the
retardations for opposite helicities are given by θ± = ±(π/2 + α ± ∆). Next an
asymmetric transport system is placed after the λ/4 plate, with its axis at an angle



72 CHAPTER 3. EXPERIMENTAL SETUP

θ with respect to the axis of the λ/4 plate, and a transmission asymmetry given by
ǫ = Tx−Ty

Tx+Ty
, with Tx (Ty) the transmission coefficient along axis x(y). The asymmetric

transport element is also referred to as the analyzer with its transmission asymmetry
ǫ giving the analyzing power of the system. The intensity asymmetry, APITA, of the
outgoing light is given to a good approximation by

APITA(∆) =
I+ − I−
I+ + I−

= 2ǫ(∆−∆0) sin(2θ) , (3.6)

where I+(I−) is the intensity of the positive (negative) helicity light that passes
through the transport system. ∆0 is a phase that is caused by any imperfection
in various optical components.

In practice, the imperfect λ/4 plate might be a rotatable birefringent crystal or,
a Pockel cell 1. A Pockel cell is a voltage-controlled retardation plate. The phase
∆, which has the same value for both helicity states, can be adjusted in both cases.
For a rotatable birefringent crystal, it can be adjusted by changing the orientation of
the crystal. For the case of a Pockel cell, it can be adjusted electro-optically through
control of the voltage applied to the cell. Therefore, the helicity correlated intensity
asymmetry of the transported light can be controlled by manipulating ∆.

3.8.3 Parity DAQ and Charge Asymmetry Feedback

The laser used to generate photoelectrons at the source is circularly polarized. Laser
light first passes a linear polarizer, then is circularly polarized using a Pockel cell, see
Figure 3-15. The Pockel cell is pulsed at its positive and negative quarter-wave retar-
dation voltages ±Vλ/4 so the laser light is either left-handed (helicity minus) or right-
handed (helicity plus) circularly polarized. A rotatable half-wave plate is inserted
downstream of the Pockel cell, after which the laser light passes a vacuum window
and strikes the photocathode. Any imperfection of the optical elements between the
linear polarizer and the photocathode can introduce an asymmetric transport effect,
which can be controlled either by changing the Pockel cell voltage or by rotating the
half-wave plate. The photocathode itself has a sizable transmission asymmetry and
is used as an analyzer. However before the strained photocathode was installed in
1998, an additional microscope slide was inserted in front of the vacuum window to
increase the analyzing power [88].

The parity DAQ measures the charge asymmetry in Hall A. Assuming the helicity
signal of the parity DAQ is perfect, i.e., the time asymmetry is zero, then the beam
intensity asymmetry is directly measured.

To control the beam intensity asymmetry, a charge asymmetry feedback system
is used between the electron source and Hall A [88]. Either the Pockel cell voltage or

1Also written as “Pockel’s cell” or “Pockels cell” in some references.



3.8. BEAM CHARGE ASYMMETRY FEEDBACK 73

Figure 3-14: The PITA effect.
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Figure 3-15: Beam charge asymmetry feedback system.
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the half-wave plate orientation can be controlled by signals generated by the parity
DAQ. Let AI be the intensity asymmetry of the electron beam measured in Hall A

AI =
I+ − I−

I+ + I−
, (3.7)

Ap.c. and Aλ/2 be the contribution to AI due to the Pockel cell and the rotatable
half-wave plate, and A0 denotes the contribution from all other sources (for example
the vacuum window before photocathode), then

AI = A0 + APITA = A0 + Ap.c. + Aλ/2 . (3.8)

When the Pockel cell is used to control charge asymmetry, the control electronics
gives the Pockel cell voltages V± = ±Vλ/4+V∆, with Vλ/4 the quarter-wave retardation
voltage. The size of the offset V∆ is given by the PITA Offset signal generated by the
parity DAQ system. The asymmetry is therefore given by Ap.c. = mV∆ with m the
Pockel cell’s PITA slope in unit of ppm/V. In the case where the rotatable half-wave
plate is used to control the charge asymmetry, the asymmetry Aλ/2 is given by the
sinusoidal function

Aλ/2 = 2ǫ[∆ sin(4ψ − 2θ) + γ sin(2ψ − 2θ)] , (3.9)

where ψ is the orientation of the half-wave plate, γ is the difference between its
retardation and π, ǫ and ∆ are the analyzing power and the anti-symmetric part of
the retardation of the photocathode, θ is the angle between the Pockel cell’s fast axis
and the photocathode’s fast axis.

The feedback system using the Pockel cell voltage control can keep the beam
intensity asymmetry to the level of a few ppm. However, this was not necessary
for the An

1 experiment since the measured electron asymmetries were much larger.
Using the half-wave plate alone can keep the beam intensity asymmetry below 200
ppm, which was sufficient for the An

1 experiment. During the run, only the rotatable
half-wave plate was used. The measured AI from the parity DAQ was used to adjust
the half-wave plate rotation. The orientation of half-wave plate, ψ, was controlled
by the parity DAQ at a PITA slope of η = 17 ppm/step [89]. The parity DAQ
was synchronized with the left and the right HRS DAQs so that the beam intensity
asymmetry was monitored for each run.

However, there is a short point of using parity DAQ and charge asymmetry feed-
back to control the beam charge asymmetry. The intensity asymmetry measured
by the parity DAQ is the average value over one run, which usually last one hour.
At a beam energy of 5.7 GeV, the beam was not stable and tripped typically every
2 minutes. To smooth the heat impact on the target, beam was ramped at a slope
of 0.1 µA/s after each trip. It has been found that the intensity asymmetry during
beam trips and rampings was large and cannot be controlled by charge asymmetry
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feedback. To make sure that the data are not affected by this short-term intensity
asymmetry, data during beam trips and rampings are not used for the analysis. For
details, see Section 5.6.1.

3.8.4 Beam Half-wave Plate and Beam Helicity

There is a removable half-wave plate between the linear polarizer and the Pockel
cell. It is also called the “beam half-wave plate”. When the beam half-wave plate
is inserted, the helicity of the electron beam is the opposite to the case when it
is not inserted. The beam half-wave plate provides a powerful way to check for a
false asymmetry, since the physics asymmetries measured with and without this half-
wave plate should have the opposite sign. During the An

1 experiment this half-wave
plate was inserted for half of the statistics for each kinematics and the measured
asymmetries were combined together to cancel possible systematic effects coming
from the beam intensity differences at the polarized source.

3.9 Raster and Beam Position Monitor

The beam was rastered on the target with an amplitude of several millimeters to
prevent damaging the target (overheating). The raster is a pair of horizontal (X)
and vertical (Y) air-core dipoles located 24 m upstream of the target. The raster
has been used in two different modes, sinusoidal and amplitude modulated. In the
sinusoidal mode both the X and Y magnet pairs are driven by pure sine waves with
relative 90◦ phase, and frequencies which do not produce a closed Lissajous pattern.
In the amplitude modulated mode both the X and Y magnets are driven at 18 kHz
with a 90◦ phase between X and Y, producing a circular pattern. The radius of this
pattern is changed by amplitude modulation at 1 kHz. This radius modulation is
controlled by a function generator in order to create a uniform distribution of the
area swept out by the beam motion. Switching between the two modes of operation
requires hardware changes. The control software for the raster assumes a field-free
region between the raster and the target, so it is only approximately correct because
there are four quadrupoles in this region.

A circular raster was used for the An
1 experiment. The radius of the beam spot

was 2 mm. To determine the position and the direction of the beam at the target
position, two Beam Position Monitors (BPM), called BPMA and BPMB, are used.
They are located 7.516 m and 2.378 m upstream of the target, respectively. The
relative position of the beam can be determined to within 100 µm for a beam current
above 1 µA. The absolute position of the beam can be determined from the BPM’s
by calibrating them with respect to wire scanners (also called superharps) which
are located adjacent to each BPM (at 7.345 m and at 2.214 m upstream of the
target). The wire scanners are regularly surveyed absolutely with respect to the
Hall A coordinates. At present the results agree with respect to each other at the
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level of 200 µm. The position information from the BPM’s was recorded at an event-
by-event basis in the raw data stream. The real beam position and angle at the
target in the Hall A coordinate system, xbeam, ybeam, θbeam and φbeam can then be
reconstructed as

xbeam =
1

a3
(xbpma · zbpmb − xbpmb · zbpma)

ybeam =
1

a3
(ybpma · zbpmb − ybpmb · zbpma) ,

θbeam =
a1
a3

and φbeam =
a2

√

a21 + a23
, (3.10)

where a1 = xbpmb−xbpma, a2 = ybpmb−ybpma and a3 = zbpmb−zbpma. The locations of
the wire scanners for BPMA and BPMB are zbpma = −7.345 m and zbpmb = −2.214 m,
respectively.

Figure 3-16 shows the beam position distribution for a circular raster during the
An

1 experiment. The one-dimension distribution of xbeam or ybeam can be fit by

f(x) = H
[

1−
(x− x̄

R

)2]

, (3.11)

as shown by the red curve, with R ∼ 2 mm the raster radius and x̄ (ȳ) the beam
position offset in x (y) direction. The circular raster pattern can be simulated by

Figure 3-16: Beam position distribution for a circular raster.

x = cos(2πu1)
√
u2
√

(cos(2πu1)Rx)2 + (sin(2πu1)Rx)2 + xoffset and

y = sin(2πu1)
√
u2

√

(cos(2πu1)Ry)2 + (sin(2πu1)Ry)2 + yoffset , (3.12)

where u1 and u2 are random numbers between (0, 1). The raster phase is 2πu1 and
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√
u2 gives the radial distribution. Eq. (3.12) have been used in the elastic simulation,

see Section 5.4.
When beam is not centered at (x̄, ȳ) = (0, 0), BPM corrections need to be made.

This was taken care of in the Hall A analysis software [86].

3.10 Hall A Spectrometers

The Hall A spectrometers have been designed for detailed investigations of the struc-
ture of nuclei or nucleons. Therefore, the spectrometers must have a high resolution
to be able to isolate the different reaction channels in nuclei so that a clean compar-
ison with theory can be achieved. A high luminosity is also required to achieve a
good statistical accuracy. The present instrumentation in Hall A has been used with
great success for experiments which require high luminosity and high resolution in
momentum and/or angle of the reaction products. The central elements are the two
High Resolution Spectrometers (HRS). Both HRSs can provide a momentum resolu-
tion better than 2×10−4 and a horizontal angular resolution better than 2 mrad with
a design maximum central momentum of 4 GeV/c [77].

3.10.1 High Resolution Spectrometers

The basic layout of a spectrometer is shown in Figure 3-17, also shown is the detector
hut which will be described later. The vertically bending design includes a pair of
super-conducting quadrupoles followed by a 6.6 m long dipole magnet with focusing
entrance and exit faces. Further focusing is achieved through the use of a field gradient
in the dipole. Subsequent to the dipole is another super-conducting quadrupole. The
main design characteristics of the spectrometers are shown in Table 3.7. Details of
the spectrometer design can be found in [77].

3.10.2 Detector Package

The detector package [77] is designed to perform various functions in the characteri-
zation of charged particles coming through the spectrometer. For the An

1 experiment
the detector package includes:

• Two scintillator planes to provide a trigger to activate the data acquisition
electronics;

• A set of two Vertical Drift Chambers (VDC’s) to provide tracking information
(position and direction);

• A gas C̆erenkov detector to provide particle identification (PID) information;

• A set of lead glass counters for additional PID.
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Figure 3-17: Schematic layout of HRS spectrometer and the detector hut. Dimensions
are in meters.
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The detector package is located in a large steel and concrete detector hut following the
magnet system of the HRS, as shown in Figure 3-17. Figure 3-18 shows a schematic
layout of the detector packages for the two spectrometers. The detector packages for
the left and right spectrometers are almost identical, except for a slight difference in
the gas C̆erenkov detector and lead glass counters.
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Table 3.7: Hall A HRS general characteristics.

Momentum range p 0.3∼4.0 GeV/c
Configuration QQDQ
Bend Angle 45◦

Optical Length 23.4 m
Momentum Acceptance ∆p/p ±4.5%

Dispersion (D) 12.4 cm/%
Radial Linear Magnification (M) 2.5

D/M 5
Momentum Resolution (FWHM) δp/p 1× 10−4

Angular Acceptance Horizontal ±28 mrad
Angular Acceptance Vertical ±60 mrad

Solid Angle ∆Ω ∼ 6.7 msr
Angular Resolution (FWHM) Horizontal φ 0.6 mrad

Vertical θ 2.0 mrad
Transverse Length Acceptance ± 5 cm

Transverse Position Resolution (FWHM) 1.5 mm
Spectrometer Angle Determination Accuracy 0.1 mrad

Figure 3-18: Configuration of left and right HRS detectors, side view.
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3.10.3 Scintillators and Trigger Electronics

There are two primary trigger scintillator planes (S1 and S2), separated by a distance
of ∼ 2 m. Each plane consists six overlapping paddles made of thin plastic scintil-
lators to minimize hadron absorption. To each scintillator paddle are attached two
photo-multiplier tubes (PMT’s), called the left and right PMT. Figure 3-19 shows
the structure of one scintillator plane. The active volume of scintillator plane S1 is
36.0 cm (transverse direction) × 29.3 cm (dispersive direction) × 0.5 cm (thickness)
and that of S2 is 60.0 cm × 37.0 cm × 0.5 cm. The time resolution of each plane is

Figure 3-19: Configuration of scintillators.
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σ ∼ 0.30 ns. Triggers are generated by the PMT signals from the scintillator planes
and are sent to all other detectors and DAQ. To make sure that only good events
coming from the target are used for the analysis, each event is assigned a variable
event type based on the signals from scintillator planes for this event. Events with
event type = 1, 2, 3, 4 and 5 are called T1, T2, T3, T4 and T5 events, respectively.
The variable event type is assigned to each event as follows:

• A T1(T3) event for the right(left) HRS is considered to be a “good event”. It
satisfies the following conditions:

– A paddle is said to have fired if there are signals from both its left and
right PMT;

– The N th
1 paddle of S1 has fired, at the same time the N th

2 paddle of S2 has
fired;
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– N th
2 = N th

1 or N th
1 ± 1. This means that the particle trajectory has a

very small angle with respect to the central ray of the spectrometer, or
approximately 45◦ with respect to the hall floor.

• A T2(T4) event for the right(left) HRS is formed if one of the following condi-
tions is satisfied:

– The N th
1 paddle of S1 has fired, at the same time the N th

2 paddle of S2 has
fired, but N th

2 6= N th
1 and N th

2 6= N th
1 ± 1;

– One paddle of either S1 or S2 has fired, at the same time C̆erenkov has
fired.

T2 (T4) events are either cosmic ray events, or particles rescattered off the edge
of the acceptance.

• A T5 event is defined as the coincidence event of T1 and T3. It was not used
during the An

1 experiment.

Triggers T1–T4 are counted by scalers and are sent to the trigger supervisor. The
scalers are helicity gated. There are two trigger supervisors, one on each HRS. The
trigger supervisor synchronizes all the detector readouts and send them to the data
acquisition (DAQ) system.

When the event rate is high, the DAQ system cannot record all the events. We
use a quantity – the livetime LT , also called the deadtime correction factor ηDT – to
describe the fraction of events recorded by the DAQ. The livetime LT is given by

LT = ηDT =
number of events that are recorded by DAQ

number of events that are fed to DAQ
. (3.13)

There is one method to decrease the load of the DAQ system: If the event rate is
very high, events can be prescaled by a prescale factor ptype at the trigger supervisor.
This means that for each set of ptype subsequent events, only one is sent to the DAQ
system.

Livetime is event type and helicity dependent. It can be found by comparing
the number of triggers T1(2,3,4) recorded by scalers and the total number of triggers
accepted by the DAQ system, Ta,1(2,3,4), as

LTH
type = ηHDT,type =

ptypeT
H
a,type

TH
type

, (3.14)

where type = 1, 2, 3, 4 is the event type, ptype is the prescale factor of that event
type, H = ± is the helicity. Livetime corrections need to be made when extracting
asymmetries from data.

The error on the livetime calculated from scalers is mostly due to the scaler sig-
nal quality. During the An

1 experiment there were ‘multi-pulses’ in the scaler signals
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T1,2,3,4. This means each pulse in the scaler signal was followed by multiple pulses
with smaller magnitude. This ‘multi-pulsing’ effect was rate-dependent. It caused
double-counting of T1,2,3,4 scalers and an overestimation of deadtime (or underestima-
tion of livetime). Since this ‘multi-pulsing’ problem was independent of beam helicity,
it affected both helicity + and − livetimes in the same manner. Therefore the he-
licity asymmetry of livetime was not affected by the ‘multi-pulsing’ problem and its
contribution to the uncertainty of asymmetry results is negligible. To estimate the
uncertainty in the absolute value of deadtime correction factor, two extra copies of
scalers T1,3 were fed into the main data stream during the later period of the An

1

experiment and the readings from all three copies were compared. Meanwhile we also
used results from electronic deadtime measurement (EDTM) to correct the deadtime
from scalers. The EDTM will be described in Section 3.11.2. We estimate a relative
uncertainty of ± 1% in the helicity independent deadtime correction for the elastic
data, and ± 0.2% for the DIS data. These uncertainties will be taken into account in
the cross section analysis, see Chapter 5.

The trigger inefficiency describes the fraction of “good events” that are counted as
T2(T4) events. Using scalers from a high yield run (in order to minimize the dilution
from cosmic events), the trigger inefficiency for the right (left) HRS is given by

Inefficiency =
T2(4)

T1(3) + T2(4)
, (3.15)

from which one can find the trigger efficiency, defined as

ηtrig. = 1− Inefficiency =
T1(3)

T1(3) + T2(4)
. (3.16)

Trigger inefficiency is not helicity dependent. It does not affect asymmetry results,
but it needs to be corrected for when doing cross section analysis. During the An

1

experiment, trigger inefficiency was less than 1%.

3.10.4 VDCs

Particle tracking for each HRS is provided by the two Vertical Drift Chambers
(VDC) [90][91] positioned 23 cm away from each other. The position of the first
VDC almost coincides with the spectrometer focal plane [77]. Each VDC is com-
posed of two wire planes in a standard UV configuration – the wires of one plane are
perpendicular to that of the other plane – and are oriented at an angle of 45◦ (−45◦)
with respect to the dispersive and non-dispersive (transverse) directions, as shown in
Figure 3-20. Both wire planes lie in the laboratory horizontal plane and the nominal
particle trajectory crosses the wire planes at an angle of 45◦.

Each VDC has three high voltage plates at about −4 kV, one between the U and
V wire planes and two on opposite sides. The spacing between planes is 26 mm. The
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Figure 3-20: Schematic diagram (left) and sideview (right) of wire chamber configu-
ration.
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wires are kept at ground voltage so that the resulting electric field has the configura-
tion shown in Figure 3-21.

Figure 3-21: Configuration of wire chambers.
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When a charged particle travels through the chamber, it ionizes the gas inside the
chamber and leaves behind a track of electrons and ions along its trajectory. The
gas supplied to the VDCs is a 62%/38% argon-ethane (C2H6) mixture, with a flow
rate of 10 liter/hour [77]. The ionization electrons accelerate towards the wires along
the path of least time (geodetic path). This time is measured by a Time-to-Digital
Converter (TDC), which is started by the triggered wire and stopped by the event
trigger supervisor. The basic idea of particle tracking is the following: Since the drift
velocity of ionization electrons in the operating gas is known to be 50 µm/ns, the drift
distance from the trajectory to each fired wire can then be extracted from the corre-
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sponding TDC output. Combining the drift distance of all fired wires together gives
the trajectory of the charged particle. A charged particle with a track at the nominal
angle of 45◦ with respect to the lab horizontal plane typically triggers five wires, while
those at the extreme angle of 52◦ trigger three. The position resolution achieved in
each direction is 225 µm full width at half maximum (FWHM). Therefore the two
VDCs separated by 50 cm are capable of measuring the two angles (in the disper-
sive plane and transverse directions) of the track with a resolution of approximately
0.3 mrad (FWHM) [91].

The VDC efficiency will be discussed in Section 5.2.1.

3.10.5 Gas C̆erenkov Detector

One major task of particle detection is to separate the scattered electrons from back-
ground particles, which are particles produced by reactions other than (e, e′) scatter-
ing. During the An

1 experiment the highest background came from pions resulting
from pion photo-production. In the following sections, we refer to particle identi-
fication (PID) as the procedure of separating electrons from pions. PID for each
HRS during the An

1 experiment was accomplished by a CO2 threshold gas C̆erenkov
detector and a double-layered lead glass counter.

A threshold C̆erenkov detector [92] is based on the C̆erenkov effect [93][94]. The
C̆erenkov effect refers to the effect that when a high energy charged particle travels
through transparent materials with a velocity v higher than the velocity of light in
the material c/n, a characteristic electromagnetic radiation is emitted, called the
C̆erenkov radiation (C̆erenkov light). Here c is the speed of light in vacuum and n is
the refractive index of the material. C̆erenkov light is emitted because the charged
particle polarizes the atoms along its track so that they become electric dipoles. As
long as v < c/n, the dipoles are symmetrically arranged around the particle’s path,
so that the dipole field integrated over all dipoles vanishes and no radiation results.
If, however, v > c/n, the symmetry is broken resulting in a non-vanishing dipole
moment, which leads to the emission of radiation. By detecting whether a given
particle emits C̆erenkov light, one can know if its velocity is larger than the threshold
velocity depending on the material used.

The two threshold gas C̆erenkov detectors for the Hall A HRSs are operated with
CO2 at atmospheric pressure. The refraction index is 1.00041 which give a threshold
speed and momentum of

vth =
c

n
and pth =

mv
√

1− v2

c2

≈ mc√
2α

, (3.17)

where α = n−1 ≪ 1. The threshold momentum is therefore ∼ 17 MeV/c for electrons
and ∼ 4.8 GeV/c for pions. So within a momentum range of 0.02 ∼ 4.8 GeV/c, which
is larger than the HRS designed momentum range 0.30 ∼ 4.0 GeV/c, only electrons
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and not pions can emit C̆erenkov light and trigger an ADC signal.
The structure of the gas C̆erenkov detectors on the two HRSs is very similar.

Each one is made of steel with thin entry and exit windows made of tedlar [95].
Ten spherical mirrors positioned as a 2(horizontal)×5(vertical) array are used in each
detector to collect C̆erenkov light. These mirrors are specially built to be light weight
resulting in a very small total thickness (0.23 g/cm2) [83] traversed by the particles.
The position and orientation of these mirrors are designed in a way such that the
C̆erenkov light emitted by the scattered electrons can be efficiently collected. Each
mirror is coupled to a photo-multiplier tube (PMT). The mirrors have radius of
curvature of 90 cm, the PMTs are placed at a distance of 90/2 = 45 cm from the
mirrors, where the parallel rays of incident light on the mirrors are approximatively
focussed. The light is converted to electronic signals by PMTs and fed to ADCs. The
summed signal of all ten ADCs gives information about the total light emitted by the
particle and has a different shape for electron and pion events.

In principle pions should not produce any signal in the C̆erenkov detector. How-
ever they can interact with the matter they pass through and create δ-electrons [96].
These δ-electrons will produce C̆erenkov light and trigger the ADCs. Since δ-electrons
are in general not moving in the same direction as the scattered electrons, the
C̆erenkov light emitted by δ-electrons will not be efficiently collected by the mirrors.
The summed ADC signals generated by δ-electrons are mostly single photo-electron
peaks.

Almost all the C̆erenkov light emitted by the scattered electrons is collected by the
mirrors, and therefore the signals generated are mainly in a multiple photo-electron
peak. The position and the width of this peak depend on the average number of
photo-electrons, which is determined by the PMT performance and whether all the
C̆erenkov light is collected by the mirrors. The number of photo-electrons determines
how well one can separate the single photo-electron peak from the multiple one, which
subsequently determines the PID quality of C̆erenkov detector. The average number
of photoelectrons nph.e. for each PMT can be extracted from detailed mirror-by-mirror

analysis for the C̆erenkov detector. During the An
1 experiment nph.e. ∼ 9 for the right

HRS and nph.e. ∼ 12 for the left HRS [97].
The PID efficiency is usually evaluated as a pion contamination or rejection factor

at a certain electron detection efficiency (for example 99%). A detailed analysis of
PID efficiency will be presented in Section 5.2.2.

3.10.6 Lead Glass Counters

Lead glass counters provide an additional PID. The signal detected by lead glass
counters is linearly proportional to the energy deposited by the incoming particle [92].
Electromagnetic showers develop in the counters, whereas hadronic showers do not
due to the longer hadronic mean free path. Therefore the longitudinal distribution of
the energy deposited in the counter can be used to identify the incident particles. In
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our case there are two distributions of energy: low ADC signal for hadrons and high
ADC signal for electrons. The limitation on PID efficiency of the lead glass counter
comes from separating the tail of the two distributions and hence depends on the
energy resolution. At higher energy the relative resolution of a lead glass counter
improves and leads to better separation between the two distributions. A double-
layered lead glass counter can provide better separation because the second layer can
further separate the hadrons which are contaminated with electrons in the first layer.

The two double-layered lead glass counters have different configurations on the
left and right HRSs [77]. On the left HRS, they are called ‘pion rejectors’ and the two
layers have the same geometry. Each layer consists 17 short blocks and 17 long blocks
of lead glass, forming a 2(transverse)×17(dispersive) array. All lead glass blocks are
oriented transversely with respect to the direction of the scattered electrons, as shown
in Figure 3-22. Short and long lead glass blocks are arranged interchangeably in the
dispersive direction for each row (transverse direction). The gap between blocks of
the first layer is covered by a lead glass block of the second layer, and vice versa.

Figure 3-22: Configuration of the pion rejectors on the left HRS.
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On the right HRS, the first and the second layers of lead glass counters are called
‘preshower’ and ‘shower’ detectors, respectively. The preshower detector has 2×24 =
48 blocks of lead glass oriented transversely with respect to the direction of scattered
electrons. The shower detector has 5 × 20 blocks of lead glass oriented parallelly to
the scattered electrons, as shown in Figure 3-23. Preshower and shower together are
called ‘Total shower’ detector.

Due to the different thicknesses of the lead glass layers, the total shower detector
on the right HRS has a better PID performance than the pion rejectors on the left
HRS. Detailed PID efficiency analysis for lead glass counters will be presented in
Section 5.2.2.
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Figure 3-23: Configuration of the total shower detector on the right HRS.
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3.11 Data Acquisition System

3.11.1 Data Acquisition System

The An
1 experiment used the CEBAF Online Data Acquisition (CODA) system [83].

CODA is a toolkit designed for nuclear physics experiments at Jefferson Lab. It is
composed of a set of software and hardware packages from which a data acquisition
system can be constructed. The recorded data file starts with a header, which consists
of information about the event size and the run number. Then the major part consists
of:

1. CODA events from the detectors and the beam helicity signal;

2. EPICS [98] data from the slow control software used at JLAB. For example,
the spectrometer magnet settings and angles, target temperature and pressure,
can all be fed into EPICS data stream and be recorded;

3. CODA scaler events: the DAQ reads the scaler values every 4 seconds and
feeds them into the main data stream. The scalers are read from the Trigger
Supervisor (TS) so they are not affected by the DAQ deadtime. Therefore one
can use scaler readings to correct DAQ deadtime.

The data were first written to a local disk and then transferred to the Mass Stor-
age System (MSS). The total volume of data accumulated during the two months’
running period of the An

1 experiment was about 0.6 TBytes. The data were analyzed
using an analysis package called Experiment Scanning Program for hall A Collabo-
ration Experiments (ESPACE) [86]. ESPACE can filter, histogram, ntuplize and/or
calibrate variables of the experimental setup while applying conditions on the in-
coming data. The variables operated within ESPACE range from those at a basic
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level, like raw detector signals, to some much more elaborate ones like the calculated
location of the reaction point in the target coordinate system.

Scaler events are extracted from raw data files. They are used for deadtime
correction and removing data during beam trips and rampings.

3.11.2 Electronic Deadtime Measurement

In addition to using scalers, there is another method to measure the deadtime of the
system – Electronic DeadTime Measurement (EDTM) [99]. In this method a well-
defined, recognizable pulse is sent into the front-end of the trigger system and the
probability that it makes through to the trigger supervisor depends on the electronic
deadtime. Then if the DAQ is alive, the trigger supervisor will accept this pulser
trigger and it will show up in the data stream as a tagged event. The fraction of such
events that get lost is the deadtime of the system.

The EDTM system can be used to check the deadtime measured from scalers, or
as an independent deadtime measurement. There are two short points of the EDTM
system. The first one is that the pulser frequency is low (∼ 1 Hz during the An

1 exper-
iment) so the statistical error cannot compete with regular deadtime measurement
from scalers. Secondly, the pulser signal is not helicity gated so it can only be used for
cross section analysis, not asymmetries. However, if the scalers have un-anticipated
problems, the EDTM can help to explore the problem and add corrections to the
deadtime extracted from scalers. For example, during the An

1 experiment there was
a period during which we observed a ∼ 10% discrepancy between the deadtime from
the EDTM and that from scalers. It was found that the scaler signals were affected
by multiple pulses due to the instability of the scaler electronic system. Its effect on
the deadtime correction has already been discussed in Section 3.10.3. The problem
was solved by changing the hardware configuration. For those data taken during this
period, the EDTM was used to correct the deadtime from scalers in the cross section
analysis.



Chapter 4

The Polarized 3He Target

This chapter describes the polarized 3He target at JLAB Hall A, its principle of
operation, setup, polarimetries and the related analysis.

4.1 Principles

Polarized 3He targets are widely used at SLAC, HERMES, MAINZ, MIT-Bates and
JLAB to study the electromagnetic structure and the spin structure of the neutron.
There exist two major methods of polarizing 3He nuclei. The first one is based
on the metastability-exchange optical pumping technique [100]. It polarizes ground
state 3He atoms through metastability-exchange collisions with optically pumped 3He
metastable atoms. This technique is usually used for internal targets.

The second method is based on spin exchange optical pumping [101]. First alkali
metal (rubidium) vapor is polarized by optical pumping and then the polarization
is transfered to 3He nuclei through the spin exchange mechanism during 3He-Rb
collisions. Targets based on this principle are almost always designed to operate at
quite high gas pressures, typically one to ten atmospheres. The polarized 3He target
using spin-exchange optical pumping was originally developed at SLAC [102] and has
been used in JLAB Hall A since 1998 [103].

4.1.1 Optical Pumping

The first step in polarizing 3He nuclei is to generate a source of polarized electrons
that can collide and transfer their spin polarization to the 3He nuclei. These polarized
electrons are provided by optically pumped rubidium(Rb) atoms. A review of optical
pumping of alkali metals is given in [106][107].

Rb has a single electron in the outer shell (5S1/2), whose interaction Hamiltonian

with a magnetic field ~B is given by

Ĥ = Ag
~I · ~S + geµBSzBz −

µI

I
IzBz , (4.1)

89
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where the first term is the vector coupling between the electron spin ~S and the
nuclear spin ~I, the second and the third terms describe the coupling of the electron
and nuclear spin to the magnetic field Bz, with a strength related to the electron
magnetic moment µe = geµB (ge = 2.00232, µB = 0.57884 × 10−11 MeV/T), the
nuclear magnetic moment µI (µI = 4.26426 × 10−12 MeV/T for 85Rb), and the Rb
atom’s spin quantum number I (I = 5/2 for 85Rb and I = 3/2 for 87Rb). Solutions

Figure 4-1: Energy level of 85Rb, the Zeeman splitting is given by νZ .
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using Eq. (4.1) give the eigenstates of Rb atom, which are labeled by the quantum

number F = I ±S of total spin ~F = ~I + ~S. In a magnetic field the F state splits into
2F + 1 sublevels labeled by mF = mI +mS, with mI = −I,−I + 1, · · · , I − 1, I and
mS = −S,−S + 1, · · · , S − 1, S, hence mF = −F,−F + 1, · · · , F − 1, F , as shown in
Figure 4-1. Note that for ground state the orbital angular momentum of the electron
L = 0, so the total angular momentum of the electron ~J = ~S. Since electrons have
S = 1/2, mS = ±1/2 and mJ = ±1/2.

In the process of optical pumping, Rb vapor is exposed to circularly polarized laser
tuned to the 5S1/2 → 5P1/2 transition, known as the D1 transition. If the photon
helicity is in the same direction as the magnetic field, then electrons from all sub-levels
except mF = 3 are excited to the 5P1/2 state. These excited electrons can then decay
to any sub-level of the 5S1/2 ground state. This procedure is illustrated in Figure 4-2
for a certain mI . The electrons in the mJ = −1/2 level of ground state 5S1/2 are
excited to the mJ = 1/2 sublevel of the 5P1/2 state, then decay either to mJ = +1/2,
or back to the mJ = −1/2 sublevel of ground state. Because a transition from the
ground state mJ = 1/2 sublevel is prohibited by the selection rule ∆mJ = ±1, the
electrons will gradually accumulate in this level while the mJ = −1/2 sublevel will
be depopulated. The net result is that electrons will go from the mF = mI − 1/2 to
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Figure 4-2: Optical pumping of Rb by circularly polarized light.
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the mF = mI +1/2 state. Since this procedure exists for each mI , finally all electrons
will accumulate in the F = 3, mF = 3 sublevel.

If the photon helicity is in the opposite direction to that of the magnetic field,
all electrons will accumulate in the mF = −3 sublevel. This was the case during the
two experiments in the summer of 2001. The first one was the An

1 experiment and
the second one was E97-103 [104], also referred to as the gn2 experiment. During the
An

1 and gn2 experiments the lasers were left-handed circularly polarized when the field
direction was 0◦ (parallel to the beam direction) or 270◦ (perpendicular to the beam
direction and pointing to the left side), and right-handed circularly polarized when
the field was 180◦ (anti-parallel to the beam direction) or 90◦ (perpendicular to the
beam direction and pointing to the right side).

When excited electrons decay to the mJ = −1/2 sublevel of the ground state
they emit photons which have the same D1 wavelength as the pumping lasers. These
photons are not polarized and can excite electrons from the mF = 3 sublevel of the
ground state. To minimize this depolarization effect, N2 buffer gas is introduced
to provide a channel for the excited electrons to decay to the ground state without
emitting photons. In the presence of N2, electrons decay through collisions between
the Rb atoms and N2 molecules, usually referred to as non-radiative quenching [107].
The amount of N2 is chosen to be about two orders of magnitude less in density
than that of 3He but a few orders of magnitude higher than that of Rb vapor. In
this condition, only about 5% of the excited electrons decay by emitting a photon.
Since these N2 molecules are not polarized, they introduce a dilution effect, as will
be discussed in Section 5.4.4.



92 CHAPTER 4. THE POLARIZED 3HE TARGET

4.1.2 Spin Exchange

The key process in spin-exchange optical pumping is the collisional transfer of polar-
ization between optically pumped alkali-metal atoms and the nuclei of the noble-gas
atoms. The transfer of angular momentum occurs either while the atoms are bound
in van der Waals molecules or in simple binary collisions between the atoms [101].
For 3He, binary collisions dominate the spin exchange, and the contribution from

Figure 4-3: Spin exchange between Rb atom and 3He nuclei.
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van der Waals molecules is negligible. Spin-dependent interactions, denoted V1(~R)
with R the interatomic separation, produce the spin transfer and relaxation in colli-
sions. For spin-exchange optical pumping, evidence suggests that the spin-exchange
process is dominated by two terms, as shown in Eq. (4.2) [101]. The first term is

the spin-rotation interaction between the electron spin ~S and the rotational angular
momentum ~N of the 3He-Rb system. The second term is the isotropic hyperfine
interaction between ~S and the noble-gas nuclear spin ~Ib.

V1(~R) = γ(R) ~N · ~S + Ab(R)~Ib · ~S . (4.2)

Simply stated, the spin-rotation interaction arises from magnetic fields produced by
the relative motion of the charges of the colliding atoms, while the isotropic hyperfine
interaction arises from the magnetic field at the nucleus of the noble-gas atom.

4.1.3 Polarization Evolution

The polarization of the Rb vapor is given by

PRb =
R

R+ ΓSD

, (4.3)



4.1. PRINCIPLES 93

with R the optical pumping rate defined as

R =

∫

Φ(ν)σ(ν)dν , (4.4)

where Φ(ν) is the laser photon flux per unit frequency and σ(ν) is the light ab-
sorption cross-section. The electron spin destruction rate ΓSD is dominated by the
spin-rotation interaction γ(R) ~N · ~S during collisions among Rb atoms or between Rb
atoms and other gases. The spin destruction caused by collisions of Rb atoms with
the cell wall, and that caused by the randomly polarized photons emitted from the
decay of excited electrons is small [102]. The rate is given by

ΓSD = kRb−He[
3He] + kRb−Rb[Rb] + kRb−N2

[N2] , (4.5)

where [3He], [Rb] and [N2] are densities of each gas component. The spin destruction
constants are [105]:

kRb−He 6 2 ×10−18 cm3/s , (4.6)

kRb−Rb = 8× 10−13 cm3/s and (4.7)

kRb−N2
= 8× 10−18 cm3/s . (4.8)

The gas densities for a typical cell used in JLAB Hall A are [He] = 10 amg1 =
2.69× 10+20 cm−3, and [N2] = 0.08 amg = 2.15× 10+18 cm−3. The Rb density can be
given by the Killian formula [108]: log(pRb) = 10.53− 4132/T with pRb the Rb gas
pressure in bar (1 bar = 105 Pa), T the temperature where Rb condensates, i.e. the
coldest spot inside the pumping chamber 2. However, Killian did not quote an error
for his data. A more commonly used formula is [109]

[Rb] (in cm−3) = (1026.178−4040/T )/T , (4.9)

with a quoted accuracy of 5%. This gives [Rb] ≈ 2.60× 1014 cm−3 for T = 170 ◦C.
The spin destruction rate is therefore

ΓSD = 538Rb−He + 206Rb−Rb + 17Rb−N2
≈ 761 s−1 = (1.3 ms)−1 (4.10)

The Rb relaxation due to spin exchange with 3He comes from the hyperfine in-
teraction Ab(R)~Ib · ~S between the Rb electron and the 3He nucleus. This interaction
causes the polarization transfer from Rb to 3He and a shift of the Rb Zeeman fre-
quency due to the 3He polarization. The latter is used for 3He polarimetry and will

11 amg= 2.6894× 10+19 cm−3, it corresponds to the gas density at a pressure of one atmosphere
and a temperature of 0 ◦C.

2Usually it is the temperature of the oven heating the pumping chamber, during the An
1 and gn2

experiments it was 170◦C.



94 CHAPTER 4. THE POLARIZED 3HE TARGET

be described in Section 4.6. There have been two measurements of the spin exchange
rate constant kSE, the results of which differ by a factor of two. One gives [111]

kSE = (6.1± 0.2)× 10−20 [cm3/s] , (4.11)

and the other gives [112]

kSE = (1.2± 0.2)× 10−19 [cm3/s] . (4.12)

Using the average value of these two measurements, spin exchange with 3He con-
tributes

ΓSE = kSE[
3He] ≈ 24 s−1 (4.13)

to the relaxation of Rb spin, so about 24/761 ≈ 3% of the Rb atoms transfer their
polarization to 3He, while the rest lose it in other spin destruction processes.

The excitation rate of the mJ = −1/2 sublevel of the ground state is on the order
of 10−6 s−1. So in principle in the region where optical absorption occurs the Rb
polarization can be close to 100%. Rb polarization has been studied at Princeton
University [114] and was found to be above 90%.

A measurement of polarization versus time with optical pumping is called a spin-
up measurement. The spin-up curve is determined by the evolution of the 3He polar-
ization PHe(t) given by

PHe(t) = 〈PRb〉
γSE

γSE + Γ

(

1− e−(γSE+Γ)t
)

, (4.14)

where 〈PRb〉 is the Rb polarization averaged over volume, 〈PRb〉 > 90%. γSE is the
Rb-3He spin exchange rate per 3He nuclei given by

γSE = kSE[Rb] , (4.15)

with [Rb] from Eq. (4.9), kSE from Eq. (4.11) and (4.12). Under regular operating
conditions γSE is about 1/(6 ∼ 8 hours). Figure 4-4 shows a typical spin-up curve,
from which the maximum polarization and the spin-up time constant τ = 1/(γSE+Γ)
can be extracted [113].

Γ is the 3He nuclear spin relaxation rate which can be obtained from a spin-
down measurement, which measures polarization versus time in the absence of optical
pumping and an electron beam. Γ is related to the time constant of the spin-down
measurement as Γ = 1/τspindown, where τspindown is called the lifetime of the cell de-
scribing how fast the polarization drops during a spin-down measurement. Note that
Γ depends on density so a correction should be applied if the spin-down measurement
is performed under a temperature different from that during a spin-up measurement.

Cell lifetime is one of the main characteristics to evaluate the quality of the cell.
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Figure 4-4: Spin up curve measured in the polarized 3He target lab at JLAB [113].
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This can be seen from Eq. (4.14). Once the optical pumping conditions (〈PRb〉,
[Rb]) are fixed, the maximum polarization of the cell depends solely on its lifetime.
The longer the lifetime is, the higher polarization can be reached. Cell lifetime is
determined by

1/τspindown = Γ = ΓHe + Γwall + Γbeam + Γ∆B , (4.16)

where ΓHe (hour)−1 = (744/[He])−1 [115] is the relaxation rate of magnetic dipolar
interaction among 3He nucleus, with [He] the 3He density in amg. Γwall ≈ (90 hour)−1

is the relaxation due to collisions between the 3He nucleus and the cell glass wall.
Γbeam is the relaxation due to the beam depolarization effect. Following the procedure
in [116], we found for a 25 cm cell used during the An

1 experiment, Γbeam(hour)
−1 =

(622/I)−1 with I the beam current in µA. Γ∆B (hour)−1 = D |▽Bx|2+|▽By |2

B2
z

[117] is

the relaxation due to the magnetic field gradient, with D ≈ 0.2 cm2/s the 3He self-
diffusion coefficient. After optimizing the Helmholtz coil setup, Γ∆B ≈ (2000 hour)−1

and thus is negligible compared to other relaxation terms.
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4.2 Target Cell

4.2.1 3He Cell at JLAB

The target cells used at JLAB are highly pressurized glass cells with ∼ 130 µm
thick end windows. There have been four experiments performed at JLAB using the
polarized 3He target, three of them (E94-010 [103], E95-001 [118], E97-103 [104]) used
40 cm long cells, while 25 cm long cells were used for the An

1 experiment. Except for
the difference in cell length, they all have the some shape. A typical cell consists of
two chambers, a circular upper chamber which holds Rb vapor and in which optical
pumping occurs, and a long cylindrical chamber where the electron beam passes
through and interacts with the polarized 3He nuclei. Figure 4-5 is a picture of a
40 cm long JLAB target cell. Dimensions in the figure are given in mm for a 25 cm
long cell used during the An

1 experiment.

Figure 4-5: A regular JLAB target cell, dimensions are given in mm for a cell used
during the An

1 experiment. The name of the cell is “Tilghman”.
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4.2.2 Target Cell Characteristics

Target cell volumes and densities are crucial for polarimetry analysis. The two cells
used during the An

1 experiment were characterized both at University of Virginia
(UVa) [119] and at JLAB [120]. The main characteristics are shown in Table 4.1.
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The data on target chamber wall thickness were used for radiative corrections in the
data analysis described in Chapter 5.

Table 4.1: Main characteristics of the two cells used during the An
1 experiment.

Vp is pumping chamber volume in cm3; Vt is target chamber volume in cm3; Vtr is
transfer tube volume in cm3; V0 is total volume in cm3; Ltr is transfer tube length in
cm; n0 is 3He density in amg at room temperature.

Name Vp Vt Vtr V0 Ltr n0 lifetime
Gore 116.7 51.1 3.8 171.6 6.574 9.10 49

Tilghman 116.1 53.5 3.9 173.5 6.46 8.28 44
uncertainty 1.5 1.0 0.25 1.8 0.020 2% 1

4.3 Target Setup

Figure 4-6 is a schematic diagram of the target setup. There are two pairs of
Helmholtz coils to provide the main holding field. The coils are powered by two
KEPCO power supplies [121] in constant current mode. During the An

1 experiment the
coil currents were continuously measured and were sent to the slow control EPICS [98]
data stream.

The cell was held in the center of the target, with the pumping chamber mounted
inside an oven heated to 170◦C to vaporize the Rb. The lasers used for optical
pumping were six 30 W diode lasers tuned to 795 nm, three for longitudinal pumping
and three for transverse pumping. The target polarization was measured by two
independent polarimetries - NMR (Nuclear Magnetic Resonance) and EPR (Electron
Paramagnetic Resonance). The NMR system consists of one pair of pick-up coils, one
on each side of the target chamber, one pair of RF coils and the associated electronics.
The RF coils are placed at the top and the bottom of the scattering chamber, oriented
in the horizontal plane. The EPR system shares the RF coils with the NMR system.
It consists of a photodiode and the related optics to collect the EPR light signal, one
EPR RF coil and the associated electronics.

The orientation of the two Helmholtz coils during the An
1 experiment is shown

in Figure 4-7. The smaller coils were oriented perpendicular and the larger coils
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Figure 4-6: Target setup overview (schematic).
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parallel to the beamline. So the holding field can be configured in any direction in
the horizontal plane with respect to the incident electron beam.

The target setup in the hall is shown in Figure 4-8. To protect the diode lasers
from radiation damage due to the electron beam, as well as to minimize the safety
issue related to the laser hazard, the diode lasers and associated optics system were
enclosed in a concrete hut located on the right side of the beamline. This concrete
hut is usually called “the laser hut”. Viewing from the top, see Figure 4-9, the right
HRS was limited to a maximum scattering angle of about 50◦ because of the laser
hut. This maximum angle was sufficient for the An

1 experiment.
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Figure 4-7: Helmholtz coil orientation and the field coordinate system (topview).
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Figure 4-8: Target setup in Hall A, the laser hut and the target.
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Figure 4-9: Target setup in Hall A, the laser hut and the right spectrometer (topview)
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4.4 Laser System

The laser system used during the An
1 and gn2 experiments consists of seven 30 W diode

lasers, three for longitudinal pumping, three for transverse pumping and one spare.
Therefore the laser optics had seven individual lines, each associated with one diode
laser. All these seven lines were identical and were placed one on top of the other (see
Figure 4-8). Figure 4-10 shows the schematic diagram for the laser optics of one line.
The laser beam going out from the laser fiber has an angular divergence of ∼ ±15◦. A
focusing lens is placed at a distance equals to its focal length (8.83 cm) away from the
laser fiber, such that the laser becomes a parallel beam with a diameter of ∼ 1.6” after
passing through the lens. Then the beam is split into two linearly polarized beams
by a beam-splitter. The beam passing through the beam splitter is the P light which
means its ~E component is polarized in the horizontal plane. This beam is reflected
by a 3” diameter mirror and is circularly polarized by a quarter-wave (λ/4) plate
(the right polarizing λ/4 plate). This is the beam path on the right side, as shown in
Figure 4-10. The beam reflected by the beam splitter is the S light which means its
~E component is polarized in the vertical plane. A λ/4 plate and a mirror are used
to change the polarization direction of the S light and reflect it back to the beam
splitter. We refer to this λ/4 plate as the “back” λ/4 plate The fast and slow axes
of the back λ/4 plate are oriented at an angle of 45◦ with respect to the horizontal
plane. After passing through the back λ/4 plate, being reflected by the mirror, and
passing through the back λ/4 plate the second time, the S light becomes P light and
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Figure 4-10: Laser optics setup (schematic).
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can pass through the beam splitter. It is then circularly polarized by a λ/4 plate
(the left polarizing λ/4 plate) and forms the beam path on the left side, as shown in
Figure 4-10. Both left and right beams are then going towards the target. To generate
a left-handed circularly polarized laser beam, the slow axis of the right and the left
polarizing λ/4 plates should be aligned to the 1:30 o’clock direction and the fast axis
should be at the 4:30 o’clock, when viewing from the optics to the target. For a right-
handed circularly polarized laser, the slow axis should be at the 4:30 o’clock direction
and the fast axis should be at the 1:30 o’clock. There is one removable half-wave
(λ/2) plate placed before the polarizing λ/4 plate for each path. It can be inserted
into the laser beam path by remote control. The axes of this λ/2 plate are oriented
at an angle of 45◦ with respect to the horizontal plane, so a left-handed circularly
polarized laser beam becomes right-handed circularly polarized after passing through
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the λ/2 plate. These λ/2 plates were used to rotate the target spin direction. For
example, during the An

1 experiment left-handed laser beams were needed to polarize
the target in the 0◦ direction (parallel to the beamline) or 270◦ (perpendicular to the
beamline and pointing to the left); while right-handed lasers were needed for 180◦

(anti-parallel to the beamline) or 90◦ (perpendicular to the beamline and pointing to
the right). During the An

1 experiment, these λ/2 plates were inserted for half of the
data taking period so as to cancel possible systematic effects related to the target
spin direction.

All optics components were placed on a optics table inside the laser hut. Under
the operating conditions for either longitudinal or transverse pumping, the original
beam of each diode laser was split into two beams so there are a total of six polarized
laser beams going to the target. For transverse pumping, all these laser beams went
directly towards the pumping chamber of the cell through a window on the side of
target scattering chamber enclosure. For longitudinal pumping, they were guided
towards the top of the scattering chamber, where they were reflected two times and
finally reached the cell pumping chamber. The target was about 5 m away from the
optical table. For longitudinal pumping the laser beam traversed a distance of about
6 m before they reached the cell. This made the focusing a little more difficult than
in the case of transverse pumping.

4.5 NMR Polarimetry

The polarization of 3He can be determined by measuring the 3He Nuclear Magnetic
Resonance (NMR) signal. The principle of NMR polarimetry is the spin reversal
of 3He nuclei using the Adiabatic Fast Passage (AFP) [122] technique. This spin
reversal will induce an electromagnetic field and a signal in a pair of pick-up coils.
The signal magnitude is proportional to the polarization of 3He and can be calibrated
by performing the same measurement on a water sample, whose thermal polarization
can be calculated.

4.5.1 Principle

Classically, NMR-AFP is described by considering one free particle with spin ~I and
magnetic moment ~M = γ~I, where γ is the gyro-magnetic ratio. When this particle
is placed in a magnetic field ~H, its moment experiences a torque

d ~M

dt
= γ ~M × ~H . (4.17)

To simplify the procedure, it is useful to transform this equation into a frame that is
rotating at a frequency and direction given by −~ω. In this rotating frame Eq. (4.17)
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becomes [123]

∂ ~M

∂t
= γ ~M ×

(

~H − ~ω

γ

)

. (4.18)

The magnetic field ~H in Eq. (4.17) is now replaced by an effective field comprised of

the laboratory field and a fictitious field, ~He = ( ~H − ~ω
γ
).

When performing an NMR measurement during the experiment, the holding field
was always oriented parallel to the beamline, which is in the z-direction of the labo-
ratory frame and can be written as Hz êz. An RF field was applied in the x (vertical)

direction, ~HRF = 2H1 cos(ω0t)~ex. The RF field can be expressed in terms of two
counter-rotating components

~HRF = H1ê
′
+ +H1ê

′
− , (4.19)

where ê′± = cos(ω0t)êx ± sin(ω0t)êy. One of these two components, for example ê′−,
rotates in the opposite direction to that of the magnetic moment. It does not play
any role and will not be considered anymore.

If ~ω is set to ω0êz, then the effective field in the rotating system becomes

~He =
(

Hz −
ω0

γ

)

êz +H1ê
′
+ , (4.20)

where 〈 ~M〉 is the 3He average magnetic moment which aligns itself with the effective
field.

During AFP, the holding field changes in magnitude such that it passes through
the value |ω0/γ|. The angle between 〈 ~M〉 and the z-axis increases until Hz = ω0/γ
and the spins are at an angle of 90◦ with respect to the z-axis. The RF field has
a magnitude of H1 = 100 mGauss and its frequency is fRF = 91 kHz. From ω0 =
2πfRF and γ = −20378 Hz/Gauss for 3He, one obtains |ω0/γ| = 28.06 Gauss. When

this resonance condition is met, the 3He average magnetic moment 〈 ~M〉 induces an
electromagnetic force and generates a signal in the pickup coils located on both sides
of the target chamber. As the holding field increases further and beyond |ω0/γ|, the
spins end up pointing in the opposite direction. This process is called a spin flip.
Figure 4-11 shows the principle of the AFP technique described above.

A measurement of the 3He polarization is performed by scanning the holding
field from 25 to 32 Gauss and back, resulting in two spin flips, inducing an electro-
motive forced (EMF) signal twice. The signal height is proportional to the transverse
component of the magnetization:

SNMR
He (t) ∝ 〈 ~M〉H1

√

(H0(t)− νRF

γ3He

)2 +H2
1

, (4.21)
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Figure 4-11: Principle of 3He spin reversal using Adiabatic Fast Passage (AFP).
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where

〈 ~M〉 = PHeµHe[
3He] , (4.22)

where PHe is the 3He polarization and µHe = 6.706984 × 10−14 MeV/T is the 3He
magnetic moment. A typical NMR signal S(t) from the pick-up coil is shown in
Figure 4-12. The resonance frequency is not exact 28.06 Gauss because of the drift in
the RF field. Signals are fitted using Eq. (4.21) and the fitted amplitude is considered
to be proportional to the polarization. The signal amplitude can be calibrated by
performing the same measurement on a sample for which the polarization is well
known, for example, a water sample, as will be described in the next two sections.

The change in the main holding field must satisfy the AFP condition – slow
(adiabatic) enough so the 3He spins can follow the magnetic field while sweeping, and
fast enough so the 3He spins do not relax. This can be described as

1

T1r
=
D| ▽Hz|2

H2
1

≪ Ḣz

H1

≪ ω0 , (4.23)

where T1r ≈ 100 s is the relaxation rate, D is the 3He diffusion rate, ω0 = 9100 s−1 is

the RF field frequency and Ḣ0

H1
≈ 24 s−1. Conditions described by (4.23) can be easily
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Figure 4-12: A typical NMR signal for 3He. The resonance frequency is not exact
28.06 Gauss because of the field drifting.
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satisfied. More information about the NMR system can be found in [125].

4.5.2 Calibration

The calibration of the NMR system is aimed at finding the constant of proportionality,
κNMR, between the NMR signal height and the 3He polarization

SHe = κNMRPHe . (4.24)

The constant of proportionality depends on several factors. Some of them are cell
related, for example, the position, density and geometry of the cell. Other factors are
independent of the target cell and measures the amount of signal seen by the NMR
system for a given spin, or the responsiveness of the system. Therefore κNMR can be
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divided into two parts

κNMR = κ∗ΦHeG
Q
Hen0

(nc

n0

)

, (4.25)

where κ∗ is the responsiveness of the system, ΦHe is the geometrical flux produced by
a particular cell, GQ

He is a measure of the gain of the electronics, n0 is the
3He density

of the cell at room temperature, and nc is the average 3He density between the pick-
up coils under operating conditions. The purpose of the calibration is to determine
κ∗, usually performed by measuring the thermal polarization of the protons in water.

4.5.3 Water Calibration

To do a water calibration, a cell with the same geometry as the 3He cell was filled
with de-oxygenated, de-ionized water. This water cell was mounted in the same
setup as the 3He cell, and NMR measurements were taken. The thermal polarization
of protons in water is given by Pthermal = tanh(µpB

kBT
), where µp = 2.793µN is the

proton magnetic moment, µN = 3.152454 × 10−14 MeV/T is the nuclear magneton,
kB = 1.38× 10−23 J/K is the Boltzmann constant and T is the temperature of water
sample in K. For a holding field B = 18 Gauss and room temperature T = 395 K,
Pthermal ≈ 6.23 × 10−9. This polarization can induce an AFP signal large enough to
be used to calibrate the 3He AFP signals. The AFP condition for the water sample
is slightly different from that for 3He. Since γ = 26752 Hz/Gauss for the proton, the
resonance field for an RF frequency of 91 kHz is Hres = 21.27 Gauss. The holding
field is therefore changing from 18 to 25 Gauss for the water sample. To increase
the signal-to-noise ratio, usually several hundreds of sweeps are performed and the
average signal is used for calibration. Figure 4-13 shows an AFP signal for a water
calibration performed during the An

1 experiment. It is the average signal from 500
sweeps.

Since the thermal relaxation time for a water sample is about 3 s, which is of the
same order of magnitude as the holding field sweep time Tsweep = 5.83 s, water AFP
signals cannot be described by Eq. (4.21). Relaxation during the sweep affects both
the height and the shape of the AFP signal. It also makes the signal be dependent on
the speed and the direction of the magnetic field sweep. In order to relate the water
AFP signal with its thermal polarization, the Bloch equations are used to describe the
time evolution of the three components of the polarization (Px, Py, Pz) in the rotating
frame [122]



















dPx

dt
= γPy(H −H0)− (Px−χH1)

T2r(H1)
dPy

dt
= −γPx(H −H0) + γPzH1 − Py

T2r(H1)
dPz

dt
= −γPyH1 − Pz−χH

T1r

H = H0 + αt

where T1r is the longitudinal relaxation time, T2r(H1) is the transverse relaxation
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Figure 4-13: NMR signal on a water sample.
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time in the presence of the rotating magnetic field H1, and χ = µp/kBT = 3.4616 ±
0.0117 × 10−10 G−1 at 22◦C is the magnetic susceptibility of the proton. Because of
the presence of 17O isotope in natural water, T2r is slightly smaller than T1r. For
neutral (i.e. pH = 7.0) water 1/T2r = 1/T1r + 0.125 s−1 [124].

The Bloch equations do not have an analytic solution. However, they can be solved
numerically in order to determine the shape and the height of the resonance signal
under different conditions. It was found that T2r does not significantly affect the
shape of the signal but it does affect the height. In order to find an analytic solution
to fit the data, we first assume T1r = T2r and the polarization follows the effective
magnetic field ~Heff = (H −H0)êz +H1ê

′
+ provided that the adiabatic conditions are

satisfied. In this case the set of Bloch equations reduces to one equation

dPeff

dt
=

1

T1

(

Peq(t)− Peff

)

,

where Peq(t) = χ

(

H(H −H0) +H2
1

√

H2
1 + (H −H0)2

)

. (4.26)

The integral form of the solution is

P (t) = e−(t−t0)/T1

(

P (t0) +
1

T1

∫ t

t0

e(t
′−t0)/T1Peq(t)dt

′
)

. (4.27)
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By expanding the exponential and the denominator of Peq(t) to the first order in t′,
the integral can be solved, which gives an approximate analytic solution to the Bloch
equations. The analytic solution allows one to fit the water signal and determine the
signal height. Since the AFP signal is proportional to the spin magnetization, one
can scale the water signal to calculate the calibration constant Cw between the 3He
signal height SHe and the polarization PHe using PHe = κwSHe, where w stands for
water calibration. A complete water calibration analysis can be found in [125].

4.5.4 NMR with Field Gradient

The field gradient should always be kept small in order to maintain a high target
polarization, see Eq. (4.16). However, during the An

1 and gn2 experiments, a field
gradient was introduced intentionally to prevent the polarization from being destroyed
by the masing effect, as will be described in Section 4.7.2. With a large field gradient,
the spin relaxation time of 3He is smaller and is comparable to the AFP sweep time.
In this case, Eq. (4.21) cannot describe the AFP signal shape. Similar to water signal
analysis, one can use the Bloch equations to describe the behavior of 3He spins in the
presence of a large field gradient and find an analytic solution. A detailed analysis
can be found in [125].

4.6 EPR Polarimetry

4.6.1 Principle

In the presence of a magnetic field ~B, the F = 3 state of Rb splits into seven sub-
levels MF = −3,−2, · · · , 2, 3. The Zeeman splitting between F = 3,MF = −3 and
F = 3,MF = −2 sublevels, described by the Electron-Paramagnetic Resonance fre-
quency νEPR, is proportional to the magnitude of the ~B field. When 3He nuclei are
polarized (P ∼ 40%), their spins can generate a small magnetic field B3He, of an order
of ∼ 0.1 Gauss, in addition to the main holding field BH = 25 Gauss. The EPR po-
larimetry [133] measures this small component of the Zeeman splitting δνEPR, which
is proportional to the polarization of 3He. The EPR frequency can be decomposed as

νEPR = ν0 ± δνEPR , (4.28)

where ν0 ∝ BH and δνEPR ∝ B3He ∝ P3He, with +(−) sign corresponds to the 3He
spin being antiparallel (parallel) to the main holding field.

Since the measured frequency shift δνEPR is a small component compared to the
main component ν0 generated by the main holding field, during an EPR measurement
the 3He spins are reversed by AFP. During a spin reversal the large component ν0
cancel and the frequency shift δνEPR is measured directly.
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4.6.2 Setup

Two major techniques of an EPR measurement are the 3He spin reversal and the
measurement of the Rb EPR resonance frequency. The EPR polarimetry shares the
RF coils with NMR for AFP spin reversal. Unlike NMR, during an EPR measurement
the frequency of the vertical RF field is ramped through the 3He resonance (81 KHz
for a 25 Gauss field) and the main holding field stays unchanged.

The measurement of the Rb Zeeman transition resonance frequency is based on
an assumption that under regular operating conditions the Rb polarization is very
high (> 90%), so most of the electrons stay in the F = 3,M = −3 state and cannot
absorb polarized light. If an additional magnetic field is applied at the EPR resonance
frequency, then the electrons will try to be equally distributed between F = 3,M =
−3 and F = 3,M = −2 states under this perturbation. Electrons in the F = 3,M =

Figure 4-14: EPR Optics setup in hall, during summer 2001.
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−2 state can further undergo an optical transition and emitD2 light with a wavelength
of 785 nm. This perturbation field, also called the EPR RF field, greatly increases
the electron population in the F = 3,M = −2 state. The increase in D2 light is
large enough to be measured by a photodiode [126]. One can therefore modulate the
frequency of EPR RF field around the Rb EPR resonance frequency, and determine
the Rb EPR resonance frequency by detecting the correlation between the strength
of D2 light and the modulated frequency, as will be described in Section 4.6.3.

The small perturbation field is generated by an EPR RF coil. During the An
1
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and gn2 experiments it was a 10 turns coil with a diameter of about 3 inches, at-
tached vertically to a window at the right downstream side of the oven. The EPR
RF coil was connected to a function generator (Wavetek80) [128], which was set at
voltage controlled output (VCO) mode and was modulated by a function generator
(DS345) [128]. The EPR RF field is swept at a frequency of 200 Hz around 11.85
MHz. The D2 light from target cell has a wavelength of 785 nm. To minimize the
radiation damage to the photodiode, the D2 light from the target cell was focused
and guided by an EPR optics system, as shown in Figure 4-14, to 5 m away from the
target. Lead bricks were placed around the photodiode to protect it from radiation
damage. To detect the D2 light under a strong D1 (795 nm) background, a D2 fil-
ter [127] was attached to the photodiode. The signal from the photodiode was sent
to a lock-in amplifier (SR844) [128] from which the D2 signal is extracted.

4.6.3 EPR Frequency Modulation Sweep

The EPR Frequency Modulation (FM) Sweep is used to find the D2 signal, measure
the Rb EPR resonance shape and determine the resonance frequency. It is not for
the polarization measurement but was regularly performed during the experiment to
monitor changes in the D2 signal and the Rb resonance frequency. Usually the main

Figure 4-15: EPR frequency modulation sweep setup.
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holding field is stable and so is the value of the resonance frequency. However, after
target configuration changes, for example, field rotation, cell change, replacement
of the photodiode, adjustment of the laser or EPR optics system, an FM sweep is
necessary to check possible changes. Figure 4-15 shows the setup for the FM sweep
measurement. The signal from the photodiode is fed into a lock-in amplifier and is
recorded by the computer. There is no feedback from this signal to the modulation
source for the EPR RF field frequency. The output of lock-in amplifier directly shows
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Figure 4-16: A typical frequency modulation sweep spectrum.
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the shape of the Rb resonance. Figure 4-16 shows a typical spectrum of an FM sweep
measurement, of which the zero crossing point gives the Rb resonance frequency.

4.6.4 EPR AFP Sweep

The EPR AFP sweep is used to measure the 3He polarization. During an EPR AFP
sweep measurement, the signal from the photodiode is sent to a lock-in amplifier,
by which the D2 signal is extracted. The D2 signal is then fed to a Proportional-
Integral (PI) feedback unit and is mixed with the modulation source output. The
mixed signal from the PI unit is used to modulate the Wavetek80 frequency, which
is the frequency of the EPR RF field. This way the system forms a closed feedback
loop, so the Wavetek80 frequency is locked to the EPR resonance frequency of the
Rb. Once this lock is formed, the 3He spins are reversed by sweeping the frequency
of the vertical RF field from 71 MHz to 91 MHz. Figure 4-17 shows the setup of AFP
sweep and Figure 4-18 shows a typical spectrum of an AFP sweep measurement.

Settings for the instruments are given below. Details of each device can be found
in [128].

1. RF generator (HP3324A)

• Sweep frequency: 71 kHz ∼ 91 kHz;

• Amplitude: 2.4 Vrms;

• Sweep time: 6∼8 s.
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Figure 4-17: EPR AFP sweep setup.
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2. Modulation source (DS345)

• Frequency: 200 Hz;

• Amplitude: > 0.4 Vpp for polarization ∼ 30%, 1.0 Vpp for > 40%;

• Function: sine wave;

• Sweep/modulate: LIN SWP.

At high polarization the EPR frequency shift is large. If the amplitude of the
modulation source is not large enough then the PI feedback cannot lock to the
EPR frequency when it changes very fast or changes by a large amount.

3. Sweep generator (Wavetek80)

• Frequency: 11.65 MHz;
It should be close to the resonance frequency but has a non-zero value in
the EPR line-shape. Usually it was set to be 200 KHz below the resonance,
which was 11.85− 0.20 = 11.65 MHz during An

1 experiment;

• Amplitude: 16.00 V;
The EPR RF field is proportional to this value. It also depends on the
configuration of the EPR coil;

• Modulation Mode: VCO;

• Output: sine wave;
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Figure 4-18: A typical spectrum of EPR AFP sweep measurement.
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• Operating mode: FUNC.

4. Lock-in Amplifier (SR844)

• AC Gain: 50 dB;

• Input Limit: 10 mV;

• Sensitivity: 1 mV;

• DR 16;

• Time Constant: 100 ms;

• Osc: 0.000 Hz;

• Reference source: ext.;

The time constant should be small so the lock-in can follow the input sig-
nal, and should be much larger than the period of the modulation source,
1/(200 Hz) = 5 ms.

4.6.5 EPR Analysis

The energy spectrum of the Rb (IRb = 5/2) atoms in a magnetic field can be described
exactly by the Breit-Rabi formula [129]

EF=I± 1

2
,mF

= − ∆Ehf

2(2I + 1)
+ gNµNBmF
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±∆Ehf

2
(1 +

4mF

2I + 1
x+ x2)

1

2 ,

where x ≡ (gSµB − gRbµN)B/∆Ehf .
During the An

1 and gn2 experiments, Rb atoms were always polarized to the F =
3,mF = −3 state. The EPR resonance frequency is given by the energy splitting
between F = 3,mF = −3 and F = 3,mF = −2 states as

νEPR = EF=3,mF=−2 − EF=3,mF=−3 . (4.29)

The EPR full frequency shift during the measurement is given by the difference in
νEPR before and after the spin flip. It is related to the pumping chamber 3He polar-
ization Pp as

2∆ν = 2× 2µ0

3

dνEPR

dB
κµHenpPp . (4.30)

In the following we describe how to obtain the quantities on the right hand side
of Eq. (4.30).

EPR Frequency Shift 2∆ν

The EPR frequency shift 2∆ν can be obtained by fitting to an EPR AFP sweep
spectrum, using either a constant or a linear function. The main component of the
EPR resonance frequency associated with the main holding field is

νEPR =
νEPR,↑⇑ + νEPR,↓⇑

2
, (4.31)

where νEPR,↑⇑ and νEPR,↓⇑ are the fitted frequencies before and after the spin flip, as
shown in Figure 4-19. We denote ∆ν1 and ∆ν2 half of the frequency shifts of the first
and the second spin flips, respectively:

{

2∆ν1 = νEPR,↑⇑ − νEPR,↓⇑ first flip
2∆ν2 = νEPR,↑⇑ − νEPR,↓⇑ second flip .

We take the average of these two as the EPR resonance frequency shift

2∆ν =

∆ν1

(δ(∆ν1))
2 +

∆ν2

(δ(∆ν2))
2

1

(δ(∆ν1))
2 +

1

(δ(∆ν2))
2

, (4.32)

where δ(∆ν1) and δ(∆ν2) are the errors of ∆ν1 and ∆ν2, respectively. The error in



4.6. EPR POLARIMETRY 115

∆ν is given by

2δ(∆ν) =
1

1

(δ(∆ν1))
2 +

1

(δ(∆ν2))
2

. (4.33)

Figure 4-19: EPR frequency shift spectrum
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Cell Densities np and nt

The pumping chamber and target chamber densities, np and nt, respectively, can be
calculated from the cell density at room temperature n0, the pumping chamber and
target chamber interior temperatures Tp and Tt, the pumping chamber and target
chamber volumes Vp and Vt, and the cell total volume Vtot as

np =
n0

1 + Vt

Vtot
(Tp

Tt
− 1)

and (4.34)

nt =
n0

1 + Vp

Vtot
( Tt

Tp
− 1)

. (4.35)

The interior temperature Tp can be measured by the cell temperature test. There
were seven temperature sensors (RTD) mounted on the cell during the experiment.
RTD 1 to 5 were evenly placed on the target chamber, RTD 6 was placed at the top
and RTD 7 at the bottom of pumping chamber, as shown in Figure 4-20. We denote
the temperature measured by the ith sensor as RTDi in Kelvin. For the two cells
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Figure 4-20: Location of temperature sensors on a 25 cm cell.
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used during the An
1 experiment the interior temperatures of the cell are given by [130]

Tp(K) = 2.319
RTD6 +RTD7

2
− 569.9 for Gore ,

= 3.333
RTD6 +RTD7

2
− 1015. for Tilghman , and (4.36)

Tt(K) =
3

13
(RTD2 +RTD3 +RTD4) +

2

13
(RTD1 +RTD5) . (4.37)

The errors in the interior temperatures are ∆Tp = 10◦C and ∆Tt = 2◦C.

The Holding Field B
The holding field B provided by the Helmholtz coils has been calibrated two times
during during the An

1 experiment. The field magnitude for longitudinal orientation is
given by [131]

B‖ = −3.4826Ismall − 0.0073 and

B⊥ = −3.3439Ilarge − 0.2777 ; (4.38)

and for transverse orientation

B‖ = −3.5400Ismall − 0.0007 and

B⊥ = −3.4394Ilarge − 0.2934 , (4.39)
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where B‖ (B⊥) is the field component parallel (perpendicular) to the beamline di-
rection in Gauss, Ismall (Ilarge) is the current of the small (large) Helmholtz coils in
Ampere. However, in addition to the main holding field, there exists a background
field (from the natural earth field, field generated by spectrometers, etc.) which
changes with time and cannot be calculated. A more precise way to determine the
field magnitude B is to use EPR resonance frequency νEPR, which is directly related
to the absolute value of B. We start from

νEPR = EF=3,mF=−2 − EF=3,mF=−3

= gNµNB +
∆Ehf

2

[

(1 +
−8

6
x+ x2)

1

2 − (1 +
−12

6
x+ x2)

1

2

]

,

obtain (νEPR − gNµNB)
1

∆Ehf/2
=

2

2I + 1
x− 2

(2I + 1)2
(2mF − 1)x2

+(
4(3m2

F − 3mF + 1

(2I + 1)3
− 1

2I + 1
)x3 +O(x4) .

Neglecting O(x4) terms, B can be solved by iteration

B(i) = (
2I + 1

2α
)
[νEPR − gNµNB

(i−1)

∆Ehf/2

+
2(2mF − 1)

(2I + 1)2
x2(i−1) + (

1

2I + 1
− 4(3m2

F − 3mF + 1)

(2I + 1)3
)x3(i−1)

]

, (4.40)

with α ≡ (gSµB − gRbµN)/(∆Ehf ) and x = αB = 0.0023 for a 25 Gauss holding
field. Results for the field magnitude from the EPR resonance frequency are shown
in Figure 4-21, along with field magnitude calculated from Eq. (4.38) and (4.39). The
differences between the two show the effect of the background field.

The Derivative dν/dB
The derivative dν/dB in Eq. (4.30) can be calculated from the absolute EPR reso-
nance frequency νEPR. They can be fitted by linear functions and the results are [132]

dν

dB
=































0.4670779 + 7.37904× 10−4B if M0 = −2
0.4670779 + 4.25140× 10−4B M0 = −1
0.4670779 + 1.26135× 10−4B M0 = 0
0.4670779− 1.59878× 10−4B M0 = 1
0.4670779− 4.33604× 10−4B M0 = 2
0.4670779− 6.95702× 10−4B M0 = 3 ,

where B is the field magnitude in Gauss, dν/dB is in MHz/G. The error of the
fit is negligible. The error of dν

dB
comes solely from the uncertainty in the field

magnitude∆B, which is of the order of ∆B/B = 1× 10−6, from Eq. (4.40).
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Figure 4-21: Holding field magnitude during E99-117.

The Constant κ
The constant κ in Eq. (4.30) has been measured to be [133] κ = 4.52 + 0.00934 Tp,
where Tp is the pumping chamber temperature in ◦C. The systematic error of this
measurement is δκ/κ = 1.4%.

From the information listed in this section, one can calculate the statistical error
(from the fits of AFP sweep spectrum) and the systematic error (from all sources
above) for the pumping chamber polarization Pp.

4.6.6 Polarization Gradient

The EPR frequency shift is a measure of the polarization in the pumping chamber,
while the electron beam interacts with 3He in the target chamber. Since the 3He gas is
polarized in the pumping chamber and diffuses down, there is a constant polarization
gradient between the two chambers. The evolution of the polarization with time is
governed by a set of differential equations that includes spin exchange, spin relaxation
and diffusion terms. We assume that the flux is constant along the transfer tube,
i.e., neglect the volume of the transfer tube compared with the volume of the cell.
We also assume that the temperature changes linearly along the tube and that the
diffusion constant D(T ) = D(T0)(T/T0)

m, with T0 = 80.0◦C and m a parameter
to be determined empirically. One can show that the polarization evolutions in the
pumping and target chambers due to diffusion are given by [102]

dPt

dt
=

ATrDt

VtLTr

K(Pp − Pt) and (4.41)
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dPp

dt
=

ATrDtnt

VpLTrnp

K(Pp − Pt) , (4.42)

where ATr and LTr are the cross section and the length of the transfer tube, ATr =
VTr/LTr with VTr the transfer tube volume, Dt is the diffusion constant in the target
chamber and is inversely proportional to the pressure

Dt = Dt, 1 atm
1 atm

pt
, (4.43)

where pt is the target chamber pressure given by pt = ntRTt, R = 8.3145 J/(K·mol)
is the molar gas constant. pt can also be written as: (1 atm)/pt = (1 atm)/(ntRTt) =
(n0RT0)/(ntRTt), with n0 = 1 atm/(RT0) = (1 amg)(273.14 K/T0) = 0.7733 amg
The diffusion constant at 1 atm Dt,1 atm is obtained by fitting to diffusion constant
data Dt [134]. A function

Dt = Dt0(Tt/T0)
m (4.44)

has been used and the results are

D
3He
t0

= D
4He
t0

×
√
M4He√
M3He

= (2.4153± 0.0060)×
√

4

3
cm2/s

= 2.7889± 0.0069 cm2/s at T0 = 80.0◦C = 353.14 K , and (4.45)

m = 1.7048± 0.0025 . (4.46)

Note that only 4He data are available and 3He data can be deduced by applying a
scaling factor 1/

√
M . Now one obtains

Dt = DT0
(Tt/T0)

m−1n0

nt

. (4.47)

The dimensionless parameter K in Eq. (4.41) and (4.42) is given by

K =
(m− 2)(Tt − Tp)Tt
[

( Tt

Tp
)mT 2

p

]

− T 2
t

. (4.48)

Combining Eq.(4.41) and (4.42) with the spin exchange and relaxation terms one
finds

dPp

dt
= dp(Pt − Pp) + γ̄SE(PRb − Pp)− ΓpPp and (4.49)

dPt

dt
= dt(Pp − Pt)− ΓtPt , (4.50)
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where dp and dt are the reduced diffusion constants given by

dp =
ATrDtnt

VpLTrnp

K and (4.51)

dt =
ATrDt

VtLTr

K . (4.52)

The volume averaged spin exchange rate γ̄SE is given by

γ̄SE = γSE
npVp

npVp + ntVt
, (4.53)

with γSE from Eq. (4.15). Since the value of γ̄SE is sensitive to the Rb density and
polarization, of which we do not have a good measurement, in the following I will use
a method to calculate Pt independently of the values of nRb, γSE, and PRb.

The spin relaxation time constants of the two chambers Γp and Γt differ from
the spin relaxation time measured by a spin-down measurement. This is because the
pumping and the target chamber temperatures are not the same as the value during a
spin-down measurement (which is usually performed at room temperature). However,
one can make corrections to this temperature effect based on Eq. (4.16). The spin
relaxation rate from a spin-down measurement is

Γ20◦C =
1

τ
= (

744

n0

)−1 + Γwall + Γ∆B , (4.54)

where n0 is the cell density at room temperature. The spin relaxation rates under
operating conditions are

Γp = (
744

np

)−1 + Γwall + Γ∆B , and (4.55)

Γt = (
744

nt

)−1 + Γwall + Γ∆B + Γbeam . (4.56)

Assuming the wall and field gradient depolarization effects do not change with time,
then

Γp =
1

τ
− n0

744
+

np

744
, and (4.57)

Γt =
1

τ
− n0

744
+

nt

744
+

I

622
, (4.58)

where I is the beam current in µA.
There are two ways of obtaining the target chamber polarization Pt – Equilibrium

solution and dynamic solution.
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Equilibrium solution
Assuming that the diffusion between Pt and Pp are in equilibrium at the time EPR
was performed, then Pt can be obtained by forcing dPt/dt = 0, which gives

Pt =
dt

dt + Γt

Pp , (4.59)

where dt and Γt are calculated using the cell temperatures and the beam current
at the time EPR was performed. Results of the target chamber polarizations from
equilibrium method are shown in Table 4.2.

Dynamic solution
For most of EPRs during the An

1 experiment, two (out of three) lasers were turned off
and the beam conditions were different. Since dt is of the order of ∼ 1 hour−1, Pt and
Pp are not necessarily in equilibrium during each measurement. The target chamber
polarization Pt can be determined from the dynamic differential equations dPt/dt,
using the pumping chamber polarization, cell densities, temperatures, geometries,
and the average beam current between two measurements as

dPt

dt
= dt(Pp − Pt)− ΓtPt

⇒ P
(i)
t =

P
(i−1)
t +∆t dt(P

(i)
p + P

(i−1)
p )/2

1 + (dt + Γt)∆t
, (4.60)

where P
(i)
p is the pumping chamber polarization from the ith EPR measurement,

∆t is the time interval between the ith and the (i − 1)th EPR measurements, Γt is
calculated from the average beam current I(i) between the two measurements, and
∆t(P

(i)
p +P

(i−1)
p )/2 is approximately the integral of Pp between the two measurements.

We use the diffusion model to estimate the error of Pt due to the polarization
gradient. The error from the model itself is not considered here.

The systematic uncertainties for diffusion parameters have been calculated and
the results are

∆Dt

Dt

= 2.1%,
∆K

K
= 0.4% , (4.61)

∆dt
dt

≈ ∆dp
dp

≈ 7.3% and
∆Γp

Γp

≈ 2.3% . (4.62)

Uncertainties in Pt due to diffusion are shown in Table 4.3.
Finally, by fitting Pt and Pp with a second order polynomial, one obtains

Pt = a2P
2
p + a1Pp + a0 , (4.63)

where both Pt and Pp are in %. Five measurements of Pp < 29% (due to masing
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effect) are excluded in the fit. The results are a2 = −0.0030±0.0004, a1 = 1.17±0.03
and and a0 = −2.8± 0.6.

4.7 Target Polarization

4.7.1 Target Polarization During the An
1 Experiment

The average polarizations for each cell from EPR measurements are listed in Table 4.2
and 4.3, for equilibrium and dynamic solutions, respectively.

Table 4.2: The average polarization for each cell from equilibrium solution of EPR
measurements. Polarizations and errors are given as absolute values in %.

Cell Pt±stat.±sys. Pp±stat.±sys. Pp − Pt

Gore 36.319±1.166±0.833 37.185±1.194±0.851 0.866
Tilghman 42.171±1.116±0.970 42.972±1.137±0.986 0.801

Table 4.3: The average polarization for each cell, dynamic solution. Polarizations
and errors are given as absolute values in %.

Cell Pt±stat.±sys.±diff. Pp±stat.±sys. Pp − Pt

Gore 36.377±1.451±1.062±0.125 37.185±1.194±0.851 0.809
Tilghman 41.902±1.558±1.305±0.131 42.972±1.137±0.986 1.070

Figure 4-22 shows the target polarization from EPR measurements (equilibrium
solution) and from NMR measurements during the An

1 experiment.
For the data analysis of the An

1 experiment, we first interpolate in time the target
chamber polarizations from EPR measurements using the equilibrium solution, and
interpolate in time the polarizations from NMR measurements, then take the average
of these two values as the target polarization Pt. The target polarization Pt will
be used in Eq. (5.30), (5.32) and (5.33) in Chapter 5 to correct the measured raw
asymmetries.

4.7.2 Masing Effect

This section describes a nonlinear polarization evolution effect called ‘masing’, its
effect on the target performance and how we minimized it during the experiment.

Among the four cells used during summer 2001 (two for An
1 , two for gn2 ), two cells,

“Gore” and “Virginia One”, showed the so called masing effect. During the first two
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Figure 4-22: Target performance during the An
1 experiments. Data of EPR measure-

ments are obtained from equilibrium solutions.
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weeks of running, for a couple of times, the polarization of “Gore” dropped abruptly
from 37% to ∼ 25% after polarization measurements (day 10 ∼ 25 of Figure 4-22).
Later this effect was suppressed by adding extra field gradients in two directions,
parallel to the beamline (dB/dz) and perpendicular to the beamline (dB/dy), using
two pairs of coils attached to the main Helmholtz coils. These two pairs of coils were
called ‘gradient coils’ and the field generated was ‘gradient field’. Cell “Virginia One”
showed a similar behavior but the polarization loss was well controlled by the gradient
field. This abrupt polarization loss during a polarization measurement cannot be
explained in terms of linear relaxation rates or AFP loss and is known to be a non-
linear effect called masing [102]. It is caused by the coupling between 3He spins and
some close-loop conductor adjacent to the cell. In most cases these elements are
identified as NMR pick-up coils. During an NMR measurement, the cell is positioned
between pick-up coils and a masing effect may occur. It could also be the ‘Rb ring’ 3

3When the cell is made, the transfer tube does not connect simply to the pumping chamber as
for the SLAC cells but is pushed slightly inside the pumping chamber so that a ring-shaped reservoir
is created. It contains the Rb and forbids it to drip inside the scattering chamber when the cell is
warmed up for the optical pumping. It is also informally called the “Souder ring”.
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inside the cell.

Assuming that it is the pick-up coils which couple to the 3He spins, then the
masing effect can be described as follows. Consider a polarized cell in a holding
magnetic field along the z direction. The cell is placed inside or close to a coil which
is part of an LC circuit. We assume that the 3He magnetization has a small transverse
component and the spins are precessing around the magnetic field. This precession
induces a voltage in the coil. The voltage induced in the coil causes a current to flow
through it. This current produces a magnetic field transverse to the holding field.
Under certain conditions this induced transverse field can cause the spins to tip away
from the z axis and increase the voltage induced in the coil. That in turn increases the
transverse field and causes a runaway situation. The longitudinal polarization of the
spins will decrease until the coupling between the transverse field and the coil breaks
down. Thereafter it will remain stable at the so-called masing threshold. The masing
effect described above can be simulated using non-linear Bloch equations [102].

The uncertainty of holding field direction is ±1◦ [130]. During regular operations
the transverse component of polarization is very small: |Ptrans/Plong| < 1◦ = 0.017
so the major condition required by masing is not satisfied. But an AFP flip of
polarization measurement creates a large transverse spin component that satisfies the
transverse condition and masing may occur. In this case AFP flip plays the role of
triggering.

Pick-up coils are not the only devices which couple to the transverse component
of the 3He spin and produce masing. For a few times (both during the experimental
running and in the JLAB target lab) it has been observed that EPR measurements
alone triggered the masing effect, which cannot be caused by coupling to the pick-up
coils since the cell was positioned far away from them. It is very likely that some
other elements inside the target enclosure or the ‘Rb ring’ satisfied the conditions for
nonlinear coupling to the 3He spins. In this case the masing effect can be clearly seen
from the EPR spectrum. Figure 4-23 shows an EPR measurement on cell “Virginia
One” during the gn2 experiment. The EPR resonance frequency shift dropped from
43.34 KHz (first flip) to 32.31 KHz (second flip) within 16 seconds, which corresponds
to a relative 25% drop in polarization.

To maintain a high polarization of the target the masing effect should be min-
imized. There are a few ways to suppress masing or to avoid it completely. One
solution is to apply a gradient field (dB/dy) and (dB/dz). The extra field gradient
can destroy the conditions which produce the masing effect. However, a large field
gradient can distort the NMR signal which makes the analysis for NMR polarimetry
challenging [125]. Nevertheless, to protect the polarization from being destroyed by
the masing effect, a magnetic field gradient was applied by attaching two pairs of
gradient field coils to the main holding field Helmholtz coils. After optimizing the
gradient field settings this indeed caused the polarization of cell “Gore” to rise sharply
during the experimental running. The same magnetic field gradient was applied to
“Virginia One” as soon as the masing effect was observed on this cell. Since the
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Figure 4-23: Masing during an EPR measurement.
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gradient setting was optimized during “Gore” running, the masing effect of “Virginia
One” did not affect the data taking of the g2 experiment. The masing effect was not
observed on the other two cells, “Tilghman” and “Shapiro”.

A second way to reduce masing is to decrease the main holding field magnitude.
This was demonstrated during target tests at SLAC, during which the holding field
was decreased from 19 Gauss to 9 Gauss [102]. However, a decrease in the field affects
both NMR and EPR polarimetries so this method was not used during the An

1 and
gn2 experiments.
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Chapter 5

Data Analysis

In this chapter we discuss the data analysis which leads to the physics results in
Chapter 6.

5.1 Analysis Procedure

The main goal of the data analysis is to extract the electron asymmetries A‖ and A⊥

for ~e− ~3He deep inelastic scattering, from which one can calculate the virtual photon
asymmetries An

1 and An
2 and the structure function ratios gn1 /F

n
1 and gn2 /F

n
1 . This

procedure is shown in Figure 5-1. To extract the asymmetries, one needs to know the

Figure 5-1: Procedure for asymmetry analysis.
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cross section ratio of opposite electron helicity states, as can be seen from Eq. (1.45)
and (1.46). To do this, one first needs to obtain the helicity dependent electron yield
N± from the raw data, during which detector cuts, particle identification cuts and

127



128 CHAPTER 5. DATA ANALYSIS

spectrometer acceptance cuts need to be applied. The efficiencies associated with
these cuts will be described in Section 5.2. However, since these efficiencies are not
helicity dependent, it is not necessary to correct the yields N± for these efficiencies
in the asymmetry analysis. The yield is then corrected by the helicity dependent in-
tegrated beam charge and the deadtime of the data acquisition (DAQ) system, which
has been discussed in Sections 3.7 and 3.10.3, respectively. The corrected yields are
proportional to the cross sections. The raw asymmetry Araw can be obtained by
taking the difference of the corrected yields for opposite helicity states, and dividing
it by the sum of the two. Next, to go from raw asymmetries to physics asymmetries
A‖ and A⊥, four factors need to be taken into account: the beam polarization Pb,
the target polarization Pt, the nitrogen dilution factor fN2

due to the unpolarized
nitrogen nuclei mixed with the polarized 3He gas, and a sign based on the knowledge
of the absolute sign of the electron helicity and the target spin direction. The beam
and the target polarizations Pb and Pt have been presented in the last two chapters.
The nitrogen dilution factor will be discussed in this chapter. The fourth factor is
usually referred to as “the sign convention”. The sign convention for parallel asym-
metries is obtained from the elastic scattering asymmetry and that for perpendicular
asymmetries is obtained from the ∆(1232) asymmetry analysis, as will be described
in Sections 5.4 and 5.5. The physics asymmetries A‖ and A⊥, after corrections for
the radiative effects, are used to calculate A1 and A2 and the structure function ra-
tios g1/F1 and g2/F1. This step involves kinematic factors and the ratio R = σL/σT
discussed in Chapter 1. Finally, all the results described above are for the 3He nu-
clei. The last step is to extract the neutron asymmetries and the structure function
ratios from 3He results. This is called “nuclear corrections” and will be presented in
Section 5.7.

Although the major goal of the An
1 experiment is to provide precise data on the

asymmetries, cross sections have also been extracted from the data. The procedure
for the cross section analysis is shown in Figure 5-2.

To extract cross sections, one first needs to determine the absolute yield of ~e− ~3He
inclusive scattering from the raw data. Unlike the asymmetry analysis, corrections
need to be made for the detector efficiencies, particle identification (PID) efficiencies
and the spectrometer acceptance effect. A Monte-Carlo simulation is used to calcu-
late the spectrometer acceptance based on a transport model for the Hall A HRS.
One also needs to subtract the yield of e−N scattering caused by the N2 nuclei mixed
with the 3He gas. The absolute ~e− ~3He yield is then corrected for the integrated beam
charge and DAQ deadtime to give the final cross section results. Using world fits for
the unpolarized structure functions (form factors) of 3He, one can calculate the ex-
pected deep inelastic (elastic) scattering cross section in the Monte-Carlo simulation.
Moreover, if the polarized structure functions are known, one can calculate the ex-
pected asymmetries. For the analysis of the An

1 experiment, the parallel asymmetry

of ~e− ~3He elastic scattering was simulated and compared with data.
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Figure 5-2: Procedure for cross section analysis.
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In this chapter we first describe the detector analysis, including VDC efficiency,
particle identification efficiencies, and the HRS acceptance. Then in Section 5.3 we
describe the Monte-Carlo program developed for the An

1 experiment. The elastic
analysis will be presented in Section 5.4. The elastic asymmetry results provide an
additional way to check the product of beam and target polarizations. The elastic
cross section results are used to check the target density and N2 fill pressure, as
well as to help understand the apparatus. The ∆(1232) transverse asymmetry will
be presented in Section 5.5. The deep inelastic scattering (DIS) analysis will be
described in Section 5.6. The DIS asymmetry analysis will provide the main results
of this experiment - the neutron asymmetries An

1 and An
2 and the structure function

ratios gn1 /F
n
1 and gn2 /F

n
1 . The results for the DIS cross sections, together with the

world fit for R = σL/σT , will determine the unpolarized structure function F1, and
thus allow one to calculate the polarized structure functions g1 and g2 from the results
for g1/F1 and g2/F1.

5.2 Detector Analysis

The trigger efficiency has been presented in Section 3.10.3. In this section we will
discuss the VDC efficiency, particle identification efficiencies and the HRS acceptance
effect.

5.2.1 VDC Efficiency

The hardware efficiency of the VDC wires is almost 100%. VDC inefficiency comes
mainly from the software misreconstruction of particle tracks. Only one track events
will be used for data analysis in the following sections, so the VDC inefficiency can
be characterized by the fraction of zero-track and multiple-track events generated by
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non-cosmic particles. A proper way to analyze the VDC efficiency is to use data
with low cosmic background, then apply β ≡ v/c and particle identification (PID)
cuts to select non-cosmic particles. For our case, electrons were detected. The β
distribution of scattered electrons is a Gaussian centered at β = 1. Hence we applied
a cut 0.5 < β < 1.5 and electron PID cuts in the VDC efficiency analysis. Figure 5-3

Figure 5-3: Right HRS VDC track number distribution.

Table 5.1: Fraction of zero-, one- and multiple-track events from elastic scattering
data, Eb = 1.196 GeV, E ′ = 1.191 GeV, θ = 19.985◦.

Number of tracks 0 1 2 3 4
Left HRS 0.0 0.98768 0.01094 0.00126 1.28× 10−4

Right HRS 1.18× 10−5 0.99371 0.00565 0.00056 0.68× 10−4

shows the distribution of the number of reconstructed tracks in the right HRS from
elastic scattering data, with a cut 0.5 < β < 1.5 and electron PID cuts applied. As
already mentioned, only one-track events will be used. The VDC efficiency that should
be used to correct the results, is therefore defined by the fraction of one-track events
as ηV DC ≡ None/Ntot, where None is number of events with only one-track and Ntot

is the total number of events. The fractions of zero-, one- and multiple-track events
from elastic scattering data are shown in Table 5.1. One obtains ηV DC = 98.77% for
the left HRS and ηV DC = 99.37% for the right HRS.
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5.2.2 Particle Identification Efficiency

As described in Sections 3.10.5 and 3.10.6, particle identification (PID) was achieved
by a threshold CO2 C̆erenkov detector and a double-layered lead glass counter. Their
PID efficiencies are usually characterized by two variables: electron efficiency ηe and
pion rejection factor ηπ. Electron efficiency ηe is defined as the ratio of the number
of electrons identified by the detector and the total number of electrons that enter
the detector. The pion rejection factor ηπ is defined as the ratio of number of pions
that are rejected by the detector and the number of pions that are mis-identified as
electrons by the detector.

PID efficiencies can be obtained by two methods. The first method is to fit the
detector data by expected distributions for electrons and pions. For example, one
can fit the summed ADC spectrum of the C̆erenkov detector by the photo-multiplier
tube’s (PMT) response functions [138]. Then one can deduce the PID efficiency of
the C̆erenkov detector from the fitting results. This method is not ideal since in the
real situation there are background events and the ADC spectrum cannot be fully
described by the knowledge of the hardware. The second method is to use sample
electron and pion events and study their distributions in the detector. This way the
results are closer to reality, but the difficulty is how to select real electron and pion
sample events. Since the particle identification of the C̆erenkov detector and the lead
glass counters is based on different mechanisms, the PID efficiencies of these two are
not correlated. We therefore used the second method and extracted the PID efficiency
of lead glass counters by using the sample electron events selected by the C̆erenkov
detector, and vice versa.

Figure 5-4 shows a spectrum of summed ADC signal of the left HRS gas C̆erenkov
detector, before and after the lead glass counter electron and pion cuts. The spectrum
from the right HRS is similar. As described in Section 3.10.5, electrons and pions
have different distributions. The peak around

∑

ADC=1400 is the multiple photo-
electron peak triggered by the electrons. The peak centered at

∑

ADC=250 is the
single photo-electron peak triggered mostly by the pions. In order to perform a precise
PID efficiency analysis, the sample electron and pion events need to have the least
contamination. To do this, the lead glass counter electron and pion cuts applied here
are very tight, which means we apply an electron (pion) cut which rejects more than
99% of the pions (electrons) with the cost of losing electrons (pions). This explains
the drop in the multiple photo-electron peak after applying the electron cut and the
drop in the single photo-electron peak after applying the pion cut.

As can be seen, electrons can be separated from pions by using a cut in the
summed ADC signal. A cut

∑

ADC>400 is shown in Figure 5-4.
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Figure 5-4: Summed ADC signal of left HRS gas C̆erenkov detector, without cut
(black), after lead glass counters’ electron cut (red) and pion cut (blue). The vertical
line shows a cut

∑

ADCi > 400 for selecting electrons.

When crossing the double-layered lead glass counter, electrons lose part of their
energy in the first layer and deposit the rest in the second layer, while pions deposit
only a small part of their energy in either layer. Therefore one can separate pions
from electrons by applying a two-dimensional cut in the energy deposits. Figure 5-5
shows a two-dimensional (2D) distribution of the energy deposits in the pion rejectors
in the left HRS and a typical 2D cut applied to separate pions from electrons.

Lead glass has a density of 5.18 g/cm3 and a radiation length of 1.68 cm. The
thickness for the lead glass counter in the left HRS is 14.5 cm for both the first and
the second layer, which corresponds to 8.6 radiation lengths. Thus the electron’s
energy deposits in the first and the second layer are comparable. In the right HRS,
the first layer of lead glass counter is 10 cm thick and the second layer is 35 cm thick,
which corresponds to 6.0 and 20.8 radiation lengths, respectively. Thus the electrons’
energy deposit in the first layer is much smaller than that in the second layer. As a
result, the total shower detector in the right HRS has a better PID performance than
the pion rejectors in the left HRS. Figure 5-6 shows the 2D distribution of the energy
deposits in the preshower and shower detectors, before and after C̆erenkov electron
and pion cuts.
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Figure 5-5: Two-dimensional distribution of energy deposits in the two layers of lead
glass counter in the left HRS, after the gas C̆erenkov electron cut (red) and the
pion cut (blue). Black straight lines show the boundary of the 2D cut for selecting
electrons.

Figure 5-6: Two-dimensional distribution of energy deposits in the two layers of lead
glass counter in the right HRS, after the gas C̆erenkov ADC electron cut (red) and
the pion cut (blue). Black straight lines show the boundary of the 2D cut to select
electrons.
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We have done detailed analysis for electron efficiencies and pion contaminations for
the C̆erenkov detector and the lead glass counters [97][136]. Figure 5-7 shows results of
PID efficiencies for the left and the right HRS detectors. The PID cuts and efficiency

Figure 5-7: PID efficiencies of the left and the right HRS detectors in the range of
0.8 < p0 < 2.0 (GeV/c).
The horizontal axis for the gas C̆erenkov efficiency is the value of the cut in the
summed ADC signal. The horizontal axis for the lead glass counter’s efficiency is
the value of the cut in the ratio E1/p0, with E1 the energy deposit in the first layer
in arbitrary unit and p0 the HRS central momentum in GeV/c. Numbers on the left
vertical axis are for electron efficiencies ηe in %. Numbers on the right vertical axis
are for pion rejection factors ηπ.

of each detector, in the HRS central momentum range 0.8 < p0 < 1.4 (GeV/c), are:

• Left HRS:

– Gas C̆erenkov:
∑

ADC >400; ηπ,rej > 770, ηe = 99.9%.

– Lead glass counters:
EPR1 > 0.42 p0, EPR2 > 100, 0.75EPR1 + EPR2 > 0.8 p0;
ηπ ∼ 38, ηe = 98%.

– Combined pion rejection factor: ηπ > 3× 104 at ηe = 98%.
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• Right HRS:

– Gas C̆erenkov:
∑

ADC >342; ηπ = 900 at ηe = 99%.

– Lead glass counters:
Epsh > 0.14 p0, Esh > 100, Epsh + Esh > 0.75 p0;
ηπ ∼ 182 at ηe = 98%.

– Combined pion rejection factor: ηπ > 1.6× 105 at ηe = 97%.

where
∑

ADC is the summed ADC signal of the gas C̆erenkov detector. EPR1

and EPR2 are the energy deposits in the first and second layers of the pion
rejector in arbitrary units. Epsh and Esh are the energy deposits in the preshower
and the shower counters in arbitrary units, p0 is the HRS central momentum
in MeV/c.

5.2.3 HRS Acceptance

Not all the events being detected can be used for data analysis. Each High Resolution
Spectrometer (HRS) does not have a clear cut in acceptance. Only events going well
within the acceptance can be considered to be good events. Events from the edge
of the acceptance may be particles scattered from the inside of the spectrometers.
This section describes the features of HRS acceptance, how to define the boundary
of acceptance and how to select good events.

For a fixed beam position (x, y), the acceptance of Hall A HRS depends on four
target variables: in-plane angle φtg, out-of-plane angle θtg, position of the reaction
point in the HRS frame ytg and momentum fraction δtg ≡ (dp/p)tg. Their design
acceptance ranges are listed in Table 3.7. In most cases simple one dimensional cuts
like |φtg| < 30 mrad are good enough to select good events. But if the statistics
are low, then one needs to use a four-dimensional boundary function to select events
from as large good acceptance region as possible. For the Hall A spectrometers an
acceptance boundary function has been developed for such purpose using the so called
‘R-function’ method [135].

An R-function is a real-valued function whose sign is completely determined by its
arguments. An R-function can be used to defined a geometric object by the boundary
equations of this object. The resulting function is equal to 0 on the boundary of the
geometrical object, greater than 0 inside the object and less than 0 outside the object.
Moreover, the absolute value of the resulting function can be made approximately
equal to the distance to the nearest boundary of the geometrical object. For example,
the function f(x, y) = 1− (x2 + y2) can be used to define a circle with a radius of 1,
since f = 0 on the circle, f > 0 inside the circle and f < 0 outside the circle.

With a given xtg, the spectrometer acceptance is a 4-dimensional region of vari-
ables φtg, θtg, ytg and δtg. Its main features can be seen in the (θtg, δtg), (φtg, δtg),
(φtg, ytg) and (θtg, φtg) distributions of single arm data that cover as much geometrical
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Figure 5-8: Boundary of acceptance. Top left: φtg vs. ytg; top right: θtg vs. δtg;
bottom left: φtg vs. θtg; bottom right: δtg vs. φtg.
Black dots show event distribution without R-cut and contour plots show events
with a cut R > 0. Blue lines show roughly the boundary of acceptance for which
R = 0.
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acceptance as possible, see Figure 5-8. The boundary of the acceptance is defined as
R = 0.

Usually a cut R > 0 or R > 0.005 is used to define the flat region of acceptance
and to select good events. Since the acceptance affects both helicity ‘+’ and ‘−’ cross
sections in the same way, the ratio of cross sections with the opposite helicities is
not sensitive to the acceptance effect. We thus used a cut R > 0 in the asymmetry
analysis to maximize the statistics. For the cross section analysis, we applied a cut
R > 0.005 for both the data and the simulation.

5.3 Monte-Carlo Simulation - SAMC

A Monte-Carlo program was developed for single arm polarized 3He experiments at
JLAB Hall A in 1998 [140]. This program, known as mce94010, has been renamed as
SAMC (Single Arm Monte-Carlo) after some improvements. SAMC was used for the
elastic and DIS simulations for the An

1 experiment. The main features of SAMC are
listed as follows:

• It contains the Hall A HRS geometry. For each HRS the latest version of
the particle transport models [141] has been used. The R-function is used for
acceptance evaluation;

• The reference frame used inside the spectrometer is the usual spectrometer
coordinates. The frame used for target quantities is the Hall A coordinates [86];

• Incoming and scattered electron energy losses (ionization, external and internal
bremsstrahlung) are taken into account according to the setup of polarized 3He
experiments in 2001;

• A raster (circular or squared pattern) option can be set to simulate the beam
raster. The circular raster is implemented using Eq. (3.12) in Section 3.9 to
generate an evenly distributed radial pattern of the beam position;

• There is a 6 msr collimator located at the spectrometer entrance on each HRS.
It is used to calibrate the optical properties of the spectrometers. When running
an experiment it can either be inserted or be left open, called “collimator IN”
and “OPEN collimator”, respectively. This collimator is being simulated in
SAMC;

•
3He elastic cross sections and asymmetries are calculated using a world fit of
the 3He elastic form factors [139].

• For the case of elastic scattering, the 3He quasi-elastic contribution can be
calculated based on a PWIA model. This was implemented in the program
mce94010. However the calculation was found to be rough [72]. In the elastic
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analysis for the An
1 experiment, the quasi-elastic contamination is estimated by

taking the difference between data and the elastic simulation.

• The unpolarized 3He deep inelastic computation uses the 3He structure functions
F

3He
1 and F

3He
2 calculated from world fits of the proton and deuteron F2 structure

functions [142], a world fit of the ratio R = σL/σT [143], and with nuclear EMC
effects included [144]. Details of the calculation of F

3He
1 and F

3He
2 can be found in

Appendix A. The polarized cross section is computed using internally radiated
polarized structure functions g1 and g2 generated by POLRAD2.0 [145], see
Section 5.6.6.

• For the case of DIS analysis, the elastic and quasi-elastic tail contributions are
simulated by the peaking approximation [158][159]. In the peaking approx-
imation for elastic tail, we used the latest world fit of the 3He elastic form
factors [139]. In the peaking approximation for the quasi-elastic tail, proton
and neutron form factors are needed. We use the proton electric form factor
Gp

E from [160]. The proton magnetic form factor Gp
M was computed by mul-

tiplying Gp
E with ratio Gp

E/G
p
M [42]. For the neutron form factors, we use a

dipole fit for Gn
M [161] and Galster’s fit for Gn

E [162].

The structure of SAMC is shown in Figure 5-9 and is described as follows: A
large number of trial events are generated at the beginning. For the An

1 analysis we
used 1M events. We call each event a ‘trial event’ and the simulated electron a ‘trial
electron’. The initial energy of the trial electron is determined by the beam energy
and its uncertainty. The energy loss of the trial electron – including that due to
ionization, external and internal radiations - before scattering is calculated based on
the knowledge of the material passed through by the incoming electrons in the hall.
The position of the reaction point along the target z, the in-plane and out-of-plane
scattering angles φ and θ, and the outgoing electron’s energy E ′ are generated ran-
domly within their illumination ranges for each trial event. The illumination range
of each variable should be large enough to include all the events that are possible in
reality. For example, the illumination range of z needs to be longer than the target
length; the illumination ranges of φ, θ and E ′ should be larger than the acceptance
range of the HRS given in Table 3.7. The cross section and the asymmetries are
calculated for each trial event using the simulated incoming and outgoing energies
and the scattering angle. Then the energy loss of the trial electron after scattering
is calculated based on the knowledge of the material passed through by the outgoing
electrons in the hall. The trial electron is then simulated to go through the spectrom-
eter and reach the focal plane using an HRS transport model. For each trial event,
the position of the reaction point and the momentum of the scattered electron at the
target are reconstructed using the simulated focal plane information, based on the
HRS transport model. These reconstructed target variables are the ones that should
be compared with real data. After applying the same acceptance cuts (and invariant
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Figure 5-9: Flow chart for the single arm Monte-Carlo simulation program SAMC
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mass W cut in the case of elastic scattering) as those applied to the real data in the
analysis, the simulated reconstructed target variables are expected to have the same
distribution as the data.

A detailed description of all the material passed through by the incoming and
outgoing electrons for the An

1 experiment is given in Appendix B.

5.4 Elastic Analysis

Elastic ~e−3 ~He scattering data have been taken on the cell “Gore” polarized longitu-
dinally with respect to the beam direction. A Monte-Carlo simulation was performed
from which the acceptance, the expected cross section and longitudinal asymmetry
were evaluated. The simulated acceptance was then used to extract cross sections
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from the data. To eliminate possible systematic effects, a beam half-wave plate was
inserted to reverse the beam helicity for half of the statistics. For each beam half-
wave plate configuration (not inserted or inserted), the target spin direction was also
reversed for half of the statistics. As a result there are four combinations of beam
helicity and target spin directions and the sign of the raw asymmetry flips for each
beam and/or target spin reversal. Because the calculated elastic asymmetry is sig-
nificantly non-zero compared to the statistical error of the measured asymmetry, the
sign convention for each beam and target helicity configuration can be determined
by comparing the sign of the measured raw asymmetry with the expected value. The
measured elastic longitudinal asymmetry was also used to check the product of beam
and target polarizations. The measured elastic cross section was used to check the
target density.

In this section the formalism of elastic ~e − ~3He scattering will be reviewed first.
Then the method of elastic simulation using SAMC will be described, followed by the
simulation results for various reconstructed target quantities to show the quality of
simulation. Next, results for the N2 and 3He pressure curves will be presented which
were used to determine the N2 dilution factor and to check the 3He and N2 densities
of the polarized cell “Gore”. The systematic uncertainties in the elastic cross section
and asymmetry will be discussed next. In the end we present the results on the
elastic cross section and longitudinal asymmetry. The cross section and asymmetry
results agree with the simulation at a level of 5% and 4%, respectively. This level
of agreement is within the expected systematic and statistical uncertainties. We
therefore conclude that the experimental apparatus was well understood and that
the 3He and N2 densities used in the analysis are correct. Also deduced is the sign
convention for the asymmetry of a longitudinally polarized target.

5.4.1 Physics Formulae for ~e− ~3He Elastic Scattering

The elastic cross section for the unpolarized case is given by the Rosenbluth formula
[6][12]:

( dσ

dΩdE ′

)u

= σMott

[

W el
2 (Q2) + 2W el

1 (Q2) tan2 (θ/2)
]

, (5.1)

where Q2 is determined by Eq. (1.14) and the elastic kinematic:

E ′ =
E

1 + 2E
MT

sin2(θ/2)
, (5.2)
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withMT the target (3He) mass, E the beam energy, and θ the scattering angle. σMott

is the Mott cross section

(d2σ

dΩ

)

Mott
=

Z2α2 cos2 θ
2

4E2 sin4 θ
2

. (5.3)

Compared with Eq. (1.15) which is for a nucleon target, Eq. (5.3) has an extra factor
of Z2, with Z the charge of the target nucleus. The invariant mass W , defined
by Eq. (1.2) satisfies W = MT in the case of elastic scattering. This means that
the target does not acquire any energy from the incident electron (aside from recoil
energy) and thus is not excited. W el

1 (Q2) and W el
2 (Q2) are the form factors for elastic

scattering. In this dissertation a superscript ‘el’ is used to distinguish them from
structure functions in deep inelastic scattering. But in some textbooks this superscript
is dropped. The form factors W el

1 (Q2) and W el
2 (Q2) are often parameterized with the

Sachs form factors GE(Q
2) and GM(Q2), also referred to as the electric and magnetic

form factors, as

W el
1 (Q2) = τG2

M(Q2) and (5.4)

W el
2 (Q2) =

G2
E(Q

2) + τG2
M(Q2)

1 + τ
(5.5)

with τ ≡ Q2/(4M2
T ) = ν/(2MT ) the recoil factor. Eq. (5.1) is then given in terms of

GE(Q
2) and GM(Q2) as

( dσ

dΩdE ′

)u

= σMott

{

G2
E(Q

2) + τG2
M(Q2)

1 + τ
+ 2τG2

M(Q2) tan2 (θ/2)

}

. (5.6)

Dirac and Pauli form factors F el
1 (Q2) and F el

2 (Q2) are often introduced for conve-

nience, which are related to the Sachs form factors as

GE(Q
2) = F el

1 (Q2)− τF el
2 (Q2) and (5.7)

GM(Q2) = F el
1 (Q2) + F el

2 (Q2) . (5.8)

Then the cross section becomes

( dσ

dΩdE ′

)u

= σMott

{

F el
1 (Q2)2 + τ

[

F el
2 (Q2)2 + 2

(

F el
1 (Q2) + F el

2 (Q2)
)2

tan2 (θ/2)
]

}

. (5.9)

At low Q2 such that the relativistic effect of the recoiled target is negligible, and
in the Breit frame, the electric form factor can be interpreted as the Fourier transform
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of the charge distribution of the target, i.e.

ρ(~r) =

∫

d3~q

(2π)3
e−i~q·~r MT

E(~q)
GE(~q

2) , (5.10)

where ρ(~r) is the charge density of the target. Similarly, the magnetic form factor
can be related to the magnetization density of the target.

The 3He charge and magnetic form factors have been measured to a good preci-
sion [139]. The elastic unpolarized cross section is given by

( dσ

dΩdE ′

)u

=
σMott

η

{

Q2

|~q|2F
2
c (Q) +

µ2Q2

2M2
T

(1

2

Q2

|~q|2 − tan2 (θ/2)
)

F 2
m(Q)

}

,(5.11)

where µ is the 3He magnetic moment, η = 1−Q2/4M2
T is a factor taking into account

the target mass effect, and Q(~q) is the four (three) momentum transfer. Fc and Fm

are the nuclear charge and magnetic form factors of 3He.
The elastic cross section for a polarized target can be written as [137]

( dσ

dΩdE ′

)h

=
( dσ

dΩdE ′

)u

+ h∆(θ∗, φ∗, E, θ,Q2) , (5.12)

where h is the helicity of the incident electron beam, θ∗ and φ∗ are the polar angle and
the azimuthal angle of the target spin direction, as shown in Figure 5-10. Following

Figure 5-10: Polar and azimuthal angles of the target spin.
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the convention in [137], one can write them explicitly for a target with spin parallel
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to the beam direction as

cos θ∗ = (E − E ′ cos θ)/|~q| ; (5.13)

φ∗ = 0 . (5.14)

The asymmetry term in the cross section can be written as

( dσ

dΩdE ′

)h=+1

−
( dσ

dΩdE ′

)h=−1

=

− σMott

(

VT ′RT ′(Q2) cos θ∗ + VTL′RTL′(Q2) sin θ∗ cosφ∗
)

, (5.15)

with kinematic factors

VT ′ ≡ tan
θ

2

√

Q2

|~q|2 + tan2 θ

2
; (5.16)

VTL′ ≡ − Q2

√
2|~q|2

tan
θ

2
. (5.17)

RT ′ , RTL′ can be related to the 3He charge and magnetic form factors Fc, Fm as

RT ′(Q2) =
2τE ′

E
(µAFm)

2 ; (5.18)

RTL′(Q2) = −2
√

2τ(1 + τ)E ′

E
(ZFc)(µAFm) . (5.19)

Therefore the elastic asymmetry can be calculated from Eq. (5.9) and (5.15) as

Ael
‖ ≡ ( dσ

dΩdE′ )
h=+1 − ( dσ

dΩdE′ )
h=−1

( dσ
dΩdE′ )

h=+1 + ( dσ
dΩdE′ )

h=−1
(5.20)

= −

(

VT ′RT ′(Q2) cos θ∗ + VTL′RTL′(Q2) sin θ∗ cosφ∗
)

1
η

{

Q2

|~q|2
F 2
c (q) +

µ2Q2

2M2

(

1
2
Q2

|~q|2
− tan2 (θ/2)

)

F 2
m(q)

} . (5.21)

5.4.2 Elastic Simulation

Using the simulation results one can extract the elastic cross section from the data as

σdata =
Ndata

Q ηDT ηPID ηV DC ηtrig.

NMC
tot

NMC
accp ρtgdtg,il ∆Ωil

, (5.22)

where Ndata is the number of events from the data, Q is the accumulated beam charge
from the BCM scalers, ηDT is the deadtime correction, ηPID is the electron particle
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identification (PID) efficiency, ηV DC is the VDC tracking efficiency, and ηtrig. is the
trigger efficiency. NMC

tot = 106 is the total number of trials for the simulation, NMC
accp

is the number of trial events in the simulation whose reconstructed target variables
and invariant mass W3He fall into the same cuts as those applied to data. ρtg is
the target density, dtg,il is the target length being illuminated in the simulation and
∆Ωil = ∆θil∆φil is the illuminated range of the solid angle for outgoing electrons.
For elastic simulation we used dtg,il = 25 cm, ∆θil = 150 mrad and ∆φil = 80 mrad.
To compare with data, we used acceptance cut R > 0.005, |∆ptg/ptg| < 4.5%, and
invariant mass cut 0 < W3He −M3He < 0.006 GeV/c2.

5.4.3 Kinematics, Parameters and Simulation Quality

During elastic running, the beam energy was 1.19684 ± 0.68 GeV from the eP mea-
surement, see Table 3.3. The central momentum of each HRS is calculated from
the spectrometer dipole field BDipole as p0 = ΓBDipole, where Γ is the spectrometer’s
‘gamma constant’ [147]. We adjusted Γ slightly to match data and simulation. From
this analysis the values of Γ are found to be

Γleft = 270.0 (MeV/kG) ; (5.23)

Γright = 269.8 (MeV/kG) . (5.24)

Γleft is smaller than the value given in [147] by a factor of 3.8×10−4 (relative), which
is within its uncertainty.

The central angle of each HRS is obtained from the Hall A survey report [148],
which gives 19.985◦ for the left and 19.998◦ for the right HRS. The error in the survey
results for the HRS central angle was estimated to be ±0.06◦ [149].

The imperfection of the VDCs causes a smearing effect in the reconstructed VDC
variables x, y, θ and φ, i.e., each quantity has a Gaussian distribution. It further af-
fects the distribution of the calculated variables, for example, the particle momentum
and the invariant massW . This smearing effect is usually referred to as the VDC res-
olution and is characterized by the width of Gaussian distribution for each quantity.
The VDC resolution of each HRS was checked using data on elastic scattering on a
12C foil target with open collimator. By comparing the width of invariant mass W
peak from the simulation with the data, the VDC resolution in x, y, θ and φ was
found to be:















δx = 0.01 cm
δy = 0.01 cm
δθ = 0.12 mrad
δφ = 0.12 mrad .

The widening of δ ≡ ∆p/p is dominated by the VDC resolution. These results are
consistent with the values given in [91].

The glass wall of the target cell causes the largest external radiation effect to the
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scattered electrons, which affects the shape, width and the position of the W peak.
By comparing theW peak with the data, the cell glass wall thickness on the right side
is found to be 1.44 mm for both “Gore” and the reference cell, while on the left side
the cell wall is 1.70 mm for “Gore” and 1.60 mm for the reference cell. Compared with
the results of optical measurements performed at University of Virginia (UVa) and
JLAB (given in Appendix C), there is a ∼ 0.3 mm discrepancy on the left side wall
thickness. This means there might exist extra material in the path of the outgoing
electrons on the left HRS. This uncertainty in cell wall thickness has been taken into
account in the external radiative corrections to the DIS data; see Section 5.6.6.

Comparisons between simulation and data for the reconstructed target variables in
the spectrometer coordinate system ytg, δtg, θtg and φtg are shown in Figure 5-11. The
R-function is shown in Figure 5-12. Figure 5-13 contains the ytg distribution, showing
that the contamination from the glass cell windows is negligible after applying a cut
|ytg| < 2.0 cm. Comparisons between simulation and data for the 3He invariant mass

Figure 5-11: Reconstructed target variables θtg, φtg, δtg and ytg, for the left and right
HRS, with an acceptance cut R > 0 applied.
black: data; red: N2 contamination; yellow: simulation, quasi-elastic; blue: simula-
tion, sum of elastic and quasi-elastic;

W3He is shown in Figure 5-14. A cut 0 < (W3He −M3He) < 0.006 GeV/c2 is applied
to select elastic events. The quasi-elastic contamination is at the level of 1%. From
the simulation, the quasi-elastic asymmetry is smaller than the elastic asymmetry by
more than one order of magnitude, and therefore is negligible and quasi-elastic events
are considered to cause a dilution effect.
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Figure 5-12: R-function distribution. An acceptance cut1 R > 0 is used for the
asymmetry analysis and cut2 R > 0.005 is used for cross section analysis.
black: data; red: N2 contamination in data; yellow: simulation, quasi-elastic; blue:
simulation, sum of elastic and quasi-elastic.

Figure 5-13: Cell window contamination. Cut |ytg| < 0.02 m is used in the elastic
analysis to exclude events scattered from cell windows.
black: data; red: N2 contamination; yellow: quasi-elastic simulation; blue: sum of
elastic and quasi-elastic simulation; green: data(black)-simulation(blue), showing the
net contribution from windows.
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Figure 5-14: W3He spectrum of 3He elastic peak.
black: data; red: N2 contamination; purple: elastic simulation; cyan: difference
between data and elastic simulation, which shows the quasi-elastic contamination in
the region of (W −M3He) > 0.006 GeV/c2;
A cut 0 < (W3He − M3He) < 0.006 GeV/c2 is used to select elastic events in the
analysis.

5.4.4 N2 Dilution for Elastic Data

To estimate the dilution effect caused by ∼1% unpolarized N2 mixed in the 3He cell,
data were taken on a reference cell filled with N2. The N2 dilution factor fN2

is defined
by

1− fN2
=

NN2

N3He

=
σN2

σ3He

nN2

n3He

, (5.25)

where NN2
(N3He) is the N2 (

3He) yield, σ3He is the
3He cross section from the polarized

3He cell data, σN2
is the N2 cross section from reference cell N2 data, and nN2

(n3He)
is the N2 (3He) density inside the polarized 3He cell under running conditions. Since
temperature affects both N2 and

3He densities of the cell in the same way, one can use
the 3He density measurement results (performed at room temperature) and the N2

fill density measured when the cell was made (also given at room temperature). The
cross sections σ3He and σN2

were obtained from data with exactly the same acceptance,
W3He and particle identification (PID) cuts.

The N2 fill density was checked by 3He elastic scattering. The N2 density nN2
of

the cell under running conditions can be obtained by two methods from the elastic
data. The first one is to compare the N2 elastic peak from data taken on a polarized
3He cell with that on a reference cell filled with N2. The ratio of these two peaks
equals the ratio of the N2 density of the polarized 3He cell to that of the reference
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cell.

Figure 5-15: (WN2
−MN2

) spectrum of the N2 elastic peak from the left and right
HRS data, with cuts (W3He −M3He) < 0 & −0.02 < (WN2

−MN2
) < 0.05 GeV/c2

applied.
A cut 0 < (WN2

−MN2
) < 0.006 GeV/c2 is used to select the elastic peak. green:

data from polarized 3He runs; red: data from reference cell N2 runs, scaled; black:
residual of N2 matching.

The N2 elastic peak can be separated from 3He elastic scattering events using
cuts (W3He −M3He) < −0.002 GeV/c2 and −0.02 < (WN2

−MN2
) < 0.04 GeV/c2,

where W3He(WN2
) is the invariant mass for 3He(N2) nucleus. Figure 5-15 shows the

(WN2
−MN2

) spectrum with these two cuts applied. The first peak at (WN2
−MN2

) ≈
0.004 GeV/c2 is the elastic peak, the other peaks correspond to the three nuclear
excitation levels of N2. We further applied a cut 0 < (WN2

−MN2
) < 0.006 GeV/c2

to select the elastic peak. Assuming that the N2 elastic yield is NN2,Gore from the
polarized cell and NN2,refcell from the reference cell filled with N2 of density nN2,refcell,
the N2 density in “Gore” can be determined by

nN2,Gore =
NN2,Gore

NN2,refcell

nN2,refcell . (5.26)

A more precise way to find the N2 density in “Gore” is to measure the N2 pressure
curve, i.e., a curve of yield vs. N2 pressure. Such a curve is obtained on a reference cell
filled with N2 with different pressures. In principle the N2 elastic yield is proportional
to the N2 pressure, so an ideal pressure curve is a straight line crossing zero. Fig. 5-16
shows a N2 pressure curve from reference cell runs with N2 pressure−12.2931, 25.3715,

1empty cell runs, pressure is from slow control EPICS data recorded after the run ended, which
was not necessarily the real pressure during the run.
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Figure 5-16: N2 pressure curves from the left and right HRS data. Each curve is
zoomed in on the right side.

59.4463, and 94.5383 2 psig.3. Data are plotted as σdata
c,refcell = σdata

refcell
σMC
Gore

σMC
refcell

to correct

for radiation effects caused by the fact that the reference cell has a different glass wall
thickness than “Gore”. Pressure curves were fitted using non-empty cell runs, giving

p = −0.0385(±0.0895) + 0.001970(±0.000036) σρ for left HRS ; (5.27)

p = −0.0235(±0.0883) + 0.001932(±0.000035) σρ for right HRS , (5.28)

with p the cell pressure in atm, σρ the yield in (amg·nb/GeV/sr), number in brackets
are the error of fit parameters. Empty cell runs do not agree with the curve, which
shows that the pressure recorded in EPICS is incorrect. The N2 pressure in “Gore”
is determined by the N2 yield in“Gore” data, shown as blue markers in Figure 5-16.
It gives 0.169± 0.088 atm from left HRS data and 0.210± 0.088 atm from right

2from target logbook, recorded by hand during data taking.
31 psig ≡ 1 pound/(inch)2 above 1 atm. Numbers are from data taking logbook.
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HRS. Taking the average of the results from the left and right HRS the N2 density is
0.160± 0.074 amg under running conditions; the N2 fill density at room temperature
is then determined to be 0.120 ± 0.056 amg. This result agrees with the N2 fill
pressure 0.0773 ± 0.0023 amg from UVa [146]. The overestimation is mostly due to
the background contamination under the N2 elastic peak in the cell “Gore”, as can
be seen in Figure 5-15. In the following sections the UVa fill pressure will be used for
the N2 density.

The cross section ratio σN2
/σ3He is found to be 3.006 in the left HRS and 2.813

in the right. Using the UVa fill pressure nN2
= 0.0773 amg, n3He = 9.08 amg, the N2

dilution factor for elastic analysis is fN2
= 1 − σN2

σ3He

nN2

n3He

= 0.9753, averaged over two

HRSs.

5.4.5 3He Pressure Curve

Figure 5-17: Elastic 3He pressure curve.

Data were taken using the reference cell with different 3He fill pressures to precisely
determine the 3He cross section and to check the 3He density of the polarized cell
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under operating conditions. Figure 5-17 shows a 3He pressure curve from reference
cell runs with 3He fill pressure 27, 62 and 110 psig 4. Reference cell data are plotted

as σdata
c,refcell = σdata

refcell
σMC
Gore

σMC
refcell

to correct for the radiation effect caused by the fact that

reference cell has a different glass wall thickness from “Gore”. The 3He cross sections
were extracted from the polarized cell “Gore” data using the 3He density from target
density measurements. They are shown as blue squares in the Figure. The results
agree with the 3He pressure curve within their systematic uncertainty of 6.7% (see next
Section). This indicates that the 3He density from the target density measurement is
correct.

5.4.6 Systematic Error Estimate for Elastic Analysis

Systematic Error for Asymmetries
The sources of systematic uncertainties for the asymmetry results are:

• Target polarization: 3% [125];

• Beam polarization: 2.5% (Table 3.4);

• The error on the nitrogen dilution factor comes from the uncertainties in N2

and 3He pressure, and the ratio of N2 and 3He cross sections. We estimate
± 10% on the cross section ratio, compared with which the uncertainties of N2

and 3He pressure are negligible. We obtain from Eq. (5.30) in the next section
the uncertainty in the asymmetry

∆A

A
=

∆fN2

fN2

=
∆( σN2

σ
3He

)
nN2

n3He

fN2

=
(±10%)(1− fN2

)

fN2

≈ ±0.3% ;

• We estimate the uncertainty in the quasi-elastic dilution to be 0.5%;

• The error in the helicity dependent deadtime corrections is negligible, as de-
scribed in Section 3.10.3;

• For our elastic analysis, Q2 = 0.174 (GeV/c)2 = 0.45 fm−2, the errors in the
3He elastic form factors are ∆Fc ≈ 0.001 and ∆Fm ≈ 0.001 [139]. We obtain
an uncertainty of ±1.2% for the elastic longitudinal asymmetry;

• The uncertainty due to the HRS transport model has been studied in SAMC
by using different versions of the HRS transport functions. The uncertainty is
found to be 0.23%;

4Numbers are from the shift logbook, recorded by hand during data taking.
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• We used the SAMC simulation to study the uncertainty in the asymmetry due
to uncertainties in the beam energy (∆Eb = ±0.7 MeV, from Table 3.3), HRS
central momentum (∆p0/p0 = ±5 × 10−4 [147]), HRS central angle (∆θ0 =
±0.06◦ [149]), target spin direction (±1◦ [131]), and the radiation length of the
material traversed by the scattered electrons (±0.2 mm glass, this study). The
uncertainty is found to be at a level of 1.3%.

Systematic Error for Cross Sections
The relative systematic errors on the cross sections come from the following sources:

• Target density under operating conditions: 3% [119]. This is the quadratic
sum of a 2% uncertainty for the 3He density at room temperature and a 2%
uncertainty for the cell temperature under operating conditions;

• The uncertainty due to the nitrogen dilution factor is the same as that for the
asymmetry: 0.3%;

• We estimate a 1% uncertainty due to the error in VDC and trigger efficiencies;

• We estimate a 1% uncertainty due to the error in PID efficiencies;

• The uncertainty due to the error in beam charge is 1% [85];

• The uncertainty due to the error in R-function acceptance cut is estimated to
be 1%;

• The uncertainty due to the absolute deadtime corrections is 1%, as described
in Section 3.10.3;

• Using ∆Fc ≈ 0.001 and ∆Fm ≈ 0.001, the uncertainty in the cross section due
to the errors in the 3He elastic form factors is 3.4% ;

• Target length: the error in the reconstructed ytg is ±0.5 mm, our software cut
is |ytg| < 2 cm. This gives a 2.5% uncertainty in the cross section;

• The uncertainty due to the HRS transport model has been studied in SAMC
by using different versions of the HRS transport functions. The uncertainty is
found to be 1.6%;

• The uncertainties due to kinematics have been studied in SAMC. The uncer-
tainty in the asymmetry due to the uncertainty in the beam energy (∆Eb =
±0.7 MeV, from Table 3.3), HRS central momentum (∆p0/p0 = ±5×10−4 [147]),
HRS central angle (∆θ0 = ± 0.06◦ [149]), and the radiation length of the mate-
rial traversed by the scattered electrons (±0.2 mm glass, this study), is found
to be ∼3.5%.
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The uncertainties are added in quadrature. We obtain a systematic error of 4.5%
for the longitudinal asymmetry and 6.7% for the cross section. These systematic
uncertainties are larger than the error in the beam polarimetry, target polarimetry
and the target density measurement; we therefore did not use the elastic analysis
results as a calibration.

5.4.7 Elastic Cross Section Results

Elastic cross sections extracted using Eq. (5.22) from ∼ 20 runs are shown in Fig-
ure 5-18. The results agree with the simulation at a level of 5%, which is within its
systematic uncertainty. We conclude from this result that the target density used in
the analysis is accurate within its uncertainty and the helicity-independent part of
the experimental apparatus is well understood.

Figure 5-18: Elastic cross section results. A systematic error of 6.7% has been added
to each data point.
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5.4.8 Elastic Asymmetry Results

The raw asymmetry is extracted from data using

Araw =

N+

Q+DT+ − N−

Q+DT−

N+

Q+DT+ + N−

Q+DT−

, (5.29)

where N±, Q±, DT± are the helicity-dependent yield, beam charge and deadtime
correction, respectively. The elastic asymmetry is

Ael
‖ = ± Araw

fN2
fQEPbPt

, (5.30)

where fN2
= 0.9753 is the N2 dilution factor obtained in Section 5.4.4, fQE ≈ 99% is

the quasi-elastic dilution. The beam polarization Pb was 82.4±0.30(stat.)±2.4(sys.)%

Figure 5-19: Elastic longitudinal asymmetry results. A 4.5% systematic uncertainty
has been included in the total error. The combined asymmetry and its total error
from ∼ 20 elastic runs are shown by the horizontal solid and dashed lines, respectively.
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measured by the Møller polarimeter. 5. For the target polarization Pt we used the
average value of NMR and EPR measurements, interpolated in time for each run.
The sign on the right hand side of Eq. (5.30) depends on the configuration of the
beam half-wave plate and target spin direction. We denote the status of the beam
half-wave plate to be ‘IN’ if it is inserted, and ‘OUT’ if not. The target spin direction
is always aligned to the holding field direction, e.g., parallel to the beam direction
for 0◦ field, and anti-parallel to beam for 180◦ field. The measured raw asymmetries
are positive for (beam half-wave plate, target spin) = (OUT, 0◦) or (IN, 180◦), and
are negative for (OUT, 180◦) or (IN, 0◦). The expected asymmetry from Eq. (5.20)
is found to be positive. Therefore from Eq. (5.20) the absolute helicity state of the
electron beam is determined to be +1 during H+ pulses, and −1 during H− pulses, in
the case of the beam half-wave plate not inserted (OUT), and opposite to the helicity
signal if the beam half-wave plate is inserted (IN). The elastic asymmetry results are
shown in Figure 5-19. The sign for results from runs with (OUT, 180◦) and (IN, 0◦)
has been reversed and the data points are shown as red triangles. The combined
asymmetries from all runs agree with the simulation at a level of 4%, which is within
its total uncertainty (4.5%). We conclude from this result that the beam and target
polarizations from polarimetry measurements are correct within their uncertainties.
Also the helicity-dependent part of experimental apparatus is well under control.

5.5 ∆(1232) Transverse Asymmetry

The transverse asymmetry of the ∆(1232) was measured to determine the sign con-
vention for perpendicular electron asymmetries. The kinematics for the measurement
was: Eb = 1.196 GeV, E ′ = 0.796 GeV/c and θ = 20◦.

The perpendicular asymmetry in electron scattering is defined by Eq. (1.46):

A⊥ =

dσ↓⇒

dΩdE′ − dσ↑⇒

dΩdE′

dσ↓⇒

dΩdE′ +
dσ↑⇒

dΩdE′

,

where
dσ↓⇒

dΩdE′ (
dσ↑⇒

dΩdE′ ) is the cross section for scattering off a target polarized perpendic-
ular to the beamline, with incident electron spin anti-parallel (parallel) to the beam
direction, and the scattered electrons being detected on the same side of the beamline
as that to which the target spin is pointing. A⊥ can be extracted from raw asymmetry
given by Eq. (5.29) as

A⊥ = ± Araw

fN2
PbPt

. (5.31)

5Elastic data were taken on June 5th and 6th, 2001; Compton polarimetry was not available until
June 15th, 2001.



156 CHAPTER 5. DATA ANALYSIS

The sign on the right hand side depends on the beam half-wave plate status, target
spin direction, and in which (left or right) HRS the asymmetry is measured. The
asymmetries of the ∆(1232) resonance have been measured in about the same Q2

range during a previous experiment in 1998 [150]. Their final results give the ∆(1232)
transverse asymmetry without being corrected for the radiative effect and N2 dilution,
denoted by A∆

⊥,raw/(PbPt), to be [151]

• At Q2 = 0.03 (GeV/c)2, A∆
⊥,raw/(PbPt)=0.79%;

• At Q2 = 0.16 (GeV/c)2, A∆
⊥,raw/(PbPt)=1.81%.

We interpolate these data to our kinematics Q2 = 0.115 (GeV/c)2, and obtained
A∆

⊥,raw/(PbPt)=1.45%. Figure 5-20 shows the results for A∆
⊥,raw/(PbPt) from our data.

This is the transverse asymmetry before being corrected for the sign, radiation effect
and the N2 dilution. A cut |W3He −M∆| < 0.02 GeV/c2 has been applied to select
events from the ∆(1232) resonance, where M∆ = 1.232 GeV/c2 is the mass of the

Figure 5-20: Measured ∆(1232) transverse raw asymmetry A∆
⊥,raw/(PbPt) without

sign correction. No correction for radiative effect and N2 dilution has been applied.
A cut |W3He − M∆| < 0.02 GeV/c2 has been used to select events from ∆(1232)
resonance. The beam half-wave plate was inserted and target spin direction was
270◦. The expected value A∆

⊥,raw/(PbPt)=1.45% is shown as a blue line.
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∆(1232). The asymmetries from the left and the right HRS data have the opposite
sign, both are very close to the expected value. We therefore conclude that the
measurement is reliable and one can use A∆

⊥ to determine the sign convention for
measured transverse asymmetries.

The raw ∆(1232) transverse asymmetry measured during the An
1 experiment was

positive in the left HRS, with beam half-wave plate IN and target spin at 270◦. The
sign on the right hand side of Eq. (5.31) should be ‘+’ for (beam half-wave plate,
target, HRS)=(IN, 270◦, left), (OUT, 90◦, left) or (IN, 90◦, right), (OUT, 270◦,
right); and ‘−’ for (beam half-wave plate, target, HRS)=(IN, 90◦, left), (OUT, 270◦,
left) or (IN, 270◦, right), (OUT, 90◦, right).

5.6 DIS Analysis

The asymmetry and cross section analysis for DIS data is discussed in this section.
First, the procedure of removing data collected during beam trips and rampings is
described. Then the sign conventions for the longitudinal and transverse asymmetries
are clarified. The results of false asymmetry and positron background tests are pre-
sented. Next the procedure and results for radiative corrections to the asymmetries
will be given. The systematic uncertainties in the DIS cross sections and asymme-
tries will be discussed. The systematic uncertainties in the asymmetry An

1 will be
presented in detail. The results for the DIS cross sections will be presented at the
end. The DIS asymmetry results will be presented in Chapter 6.

5.6.1 Charge Asymmetry and Beam Trips

As described in Section 3.8.3, the average charge asymmetry during one run was
controlled to below 200 ppm by the charge asymmetry feedback system. However, for
the deep inelastic data taking in the An

1 experiment, the electron beam was used at
an energy of 5.7 GeV. At this energy the beam is not stable and trips typically every
2 minutes. To smooth the heat impact to the target, the beam was ramped on at a
slope of 0.1 µA/sec after each trip. During these beam trips and beam rampings, the
beam intensity asymmetry measured in Hall A was not stable, which can be explained
by the unstable asymmetry from the electron source. To make sure that the beam
intensity asymmetries do not affect the results, data during beam trip and rampings
were removed, as shown in Figure 5-21. This procedure is called “beam trip removal”.

5.6.2 Sign Convention for Asymmetries

The parallel asymmetry is defined by Eq. (1.45) and is repeated here

A‖ =

dσ↓⇑

dΩdE′ − dσ↑⇑

dΩdE′

dσ↓⇑

dΩdE′ +
dσ↑⇑

dΩdE′

,
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Figure 5-21: Beam trip removal at 5.7 GeV running.
Red: events during stable beam, used for the analysis; Green: events during beam
trips and rampings, removed.

where
dσ↓⇑

dΩdE′ (
dσ↑⇑

dΩdE′ ) is the cross section for scattering off a longitudinally polarized
target, with incident electron spin anti-parallel (parallel) to the target spin. A‖ can
be extracted from the raw asymmetry of Eq. (5.29) as

A‖ = ± A‖,raw

fN2
PbPt

+∆ARC
‖ , (5.32)

where ∆ARC
‖ is the radiative correction; it will be given in Section 5.6.6. The sign

on the right hand side depends on the configuration of the beam half-wave plate and
the target spin direction. From the definition of A‖ and the electron beam helicity
states found in Section 5.4.8, it should be ‘+’ for (beam,target)=(IN, 0◦) or (OUT,
180◦) and ‘−’ for (IN, 180◦) or (OUT, 0◦).

The perpendicular asymmetry is defined by Eq. (1.46) and can be extracted from
the raw asymmetry of Eq. (5.29) as

A⊥ = ± A⊥,raw

fN2
PbPt

+∆ARC
⊥ , (5.33)

where ∆ARC
⊥ is the radiative correction; it will be given in Section 5.6.6. The first

term on the right hand side is the same as the ∆(1232) transverse asymmetry, and
therefore it follows the same sign convention as given in Section 5.5.
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5.6.3 False Asymmetries

To make sure that the data were not affected by false asymmetries, we performed a
false asymmetry check at the kinematics of x = 0.33 using an unpolarized 12C foil

Figure 5-22: False asymmetry results for four different combinations of beam half-
wave plate status and beam helicity signal mode. Data were taken on an unpolarized
12C foil target; The kinematics was Eb = 5.73 GeV, E ′ = 1.32 GeV and θ = 35◦.

target. The beam half-wave plate was inserted for half of the statistics and the two
beam helicity signal modes (pseudo-random and toggle, see Section 3.6.4) were both
tested. The asymmetries from the data were checked both with and without PID
cuts. The results are shown in Figure 5-22. The asymmetries for each combination
of beam half-wave plate and helicity mode, as well as their combined asymmetries,
are consistent with zero within their error bars. In addition, the statistical errors in
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the measured 3He DIS longitudinal (transverse) asymmetries are 1340 (2693) ppm,
1343 (2363) ppm and 2213 (4640) ppm for x = 0.33, 0.47 and 0.60, respectively. The
magnitude of the false asymmetry is negligible compared with the statistical error in
the measured DIS 3He asymmetries for all three kinematics.

5.6.4 Positron Background

In addition to pion photo-production background, one of the background processes
contributing to the inelastic (e, e′) scattering is pair production γ → e− + e+, where
γ comes from the decay of photo-produced pions. The electrons produced by this
process cannot be separated from those from (e, e′) inclusive scattering. However,
one can measure the positron (e+) yield at the same kinematics and subtract it
from the data, because the yield of e− and e+ are the same in the pair production
process. This is the reason why this background contribution is also called ‘positron
background’. During the An

1 experiment we measured the positron background at the
kinematics x = 0.33. The positron yield was found to contribute 5.5% to the total
yield. We did not measure the positron background at the other two kinematics.
However, the positron background was estimated [152] to contribute ∼ 0.2%, ∼ 0.5%
and ∼ 3% to the total yield at x = 0.60, 0.47 and 0.33, respectively. Therefore we
concluded that the positron background contributes less than 1% at x = 0.60 and
0.47 (from estimation), and contributes 5.5% at x = 0.60 (from data). The positron
asymmetries were found to be consistent with zero within their error bars. So the
positron background is considered to be a dilution effect.

5.6.5 N2 Dilution for DIS Data

The N2 dilution is obtained by the ratio of N2 and 3He fill pressure of the polarized
cell and the cross section ratio σN2

/σ3He obtained from reference cell data filled with
N2 and 3He. The results are shown in Table 5.6.5.

Table 5.2: N2 dilution factor for DIS analysis.

x Cell Name nN2
(amg) n3He (amg) σN2

/σ3He fN2
= 1− nN2

n3He

σN2

σ3He

0.33 Tilghman 0.075 8.28 6.720 0.9390
0.47 Tilghman 0.075 8.28 6.870 0.9376
0.60 Gore 0.0773 9.10 7.231 0.9386
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5.6.6 Radiative Corrections

Radiative corrections were performed for the 3He asymmetries A
3He
‖ and A

3He
⊥ directly.

We denote by Aobs the observed asymmetry, i.e., the measured asymmetry from the
data; ABorn the non-radiated (Born) asymmetry; ∆Air the correction due to internal
radiation effects and ∆Aer the correction due to external radiation effects. One has

ABorn = Aobs +∆Air +∆Aer (5.34)

for a specific target spin orientation. Comparing with Eq. (5.32) and (5.33), one ob-
tains the full radiative corrections ∆ARC

‖ = ∆Air
‖ +∆Aer

‖ , and ∆ARC
⊥ = ∆Air

⊥+∆Aer
⊥ .

Internal and external radiative corrections were performed separately for the An
1

experiment.
Internal corrections were calculated using an improved version of POLRAD 2.0 [145].

This program calculates both the non-radiated (Born) asymmetry ABorn and the in-
ternally radiated asymmetry Air = ABorn −∆Air. The difference of these two asym-
metries is the internal radiative correction ∆Air.

External corrections were calculated in SAMC simulation (see Section 5.3) based
on the procedure first described by Mo & Tsai [154]. SAMC calculates both the
internally radiated asymmetry Air and the observed asymmetry Aobs = Air − ∆Aer

The difference of these two asymmetries is the external radiative correction ∆Aer.
Since the theory for radiative corrections is well established [154], the quality of

the radiative corrections depends mainly on the quality of the structure functions
used in the procedure. Both the polarized and unpolarized structure functions in
POLRAD 2.0 were updated; see Appendix D. A comparison among the radiative
correction results using different structure functions was made to estimate the sys-
tematic error of the corrections. The error in the external corrections was estimated
in a similar manner in SAMC, plus an extra contribution from the uncertainty in the
cell glass wall thickness.

Internal Radiative Correction Results
Both non-radiated (Born) asymmetry ABorn and internally radiated asymmetry Air

are given by POLRAD 2.0, for either a longitudinally or a transversely polarized
target 6. Four different fits of unpolarized structure functions [142][155][156][157]
have been used to estimate the full uncertainty. Details of each fit can be found in
Appendix D. We obtain from POLRAD 2.0 an internal radiative correction using each

6Here I want to mention one technical thing for POLRAD 2.0 outputs. The asymmetries given in
the output file asm.out for longitudinally and transversely polarized targets are A‖/D and A⊥/D,
respectively, where D is a factor given by D = y(2− y)/[y2 + 2(1− y)(1 +R)]. R = σL/σT is
defined in Section 1.12 and y = ν/Eb is the fractional energy loss of the incident electron defined in
Section 1.5. This was not clarified in the POLRAD 2.0 manual.
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Table 5.3: Internal radiative corrections to A
3He
‖ and A

3He
⊥ , given as absolute values

(not percentage).

x ∆Air
‖ = A‖,Born − Air

‖ ∆Air
⊥ = A⊥,Born − Air

⊥

0.327 -0.00577 ± 0.00047 0.00266 ± 0.00003
0.466 -0.00328 ± 0.00013 0.00147 ± 0.00005
0.601 -0.00266 ± 0.00015 0.00128 ± 0.00007

fit; then the full uncertainty is given by δ(∆Air) = ∆Air
max − ∆Air

min, where ∆Air
max

and ∆Air
min are the maximum and the minimum values of all four results.

Internal radiative correction results are shown in Table 5.3.

External Radiative Correction Results
The external radiative correction is calculated by SAMC. It uses internally radiated
structure functions g1 and g2 to calculate the asymmetry Air. Then the procedure
described by Mo & Tsai [154] is used to calculate the external radiation effect, thus
obtaining the observed asymmetry Aobs = Air −∆Aer.

The internally radiated structure functions g1 and g2 were generated using POL-
RAD 2.0. We first computed the kinematic ranges of g1 and g2 needed for the external
radiative corrections, as will be presented in Appendix D. Then we created a three-
dimensional grid of (Eb, x, y) which covers the required kinematic range, and ran
POLRAD 2.0 for each kinematics of this grid. Here Eb is the beam energy, x is the
Bjorken variable and y = ν/Eb is the fractional energy loss of the incident electron.
Since POLRAD 2.0 calculates the polarized and unpolarized cross sections with in-
ternal radiation effects included, we thus obtained the internally radiated structure
functions g1 and g2 within the kinematics range required by the external radiative
corrections.

Table 5.4: External radiative corrections to A
3He
‖ and A

3He
⊥ , given as absolute values

(not percentage). Errors are from the uncertainties in the structure functions and the
cell wall thickness.

x ∆Aer
‖ = Aobs

‖ − Air
‖ ∆Aer

⊥ = Aobs
⊥ − Air

⊥

0.327 -0.00067 ± 0.00010 -0.00005 ± 0.00011
0.466 -0.00116 ± 0.00015 0.00080 ± 0.00046
0.601 -0.00039 ± 0.00003 0.00029 ± 0.00004

The results for the external radiative correction are given in Table 5.4. Similar to
the case of internal radiative corrections, four different fits of unpolarized structure
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functions [142][155][156][157] were used to estimate the uncertainty in the correction
due to the quality of the structure functions. The cell wall thickness was varied from
1.3 mm to 1.7 mm to estimate the uncertainty due to the error in cell wall thickness
found in the elastic analysis.

Corrections to Data
Using Eq. (5.32), (5.33), (5.34) and the results for internal and external radiative
corrections given in Table 5.3 and 5.4, the asymmetries A

3He
‖ and A

3He
⊥ were calculated

from the measured asymmetries obtained in the DIS analysis as

A
3He
‖ = ±

A
3He
‖,raw

fN2
PbPt

+∆Air
‖ +∆Aer

‖ ;

A
3He
⊥ = ±

A
3He
⊥,raw

fN2
PbPt

+∆Air
⊥ +∆Aer

⊥ .

5.6.7 Systematic Error Estimate for DIS Analysis

In DIS analysis, we used the average value of the Compton and the Møller measure-
ments given in Section 3.6.3 for the beam polarization. For the target polarization
we used the average value of the EPR and the NMR measurements, interpolated in
time for each run.

Systematic Error for DIS Asymmetries
The systematic uncertainty in the measured DIS asymmetries comes from the follow-
ing sources:

• Target polarization: 3% [125];

• Beam polarization: 2.5%, as given in Section 3.6.3;

• The error in the nitrogen dilution factor comes from the uncertainties in N2

and 3He pressure, and the ratio of the N2 and 3He cross sections. We estimate
±10% in the cross section ratio, and obtain the uncertainty in the asymmetry

∆A

A
=

∆fN2

fN2

=
∆( σN2

σ3He
)
nN2

n3He

fN2

=
(±10%)(1− fN2

)

fN2

≈ ±0.7% ;

• We estimate the uncertainty in the positron background cross section to be
10% at x = 0.33. The positron background contributes ∼ 5% to the total cross
section at x = 0.33. Therefore the uncertainty due to the error in positron
background dilution is 5% × 10% = 0.5% at x = 0.33, and is negligible at
x = 0.47 and 0.60;

• The error in the helicity dependent deadtime corrections is negligible, as de-
scribed in Section 3.10.3;
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• The uncertainty due to kinematics has been evaluated using the error propa-
gation method [153]. It includes the uncertainties of beam energy ∆Eb/Eb 6

5 × 10−4, HRS central momentum ∆Ee/Ee 6 5 × 10−4, HRS central angle
∆θe 6 0.06◦, and the target spin direction ∆αtg 61◦;

The total systematic uncertainty from the sources listed above will be presented in
Section 5.8 as “experimental systematics”.

Systematic Error for DIS Cross Sections
The relative systematic errors in the cross sections come from the following sources:

• Target density: 3% [119];

• The error in the nitrogen dilution factor is the same as that for the DIS asym-
metry, ∼ 0.7%;

• The uncertainty due to the absolute deadtime corrections is 0.2%, as described
in Section 3.10.3;

• We estimate 1% uncertainty due to the error in VDC and trigger efficiencies;

• We estimate 2% uncertainty due to the error in PID efficiencies. This is due
to the fact that the PID efficiency analysis was performed at a kinematics
(E ′ = 1.12 GeV) different from the running conditions (E ′ = 1.32, 1.72 and
1.45 GeV for x =0.33, 0.47 and 0.60, respectively);

• The uncertainty due to the error in the beam charge is 1% [85];

• The uncertainty due to the error in the R-function acceptance cut is estimated
to be 1%;

• The uncertainty in the cross section due to the error in the 3He structure func-
tion F

3He
1 is 2.6%. This can be decomposed into three sources: the structure

function F2 for the proton (± 2.3%) and the neutron (± 2.4%) [142], the ratio
R = σL/σT (± 1%) [143], and 3He EMC effect (± 1%) [144];

• We estimate the radiative correction procedure in the simulation has a rela-
tive error of 20%. By “radiative correction” we refer to the sum of elastic,
quasi-elastic and inelastic radiative tails. The uncertainties in the total cross
sections due to this error are 1.4%, 0.47% and 0.5%, at x = 0.33, 0.47 and 0.60,
respectively;

• Similar to the case of DIS asymmetries, we estimate the uncertainty in the DIS
cross section due to the error in the positron background dilution to be 0.5% at
x = 0.33, and is negligible at x = 0.47 and 0.60;
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• The uncertainty due to the HRS transport model has been studied in SAMC
by using different versions of the HRS transport functions. The uncertainty is
found to be 0.1%;

• The uncertainty due to kinematics has been studied in SAMC. The uncertainty
in the asymmetry due to beam energy (∆Eb = ±1.52 MeV, from Table 3.3),
HRS central momentum (∆p0/p0 = ±5×10−4 [147]), HRS central angle (∆θ0 =
±0.06◦ [149]), and the radiation length of the material traversed by the scattered
electrons (±0.2 mm glass, this study), is found to be at the level of 3%.

The uncertainties are added in quadrature. We obtained a systematic error of 6% for
the DIS cross sections.

5.6.8 DIS Cross Section Analysis

If the DIS cross sections are measured and the ratio R = σL/σT is known, one
can obtain the unpolarized structure function F1 and thus determine the polarized
structure functions g1 and g2 from Eq. (1.56) and (1.57).

Simulation for DIS Data
To obtain the Born cross section from the data, SAMC was used to perform the DIS
simulation. The HRS acceptance effect, the internal and external radiations were
included.

Elastic and quasi-elastic radiative tails were simulated based on the peaking ap-
proximation [158][159]. A description of the form factors used in the peaking approx-
imation was given in Section 5.3. We found that elastic radiative tails are negligible
for all three kinematics, but quasi-elastic tails are not. The ratios of the quasi-elastic
tail to the total cross section are < 1%, 2.5% and 5% at x =0.60, 0.47 and 0.33,
respectively.

The DIS cross sections can be extracted from data using

( dσ

dE ′dΩ

)data

=
Ndata

Q ηDT ηPID ηV DC ηtrig.

NMC
tot

NMC
accp ρtgdtg,il ∆pil∆Ωil

, (5.35)

where ∆pil is the illuminated range of the outgoing electron’s momentum. ∆pil needs
to be large enough to include the elastic and quasi-elastic scattering, such that the full
radiation effect of the scattered electrons can be included. Other quantities are the
same as those in Eq. (5.22). For the DIS simulation we used −0.06 < ∆pil/p0 < 2.0,
dtg,il = 25 cm, ∆θil = 150 mrad and φil = 80 mrad, where p0 is the HRS central
momentum. We used acceptance cuts R > 0.005 and |∆ptg/p0| < 4.5% for both data
and the simulation.

DIS Cross Section Results
Figure 5-23 shows cross section results obtained from Eq. (5.35) compared with the
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Figure 5-23: DIS cross sections. The simulation is performed using world fits of
unpolarized structure functions [142][143] for the DIS evaluation, the peaking ap-
proximation for the evaluation of the elastic and quasi-elastic elastic tails. A 6%
error bar has been plotted for each data point for the cross sections and the ratio of
σdata/σMC .

simulated observed cross sections σMC . The results agree with simulation at the level
of 8%. This difference is larger than the 6% systematic uncertainty obtained in the
last section, which indicates that there are unknown systematic uncertainties which
have not been taken into account in our analysis. However, the goal of the DIS cross
section analysis is to obtain g1 and g2 from results for the measured structure function
ratios g1/F1 and g2/F1. In the following we will show that a 10% uncertainty in the
DIS cross sections will not significantly affect the final results of g1 and g2.

For the 3He results, assuming the structure function ratio obtained from DIS
asymmetry analysis is (g

3He
1 /F

3He
1 )m, where ‘m’ stands for ‘measured’. The unpolar-

ized structure function obtained from the DIS cross section results is F
3He,m
1 . Then

the polarized structure function g
3He
1 is given by g

3He
1 = F

3He,m
1 (g

3He
1 /F

3He
1 )m. Its

uncertainty is given by

∆g
3He
1 =

√

[

∆F
3He,m
1 (g

3He
1 /F

3He
1 )m

]2

+
[

F
3He,m
1 ∆(g

3He
1 /F

3He
1 )m

]2

, (5.36)

where ∆F
3He,m
1 and ∆(g

3He
1 /F

3He
1 ) are the total uncertainties of F

3He,m
1 and g

3He
1 /F

3He
1 ,
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respectively. We compare the two terms on the right hand side of Eq. (5.36):

1st term

2nd term
=

{∆F
3He,m
1

F
3He,m
1

(g
3He
1 /F

3He
1 )m

∆(g
3He
1 /F

3He
1 )m

}2

. (5.37)

The total error in (g
3He
1 /F

3He
1 )m is dominated by statistical uncertainties, which give

∆(g
3He
1 /F

3He
1 )mstat./(g

3He
1 /F

3He
1 )m = 0.23, 0.98, and 2.79 for x = 0.33, 0.47 and 0.60,

respectively. The total error in the cross section is dominated by systematic uncer-
tainties. Assuming the systematic uncertainty is 10% for all three kinematics, one
obtains

1st term

2nd term
= 0.18, 0.01, 0.0013 at x = 0.33, 0.47, 0.60, respectively.

Therefore the total error ∆g
3He
1 is dominated by the uncertainty in the measured

structure function ratio (g
3He
1 /F

3He
1 )m.

Similarly, the total errors in the neutron results for gn1 and gn2 are dominated by
the uncertainties in gn1 /F

n
1 and gn2 /F

n
1 .

We conclude that a 10% systematic uncertainty in the DIS cross section results will
not affect the final results for g1 and g2 at a significant level. Hence the 8% difference
between data and simulation shown in Figure 5-23 will not significantly affect the
final results for g1 and g2. To minimize the total uncertainties of g1 and g2, we
used the unpolarized structure function F

3He
1 and F n

1 from world fits of unpolarized
data [142][143][144] to calculate g1 and g2 from our g1/F1 and g2/F1 results. The
results for g1 and g2 for the 3He and the neutron will be presented in Sections 6.1.4
and 6.2.3, respectively.

5.7 From 3He to Neutron

This section describes how to extract neutron information from a 3He target in DIS
experiments [165].

The properties of protons and neutrons embedded in nuclei are expected to be
different from those in free space. In particular the neutron spin structure function
gn1 is not equal to the 3He spin structure function g

3He
1 because of a variety of nuclear

effects. These effects include spin depolarization, nuclear binding and Fermi motion of
the nucleons, the off-shellness of the nucleons, the presence of non-nucleonic degrees of
freedom, and nuclear shadowing and antishadowing. In this section we first describe
the convolution approach of the 3He model, which was used by most of the previous
polarized 3He experiments. We then present a “complete” 3He model which takes
into account the effect of pre-existing ∆(1232) isobar in the 3He ground state. In the
end we show how to extract neutron asymmetries and structure function ratios from
3He data and the inputs we used in the analysis. This procedure is usually referred
to as the “3He nuclear correction”.
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5.7.1 3He Model - Convolution Approach

The nuclear effects of spin depolarization, binding and Fermi motion are traditionally
described within the framework of the convolution approach [164]. In this approx-
imation, nuclear structure functions are in general given by the convolution of the
off-shell nucleon structure functions with the light-cone nucleon momentum distribu-
tions. Thus, g

3He
1 can be represented as the convolution of the off-shell neutron g̃n1

and the off-shell proton g̃p1 spin structure functions with the spin-dependent nucleon
light-cone momentum distributions ∆fN/3He(y), where y is the ratio of the struck
nucleon’s light-cone plus component of the momenta to that of the nucleus

g
3He
1 (x,Q2) =

∫ 3

x

dy

y
∆fn/3He(y)g̃

n
1 (x/y,Q

2)

+

∫ 3

x

dy

y
∆fp/3He(y)g̃

p
1(x/y,Q

2) . (5.38)

The motion of the nucleons inside the nucleus (Fermi motion) and their binding
are parameterized through the distributions ∆fN/3He(y), which can be readily calcu-
lated using the ground-state wave functions of 3He. Calculations by various groups
using different ground-state wavefunctions of 3He came to a similar conclusion that
∆fN/3He(y) is sharply peaked around y ≈ 1 due to the small average separation energy
per nucleon. Thus, Eq. (5.38) is often approximated by

g
3He
1 (x,Q2) = Png̃

n
1 (x,Q

2) + 2Ppg̃
p
1(x,Q

2) . (5.39)

A similar equation exists for g
3He
2

g
3He
1 (x,Q2) = Png̃

n
1 (x,Q

2) + 2Ppg̃
p
1(x,Q

2) , (5.40)

where Pn(Pp) are the effective polarizations of the neutron (proton) inside the polar-
ized 3He nucleus, defined as

Pn,p =

∫ 3

0

dy∆fn,p/3He(y) . (5.41)

In the first approximation to the ground-state wave function of 3He, only the
neutron is polarized, which corresponds to the S-wave type interaction between any
pair of the nucleons of 3He. In this case, Pn = 1 and Pp = 0. Realistic approaches
to the wave function of 3He include also higher partial waves, notably the D and S ′

partial waves that arise due to the tensor component of the nucleon-nucleon (N-N)
force. This leads to the depolarization of the neutron and the polarization of the
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protons in 3He. The average of calculations with several models of N-N interactions
and 3N forces can be summarized as Pn = 0.86± 0.02 and Pp = −0.028± 0.004 [166].
The calculations using the Paris N-N potential give similar values: Pn = 0.879 and
Pp = −0.021 [167]. One should note that most of the uncertainty in the values for
Pn and Pp comes from the uncertainty in the D-wave component of the 3He wave
function.

Assuming that one can use the on-shell neutron and proton structure functions
gn1 and gp1 in Eq. (5.39), by dividing this equation by F n

1 and using Eq. (1.18), one
obtains

gn1
F n
1

=
1

Pn

F
3He
2

F n
2

( g
3He
1

F
3He
1

− 2Pp
F p
2

F
3He
2

gp1
F p
1

)

; (5.42)

Similarly, one has

An
1 =

1

Pn

F
3He
2

F n
2

(

A
3He
1 − 2Pp

F p
2

F
3He
2

Ap
1

)

. (5.43)

5.7.2 3He Model - Complete Analysis

The above convolution model gives a simple picture of how polarized 3He behaves as
an effective polarized neutron target. A more comprehensive model is summarized
in [165], which takes into account the off-shellness of the nucleons, the presence of
non-nucleonic degrees of freedom, and nuclear shadowing and antishadowing. Then
the spin structure function of 3He can be written as

g
3He
1 (x,Q2) =

∫ 3

x

dy

y
∆fn/3He(y)g̃

n
1 (x/y,Q

2) +

∫ 3

x

dy

y
∆fp/3He(y)g̃

p
1(x/y,Q

2)

−0.014(g̃p1(x)− 4g̃n1 (x) + a(x)gn1 (x) + b(x)gp1(x) , (5.44)

where g̃N1 are off-shell nucleon spin structure functions. The third term on the right
hand side of Eq. (5.44) shows contributions from the ∆ isobars pre-existing in 3He.
a and b are functions of x and Q2 describing nuclear shadowing and antishadowing
effects. The shadowing effect refers to the observation that the ratio 2FA

2 /(AF
D
2 ) is

smaller than unity for 0.0035 6 x 6 0.03 ∼ 0.07 and the anti-shadowing effect refers
to the fact that the ratio 2FA

2 /(AF
D
2 ) is larger than unity for 0.03 ∼ 0.07 6 x 6

0.2 [163]. a and b satisfy the following integral:

∫ 0.2

10−4

dx
(

a(x)− b(x)
)(

gp1(x)− gn1 (x)
)

= 0 . (5.45)



170 CHAPTER 5. DATA ANALYSIS

5.7.3 Extracting gn1 and An
1 from E99-117 3He Data

The approximate calculation given by Eq. (5.38) gives a clear picture of behavior
of 3He, and has been frequently used in the analysis of many polarized 3He DIS
experiments. But for this experiment we use Eq. (5.44) to extract neutron information
from the 3He results. For g1 it gives

g
3He
1 = Png

n
1 + 2Ppg

p
1 − 0.014

(

gp1(x)− 4gn1 (x)
)

+ a(x)gn1 (x) + b(x)gp1(x) ;(5.46)

Note that since shadowing and antishadowing are not present in the large x region,

the last two terms on the right hand side can be neglected. One obtains

g
3He
1 = Png

n
1 + 2Ppg

p
1 − 0.014

(

gp1(x)− 4gn1 (x)
)

= (Pn + 0.056)gn1 + (2Pp − 0.014)gp1 ; (5.47)

The same equation is valid for the structure functions g2, i.e.,

g
3He
2 = (Pn + 0.056)gn2 + (2Pp − 0.014)gp2 ; (5.48)

Dividing both sides of Eq. (5.47) by the 3He structure function F
3He
1 , one obtains

g
3He
1

F
3He
1

= (Pn + 0.056)
gn1
F

3He
1

+ (2Pp − 0.014)
gp1
F

3He
1

. (5.49)

Using Eq. (1.18) and assuming R is the same for proton and 3He, one obtains

g
3He
1

F
3He
1

= (Pn + 0.056)
gn1
F n
1

F n
2

F
3He
2

+ (2Pp − 0.014)
gp1
F p
1

F p
2

F
3He
2

(5.50)

⇒ gn1
F n
1

=
F

3He
2

PnF n
2 (1 +

0.056
Pn

)

( g
3He
1

F
3He
1

− 2
F p
2

F
3He
2

Pp(1−
0.014

2Pp

)
gp1
F p
1

)

; (5.51)

Similarly, for g2/F1 one has

gn2
F n
1

=
F

3He
2

PnF n
2 (1 +

0.056
Pn

)

( g
3He
2

F
3He
1

− 2
F p
2

F
3He
2

Pp(1−
0.014

2Pp

)
gp2
F p
1

)

. (5.52)

Using Eq. (1.41) and (1.42), one obtains

An
1 =

F
3He
2

PnF n
2 (1 +

0.056
Pn

)

(

A
3He
1 − 2

F p
2

F
3He
2

Pp(1−
0.014

2Pp

)Ap
1

)

; (5.53)

An
2 =

F
3He
2

PnF n
2 (1 +

0.056
Pn

)

(

A
3He
2 − 2

F p
2

F
3He
2

Pp(1−
0.014

2Pp

)Ap
2

)

. (5.54)
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The two terms 0.056
Pn

and 0.014
2Pp

represent the corrections to the neutron asymmetries

or structure function ratios associated with the pre-existing ∆ isobar. In Eq. (5.53),
both terms make An

1 turn positive at lower values of x compared to the convolution
approach.

5.7.4 Inputs for Nuclear Corrections

From Eq. (5.53), the inputs needed for the nuclear corrections are the unpolarized
structure functions F p

2 , F
n
2 and F

3He
2 in the deep inelastic region, the proton asym-

metry Ap
1 (or Ap

2, g
p
1/F

p
1 and gp2/F

p
1 ), and the effective nucleon polarization Pn and

Pp.

F2 Structure Functions
We used a world fit of proton and deuteron structure functions F p

2 and FD
2 [142] to

calculate F p
2 , F

n
2 and F

3He
2 in the deep inelastic region. The deuteron and the 3He

nuclear EMC effects are included [144]. Details of these calculations will be given in
Appendix A.

Proton Asymmetries
There exists a world fit of g1/F1 data for both the proton and the neutron performed
by the E155 collaboration at SLAC [20]. It is usually referred to as the “E155 fit”.
However their proton fit is not well constrained in the large x region, which is not
ideal for the purpose of the data analysis of this An

1 experiment. We did a new fit to
the world data for gp1/F

p
1 and obtained

gp1/F
p
1 = x0.813(1.231− 0.413x)(1 +

0.030

Q2
) , (5.55)

where Q2 is in (GeV/c)2. The data set used by this fit includes gp1/F
p
1 data from the

E143 [23] and E155 [20] experiments at SLAC and the HERMES experiment [30] at
DESY. Details of this fit will be presented in Appendix F.

There are two methods to obtain Ap
1. In the first method, we construct Ap

1 from
the gp1/F

p
1 fit given by Eq. (5.55), assuming that the higher twist effect is small, i.e.,

g2 = gWW
2 with gWW

2 the twist-2 term defined by Eq. (1.37). This is a reasonable
assumption since the data on gp2 from experiment E155x at SLAC [168] show good
agreement with gp,WW

2 . We then follow the procedure below:

• Construct F p
1 using Eq. (1.18) and world fits of F p

2 [142] and R [143];

• Multiply Eq. (5.55) by F p
1 , obtain g

p
1;

• At a constant Q2, obtain gp,WW
2 using Eq. (1.37);

• Compute Ap
1 using Eq. (1.41) and the F p

1 , g
p
1, g

p,WW
2 constructed above.
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However, the Ap
1 value calculated from this procedure is in general higher than the

world Ap
1 data. The second method is to fit the world Ap

1 data directly; we obtain

Ap
1 = x0.771(1.126− 0.189x)(1− 0.09

Q2
) . (5.56)

The fitted data set includes Ap
1 data from the E143 [23] and E155 [20] experiments

at SLAC, the EMC [24] and the SMC experiments [25] at CERN.

We take the average of the results from these two methods as the central value
for Ap

1, and take their difference as the uncertainty in Ap
1.

For the structure function ratio gp2/F
p
1 and the asymmetry Ap

2, we used Eq. (1.41)
and (1.43) to compute their values using the F p

1 , g
p
1 and Ap

1 constructed above. The
value of Ap

2 is checked with the Ap
1 fitted results to make sure that it does not exceed

Soffer’s bound given by Eq. (1.40).

Effective Nucleon Polarization Pn and Pp in 3He

In the following we present the values of the effective nucleon polarization Pp and Pn

from various calculations.

The effective nucleon polarizations Pn and Pp are given by

Pp = p+ − p− = −1

3

[

P (D)− P (S ′)
]

; (5.57)

Pn = n+ − n− = 1− 2

3

[

P (S ′) + 2P (D)
]

, (5.58)

where n± (p±) are the probabilities to find a neutron (proton) with a given momentum
fraction y of the nucleus with spin aligned (+) or anti-aligned (−) along the spin of
the nucleus.

Averaging over available world calculations gives [167]

Pn = 0.86± 0.02 and Pp = −0.028± 0.004 . (5.59)

To estimate the full uncertainty of Pn and Pp, nine more models have been in-
vestigated [165] [169]. The probabilities of S, S’, P, and D states for the 3He wave
functions and the effective nucleon polarizations Pn and Pp for each model are listed in
Table 5.7.4. The extreme values, given by the model CD-Bonn, have been combined
with Eq. (5.59) to give the full uncertainty that is used in the nuclear corrections of
the An

1 experiment:

Pn = 0.86+0.036
−0.02 , Pp = −0.028±+0.094

−0.004 . (5.60)
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Table 5.5: More calculations of the effective nucleon polarizations Pn and Pp.

N-N S S’ D P Pn Pp

PEST-5 89.3% 1.88% 8.11% 0.79% 0.879 -0.0208
CD-Bonn 2000 91.35% 1.56% 7.04% 0.047% 0.896 -0.0183
CD-Bonn 2000+TM 91.46% 1.42% 7.01% 0.100% 0.897 -0.0186
CD-Bonn 91.38% 1.55% 7.02% 0.046% 0.896 -0.0182
CD-Bonn + TM 91.50% 1.42% 6.97% 0.098% 0.898 -0.0185
AV18 89.93% 1.53% 8.46% 0.065% 0.877 -0.0231
AV18 + TM 89.93% 1.26% 8.75% 0.150% 0.875 -0.0250
AV18 + TM’ 89.44% 1.26% 9.16% 0.130% 0.869 -0.0263
AV18 + Urb IX 89.37% 1.24% 9.25% 0.132% 0.866 -0.0267

5.7.5 Comparison of Two Models

We used the complete analysis described in 5.7.2 for the nuclear corrections of the An
1

experiment, while existing measurements using a 3He target prior to this experiment
used the convolution approach described in 5.7.1. In this section we estimate the
effect on the final neutron results due to the difference between the two approaches.

We denote by (An
1 )

conv the results from the convolution approach described by
Eq. (5.43) and (An

1 )
cmplt the results from the complete analysis described by Eq. (5.53);

one has

(An
1 )

cmplt − (An
1 )

conv ≈ F
3He
2

F n
2

0.056

P 2
n

A
3He
1 − 0.014F p

2

PnF n
2

Ap
1 .

Using the fits of gp1/F
p
1 and gn1 /F

n
1 in Appendix F, Pn and Pp from Eq. (5.59) and

world fits for the F2 structure functions [142], one finds 0 < (An
1 )

cmplt−(An
1 )

conv < 0.02
in the range 0.2 < x < 0.7, as shown in Figure 5-24.
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Figure 5-24: Difference in An
1 between using the complete analysis and the convolution

approach.

5.8 Systematic Uncertainty of Neutron Asymme-

tries and Structure Function Ratios

The systematic uncertainties in the neutron asymmetries and structure function ra-
tios come from the systematic uncertainties in the measured 3He asymmetries listed
in Section 5.6.7, and the uncertainties in the radiative corrections and nuclear cor-
rections. Since the systematic errors given in Section 5.6.7 are associated with the
experimental technique, in the following they are referred to as “experimental uncer-
tainties”, so as to be distinguished from the uncertainties of radiative and nuclear
corrections.

The uncertainties in the radiative corrections were presented in Section 5.6.6. The
uncertainties in the nuclear corrections come from the following sources:

• The uncertainty due to the error of the proton and the deuteron structure
functions F p

2 , F
D
2 [142];

• The uncertainty due to the error of the deuteron and the 3He EMC effect RD ≡
(2FD

2 )/(F p
2 + F n

2 ) and R3He ≡ (3F
3He
2 )/(2F p

2 + F n
2 ) [144];

• The uncertainty due to the proton asymmetry Ap
1 was estimated in Section 5.7.4;

• The uncertainty due to the error of the nucleon effective polarizations Pp and
Pn inside the 3He nucleus was given in Section 5.7.4.

The total errors for An
1 including experimental systematics, radiative corrections and

nuclear corrections are shown in Table 5.6, where ∆An,ir
1 is the error in the internal
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radiative corrections and ∆An,er
1 is the error in the external radiative corrections.

Table 5.6: Total errors for An
1 , all numbers are absolute values given in %.

x 0.327 0.466 0.601

Statistics 2.43 2.67 4.78

Experimental systematics 0.42 0.32 0.35

∆An,ir
1 1.19 1.31 1.50

∆An,er
1 0.22 0.24 0.28

F p
2 , F

d
2

+0.55
−0.59

+0.78
−0.75

+0.48
−0.93

EMC effect 0.13 0.03 0.92

Ap
1 0.13 0.51 1.12

Pn, Pp
+0.50
−1.15

+0.93
−2.04

+1.78
−3.74

As shown in Figure 5-25, the total error of An
1 is dominated by the statistical

uncertainty. The three main sources of the systematic error are those due to the
uncertainties in the effective nucleon polarization Pn and Pp, the radiative corrections
and the proton asymmetry Ap

1.
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Figure 5-25: Sources of error in An
1 . The total errors are dominated by the statistical

uncertainty. The three main sources of the systematic error are those due to the
uncertainties in the effective nucleon polarization Pn and Pp, the radiative corrections
and the proton asymmetry Ap

1.



Chapter 6

Results and Conclusions

In this chapter we first present the 3He results for A
3He
‖ , A

3He
⊥ , g

3He
1 /F

3He
1 , g

3He
2 /F

3He
1 ,

A
3He
1 , A

3He
2 , g

3He
1 , and g

3He
2 . Neutron results for An

1 , A
n
2 , g

n
1 /F

n
1 , g

n
2 /F

n
1 , g

n
1 , and gn2

are presented in Section 6.2. Results for the flavor decomposition of polarized parton
distribution functions (∆u + ∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄) are presented in
Section 6.3. Pion asymmetry results as a by-product of the experiment are given in
Section 6.4. The impact of data on the understanding of the nucleon spin structure
is discussed in Section 6.5. We will conclude this dissertation in Section 6.6.

Results from this experiment will be compared with existing world data. World
3He data are from E142 [26] and E154 [27] experiments at the Stanford Linear Ac-
celerator (SLAC) and the HERMES [29] experiment at the Deutsches Elektronen-
Synchrotron (DESY).

World neutron data on An
1 are from E142 [26], E154 [27] experiments at SLAC

using a 3He target, the Spin Muon Collaboration (SMC) [28] experiment at CERN
using a deuteron (2H) target, and the HERMES [29] experiment at DESY using a 3He
target. World neutron data on gn1 /F

n
1 are from E143 [23] and E155 [20] experiments

at SLAC using a 2H target. The neutron data obtained from a 3He target are taken
from the original publications or web sites and have not been re-analyzed using the
complete 3He nuclear corrections. However in Section 5.7.5 we have shown that the
difference in An

1 between the two nuclear corrections is less than 2%. This difference
will not affect the final conclusions.

When comparing existing data with the new results of A1 or g1/F1 from this
experiment, the existing data have not been evolved to the same Q2 range. This Q2

evolution of the data is not critical since A1 and g1/F1 are nearly Q
2 independent, as

was described in Section 1.11.

177
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6.1 3He Results

6.1.1 3He Electron Asymmetries A
3He
‖ and A

3He
⊥

Results for the electron asymmetries of ~e − ~3He scattering, A
3He
‖ and A

3He
⊥ , defined

respectively by Eq. (1.45), are given in Table 6.1.

Table 6.1: 3He results – A
3He
‖ and A

3He
⊥ .

x Q2 A
3He
‖ ±stat.±sys. A

3He
⊥ ±stat.±sys.

0.327 2.709 −0.01397± 0.00475± 0.00071 −0.00216± 0.00955± 0.00011

0.466 3.516 −0.00722± 0.00449± 0.00036 0.01359± 0.00790± 0.00069

0.601 4.833 0.01036± 0.00739± 0.00052 −0.01173± 0.01550± 0.00059

6.1.2 3He Structure Function Ratios g
3He
1 /F

3He
1 and g

3He
2 /F

3He
1

Using Eq. (1.56), (1.57) and the 3He results presented in Table 6.1, we obtained
results for the 3He structure function ratios g

3He
1 /F

3He
1 and g

3He
2 /F

3He
1 , as shown in

Table 6.2.

Table 6.2: 3He results – g
3He
1 /F

3He
1 and g

3He
2 /F

3He
1 .

x Q2 g
3He
1 /F

3He
1 ±stat.±sys. g

3He
2 /F

3He
1 ±stat.±sys.

0.327 2.709 −0.0223± 0.0052± 0.0009 0.0103± 0.0362± 0.0016

0.466 3.516 −0.0077± 0.0075± 0.0006 0.0497± 0.0222± 0.0027

0.601 4.833 0.0031± 0.0085± 0.0006 −0.0276± 0.0384± 0.0016
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6.1.3 3He Asymmetries A
3He
1 and A

3He
2

Using the 3He results presented in Table 6.1 and Eq. (1.56) and (1.57), we obtained

Table 6.3: 3He results – A
3He
1 and A

3He
2 .

x Q2 A
3He
1 ±stat.±sys. A

3He
2 ±stat.±sys.

0.327 2.709 −0.0237± 0.0057± 0.0010 −0.0044± 0.0149± 0.0007

0.466 3.516 −0.0187± 0.0058± 0.0007 0.0199± 0.0119± 0.0014

0.601 4.833 0.0104± 0.0090± 0.0007 −0.0128± 0.0233± 0.0009

Figure 6-1: 3He results – A
3He
1 .

results for the 3He asymmetries A
3He
1 and A

3He
2 , as shown in Table 6.3. The A

3He
1

results are plotted in Figure 6-1. Also shown in Figure 6-1 are data from the E142
[26] and E154 [27] experiments at SLAC and the HERMES experiment [29] at DESY.
The error bars on the experimental results from E142 and HERMES are large and
cannot provide any constraining information about the value of A

3He
1 at x > 0.3. The

new data at all three x points are in good agreement with the data from E154, but
have much better precision. The new data at x = 0.47 and x = 0.60 have improved
the precision by about one order of magnitude.
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6.1.4 3He Polarized Structure Functions g
3He
1 and g

3He
2

The unpolarized structure function F
3He
1 was constructed using a world fit of the ratio

R = σL/σT [143] and the proton and deuteron unpolarized structure functions [142],
with nuclear EMC effects included [144]. Details of the calculation of F

3He
1 is given

in Appendix A. Results for the 3He polarized structure functions g
3He
1 and g

3He
2 are

obtained by multiplying the g
3He
1 /F

3He
1 and g

3He
2 /F

3He
1 results by the constructed F

3He
1 .

Results for g
3He
1 and g

3He
2 are listed in Table 6.4. Figure 6-2 shows the g

3He
1 results

along with data from the E142 [26] and E154 [27] experiments at SLAC.

Table 6.4: 3He results – g
3He
1 and g

3He
2 .

x Q2 g
3He
1 ±stat.±sys. g

3He
2 ±stat.±sys.

0.327 2.709 −0.0240± 0.0056± 0.0010 0.0111± 0.0389± 0.0009

0.466 3.516 −0.0040± 0.0040± 0.0004 0.0263± 0.0117± 0.0019

0.601 4.833 0.0007± 0.0019± 0.0003 −0.0062± 0.0086± 0.0007

Figure 6-2: 3He results - g
3He
1 .
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Similar to the results for A
3He
1 , the new data are in good agreement with existing

world data, but have improved the precision by about one order of magnitude.

6.2 Neutron Results

In this section we present results for the neutron asymmetries An
1 and An

2 , the struc-
ture function ratios gn1 /F

n
1 and gn2 /F

n
1 , and the polarized structure functions gn1 and

gn2 . The data will be compared with the latest world fit performed by the E155 col-
laboration at SLAC [20], usually referred to as the “E155 fit”. Details of this fit are
given in Appendix E.

6.2.1 Neutron Asymmetries An
1 and An

2

To obtain the neutron asymmetries, we applied nuclear corrections to the 3He asym-
metry results A

3He
1 and A

3He
2 using the procedure described in Section 5.7. Results

for the neutron asymmetries An
1 and An

2 are shown in Table 6.5.

Table 6.5: Neutron results – An
1 and An

2 .

x Q2 An
1±stat.±sys. An

2±stat.±sys.

0.327 2.709 −0.048± 0.024+0.015
−0.016 −0.004± 0.063+0.005

−0.005

0.466 3.516 −0.006± 0.027+0.019
−0.019 0.117± 0.055+0.012

−0.012

0.601 4.833 0.175± 0.048+0.026
−0.028 −0.034± 0.124+0.014

−0.014

The An
1 results are plotted in Figure 6-3, along with data from the SMC [28]

experiment at CERN, the HERMES [29] experiment at DESY, and the E142 [26] and
E154 [27] experiments at SLAC. Also shown in Figure 6-3 is the An

1 curve obtained
from the E155 fit using the procedure described in Appendix E. The curve is calculated
at a constant Q2 = 4 (GeV/c)2, which is about the average Q2 value of the three
kinematics of this experiment.

The new data in the low x region are in good agreement with existing world data.
This can also be seen from the fact that the two data points at x = 0.33 and x = 0.47
lie on the E155 curve. The new datum at the highest x point has improved the
precision of the world data at x = 0.60 by one order of magnitude. Moreover, this
datum is slightly above the E155 curve which means that the current world fit for
gn1 /F

n
1 can be improved. We will present a new fit for gn1 /F

n
1 in Appendix F. This

new fit has been used for the data analysis in this experiment. We will compare these
results with theoretical predictions in Section 6.5.
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Figure 6-3: Neutron An
1 results. Curve: E155 fit at Q2 = 4 (GeV/c)2.

The An
2 results are plotted in Figure 6-4 along with data from the E142 [26],

E143 [23], E154 [27] and E155x [168] experiments at SLAC along with the twist-two
An,WW

2 curve obtained from the E155 fit at constant Q2 = 4 (GeV/c)2 following the
procedure described in Section E. Although the transverse asymmetry An

2 was not
the main goal of this experiment, the uncertainties in the An

2 results are comparable
to those in the best world data from E155x [168] experiment at SLAC. The curve in
Figure 6-4 shows the twist-two term An,WW

2 from the E155 fit using the procedure
described in Appendix E. The data at x = 0.33 and x = 0.60 agree with the E155
An,WW

2 curve, while the datum at x = 0.47 is about two standard deviations (2σ)
above the curve. The existing E155x [168] data in the region of x > 0.4 are also
above the E155 An,WW

2 curve. A deviation from An,WW
2 might indicate that there

exist higher twist effects. However, the data have relatively large uncertainties and
are not conclusive.
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Figure 6-4: An
2 results; Curve: An,WW

2 using E155 fit at Q2 = 4 (GeV/c)2.

6.2.2 Neutron Structure Function Ratios gn1/F
n
1 and gn2/F

n
1

Using Eq. (5.51) and (5.52), neutron structure function ratios gn1 /F
n
1 and gn2 /F

n
1 are

extracted from the 3He data. The results are shown in Table 6.6.

The results for gn1 /F
n
1 are plotted in Figure 6-5 along with existing data from the

E143 [23] and E155 [20] experiments at SLAC and the E155 fit at Q2 = 4 (GeV/c)2.
Similar to the An

1 results, the new data from this experiment have improved the
precision of the world data at x > 0.4 by about one order of magnitude. The new
data at all three x points are consistent with the E155 fit but systematically higher.
This can be partly explained by the difference in nuclear corrections used for the data
analysis, as described in Section 5.7.5.
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Table 6.6: Neutron results – gn1 /F
n
1 and gn2 /F

n
1 .

x Q2 gn1 /F
n
1 ±stat.±sys. gn2 /F

n
1 ±stat.±sys.

0.327 2.709 −0.043± 0.022+0.009
−0.009 0.034± 0.153+0.010

−0.010

0.466 3.516 0.040± 0.035+0.011
−0.011 0.207± 0.103+0.022

−0.021

0.601 4.833 0.124± 0.045+0.016
−0.017 −0.190± 0.204+0.027

−0.026

Figure 6-5: Neutron (g1/F1)
n results. Curve: E155 fit at Q2 = 4 (GeV/c)2.
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6.2.3 Neutron Polarized Structure Functions gn1 and gn2

The neutron polarized structure functions gn1 and gn2 are obtained by multiplying
the gn1 /F

n
1 and gn2 /F

n
1 results by the unpolarized structure function F n

1 , where F
n
1 is

Table 6.7: Neutron results – gn1 and gn2 .

x Q2 gn1±stat.±sys. gn2±stat.±sys.

0.327 2.709 −0.012± 0.006+0.003
−0.003 0.009± 0.043+0.003

−0.003

0.466 3.516 0.005± 0.004+0.001
−0.001 0.026± 0.013+0.003

−0.003

0.601 4.833 0.006± 0.002+0.001
−0.001 −0.009± 0.009+0.001

−0.001

calculated using Eq. (1.18), Eq. (A.3) and the world fits [142][143][144]. Results for
gn1 and gn2 are listed in Table 6.7. The gn1 results are shown in Figure 6-6. Similar
to the An

1 results, the new gn1 data from this experiment have improved the precision
of the world data at x > 0.4 by about one order of magnitude. The new data at
x = 0.33 and x = 0.60 agree well with the E155 fit, but the new datum at x = 0.47
is higher than the value from the E155 fit by one standard deviation (1σ).

The results for xgn2 are shown in Figure 6-7. Similar to the An
2 results, the precision

of the new xgn2 data is slightly better than the best world data from the E155x [168]
experiment at SLAC. The two data points at x = 0.33 and x = 0.60 agree with
the xgn,WW

2 curve from the E155 fit. The new datum at x = 0.47 is higher than
the xgn,WW

2 curve. This might indicate the existence of higher twist effects, but the
indication is not conclusive because of the size of the error bar.
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Figure 6-6: gn1 results. Curve: gn1 from E155 fit at Q2 = 4 (GeV/c)2.

Figure 6-7: Results for xgn2 . Curve: xg
n,WW
2 from E155 fit at Q2 = 4 (GeV/c)2.
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6.3 Flavor Decomposition of Polarized Quark Dis-

tribution Functions

As described in Chapter 1, the major goal of polarized deep inelastic scattering exper-
iments is to understand the spin structure of the nucleon. How exactly do constituent
partons (quarks or gluons) form the nucleon and contribute to the nucleon spin? To
answer this question, one needs to determine the unpolarized and the polarized par-
ton distribution functions (pdf), q(x) and ∆q(x), respectively. They were introduced
in Section 1.8. Here we assume isospin symmetry and denote q(x) and ∆q(x) as the
pdf’s of the proton.

As shown in Figure 2-1, in the region x > 0.4 strange quarks and gluons are
rare. So only a few pdf’s remain sizable in this region: u(x), d(x), ū(x), d̄(x) and
their polarized counterparts ∆u(x), ∆d(x), ∆ū(x) and ∆d̄(x). The common way to
determine these pdf’s is to assume isospin symmetry and combine the proton and the
neutron polarized DIS data. However, so far little is known about the polarized pdf’s
in the large x region due to the lack of precise neutron data.

In this section we show how to extract the polarized quark distributions (∆u +
∆ū)/(u + ū) and (∆d + ∆d̄)/(d + d̄) from the results of this experiment. Results of
(∆u+∆ū)/(u+ ū) and (∆d+∆d̄)/(d+ d̄) will be compared with the preliminary data
from the HERMES experiment [172], the prediction from the constituent quark model
(CQM) and the prediction from pQCD based hadron helicity conservation (HHC).

Assuming that the strange quark distributions s(x) and s̄(x) are negligible in the
region x > 0.3, one can use Eq. (1.31) and (1.32) to write gp1/F

p
1 and gn1 /F

n
1 in terms

of polarized quark distribution functions as

gp1
F p
1

=
4∆u+∆d+ 4∆ū+∆d̄

4u+ d+ 4ū+ d̄
, and (6.1)

gn1
F n
1

=
∆u+ 4∆d+∆ū+ 4∆d̄

u+ 4d+ ū+ 4d̄
. (6.2)

Combining Eq. (6.1) and (6.2), one can extract

∆u+∆ū

u+ ū
=

4

15

gp1
F p
1

(4 +
d+ d̄

u+ ū
)− 1

15

gn1
F n
1

(1 + 4
d+ d̄

u+ ū
) and (6.3)

∆d+∆d̄

d+ d̄
=

4

15

gn1
F n
1

(4 + 1/
d+ d̄

u+ ū
)− 1

15

gp1
F p
1

(1 + 4/
d+ d̄

u+ ū
) . (6.4)

For gp1/F
p
1 we use a fit to the world proton data, see Appendix F. For the ratio

(d+ d̄)/(u+ ū) we used the values extracted from proton and deuteron structure
function data with nuclear EMC effects included [173]. Moreover, one can see from
Figure 2-1 that in the region x > 0.3, sea quarks ū and d̄ are rare. Therefore one has
(d+ d̄)/(u+ ū) ≈ d/u for x > 0.3. In the following we will not distinguish between
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these two ratios.

An estimation for the uncertainty in the d/u ratio is obtained by comparing the
d/u results from the off-shell and the on-shell deuteron calculations presented in [173].
We use the off-shell calculation results as the central value (d/u)central and the on-
shell calculation results as the minimal value (d/u)min. Then we make a conservative
estimate for the maximal value as (d/u)max = (d/u)central + [(d/u)central − (d/u)min]/4,
as shown in Figure 6-8.

Figure 6-8: d/u ratio extracted from proton and deuteron data from SLAC, using the
off-shell deuteron calculation (solid circles) and using the on-shell calculation (open
circles) [173]. Also shown is the ratio extracted from neutrino measurements by the
CDHS collaboration [175]. The three curves show the d/u central values (black curve),
the minimal (lower red curve), and the maximal values (higher red curve) used in the
analysis presented in this section.

Figure 6-9 shows results for (∆u+∆ū)/(u+ ū) and (∆d+∆d̄)/(d+ d̄) from
gn1 /F

n
1 data in comparison with the preliminary data from the HERMES experi-

ment [172], CQM predictions [36] and pQCD based hadron helicity conservation
(HHC) predictions using the LSS(BBS) parameterization [39]. Table 6.8 gives the
numerical results, the statistical error (stat.), systematic error (sys.) and the model
uncertainty (mod.) due to the uncertainties in the fits for gp1/F

p
1 and d/u.

In Eq. (6.1) and (6.2), the strangeness contributions s, s̄, ∆s and ∆s̄ were ne-
glected. Now we estimate the error in (∆u+∆ū)/(u+ ū) and (∆d+∆d̄)/(d+ d̄)
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Table 6.8: Polarized quark distribution results for (∆u + ∆ū)/(u + ū) and (∆d +
∆d̄)/(d + d̄). The three error bars are the statistical error (stat.), systematic error
(sys.) and the model uncertainty (mod.) due to the uncertainties in the fits for gp1/F

p
1

data and the d/u ratio.

x (∆u+∆ū)/(u+ ū)±stat.±sys.±mod. (∆d+∆d̄)/(d+ d̄)±stat.±sys.±mod.

0.327 0.535± 0.005+0.002
−0.002

+0.008
−0.005 −0.271± 0.031+0.013

−0.013
+0.004
−0.016

0.466 0.642± 0.007+0.002
−0.002

+0.013
−0.013 −0.303± 0.054+0.018

−0.017
+0.008
−0.014

0.601 0.733± 0.007+0.003
−0.003

+0.026
−0.026 −0.363± 0.081+0.029

−0.030
+0.021
−0.036

due to neglecting the strangeness contributions.

The full expressions for gp1/F
p
1 and gn1 /F

n
1 in the quark parton model are

gp1
F p
1

=
4∆u+∆d+ 4∆ū+∆d̄+∆s+∆s̄

4u+ d+ 4ū+ d̄+ s+ s̄
and (6.5)

gn1
F n
1

=
∆u+ 4∆d+∆ū+ 4∆d̄+∆s+∆s̄

u+ 4d+ ū+ 4d̄+ s+ s̄
. (6.6)

Comparing Eq. (6.5) and (6.6) with Eq. (6.1) and (6.2), one obtains

∆u+∆ū

u+ ū
=

(∆u+∆ū

u+ ū

)

s,s̄=0

+
s+ s̄

u

[ 4

15

gp1
F p
1

− 1

15

gn1
F n
1

− 1

5

∆s+∆s̄

s+ s̄

]

and (6.7)

∆d+∆d̄

d+ d̄
=

(∆d+∆d̄

d+ d̄

)

s,s̄=0

+
s+ s̄

d

[ 4

15

gn1
F n
1

− 1

15

gp1
F p
1

− 1

5

∆s+∆s̄

s+ s̄

]

, (6.8)

where (∆u+∆ū
u+ū

)s,s̄=0 and (∆d+∆d̄
d+d̄

)s,s̄=0 are the approximate values assuming that the
strangeness contributions are zero. Assuming s = s̄ and using the positivity con-
straints that |∆s/s| 6 1 and |∆s̄/s̄| 6 1, errors due to neglecting the strangeness con-
tributions can be estimated using the unpolarized parton distribution functions from a
global fit – CTEQ6M [21] – performed by the Coordinated Theoretical-Experimental
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Figure 6-9: Results for (∆u+∆ū)/(u+ ū) and (∆d+∆d̄)/(d+ d̄), The error bars
on the HERMES preliminary data are statistical uncertainties [172]. The error band
in the middle shows the uncertainty due to neglecting s and s̄ contributions.
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Project on QCD (CTEQ) collaboration. The results are shown as the blue error
bands in Figure 6-9.

To compare with CQM predictions, which are only given for valence quark dis-
tributions ∆qV /qV , we have estimated the difference between (∆q +∆q̄)/(q + q̄) and
∆qV /qV . For each quark flavor, one can decompose (q + q̄) as q + q̄ = qV + qsea + q̄,
where qV is the valence quark distribution and qsea = q̄ is the sea quark distribution.
Then one can write

∆uV
uV

=
∆u+∆ū

u+ ū
+
usea + ū

uV

(∆ū

ū
− ∆uV

uV

)

and (6.9)

∆dV
dV

=
∆d+∆d̄

d+ d̄
+
dsea + d̄

dV

(∆d̄

d̄
− ∆dV

dV

)

. (6.10)

Again using the unpolarized parton distribution functions from the global fit CTEQ6M [21],
one obtains

∆uV /uV =
(∆u+∆ū

u+ ū

)+0.03

−0.015
and (6.11)

∆dV /dV =
(∆d+∆d̄

d+ d̄

)+0.069

−0.035
. (6.12)

In the equations above, we have used the current knowledge that inside a polarized
proton, the u quark polarization is aligned to the proton spin and the d quark polar-
ization is anti-aligned to the proton spin: 0 < ∆u/u < 1 and −1 < ∆d/d < 0 [4].
We also assume that the polarization of the sea quarks is unknown and only use the
positivity constraints that |∆ū/ū| 6 1 and |∆d̄/d̄| 6 1.

From Figure 6-9, the results for (∆u+∆ū)/(u+ ū) are in good agreement with the
HERMES preliminary data and have better precision. The (∆u+∆ū)/(u+ ū) results
agree with the predictions from the pQCD based LSS(BBS) parameterization. The
results also agree well with the prediction from the CQM in the region of x > 0.3.
For x < 0.3, however, the q − q̄ sea and the gluons contribute and the CQM is not
expected to work well.

The physics implied by the (∆d + ∆d̄)/(d + d̄) results is more interesting, since
the CQM predictions differ from the pQCD based predictions and they even have
the opposite sign in the region x > 0.5. The total uncertainties in the new results of
(∆d+∆d̄)/(d+ d̄) from this experiment are smaller than those in the HERMES data
by about a factor of 5, which allows one to distinguish between the two predictions in
the region x > 0.3. Clearly the new results agree well with the CQM predictions, but
do not agree with the pQCD based predictions. We will discuss these two predictions
further in Section 6.5.
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6.4 Pion Asymmetries

In addition to polarization asymmetries in electron scattering, polarization asymme-
tries are also observed in photo-production of pions in our polarized DIS experiments.
Here we define the parallel and the perpendicular pion asymmetries to be

Aπ−

‖ ≡
σπ−

↓⇑ − σπ−

↑⇑

σπ−

↓⇑ + σπ−

↑⇑

and (6.13)

Aπ−

⊥ ≡
σπ−

↓⇒ − σπ−

↑⇒

σπ−

↓⇒ + σπ−

↑⇒

, (6.14)

where σπ−

↓⇑ (σ
π−

↑⇑ ) is the cross section for π− photo-production on a longitudinally po-
larized target, with incident electron spin anti-parallel (parallel) to the target spin;
and σπ−

↓⇒(σπ−

↑⇒) is the cross section for π− photo-production on a transversely polarized
target, with incident electron spin anti-parallel (parallel) to the beam direction, and
the scattered electrons being detected on the same side of the beam as that to which
the target spin is pointing.

Figure 6-10: Pion asymmetry Aπ−

results.
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Because of the relatively high cross section for pion photo-production, data on
pion asymmetries usually have better statistics than data on electron asymmetries.
These pion asymmetries are often not small and, as recently pointed out, can be of
some value to the understanding of polarization distribution of quarks and gluons
in nucleons [170]. Results for Aπ− from this experiment are shown in Fig. 6-10. pT
is the transverse momentum of the produced pion in a direction perpendicular to
the momentum transfer ~q. Unfortunately, the calculation [170] was performed in the
kinematic range of 8 < pT < 40 (GeV/c). The Aπ− results from this experiment are
in the range 0.8 < pT < 1.2 (GeV/c) and thus we cannot compare our data with the
calculation. Further theoretical calculations are needed to interpret the pion results
within the JLAB kinematic range.

6.5 Discussion

In this section we compare the new data with the theoretical predictions for An
1

presented in Chapter 2.
The An

1 predictions can be divided into two categories. The first one includes cal-
culations based on models without fitting to the world A1 data, for example, the SU(6)
prediction [22], the constituent quark models [36], the perturbative QCD based BBS
parameterization [38], the local duality method [52] and the chiral soliton model [62].
The local duality method cannot be applied to the region below the pion threshold
x = xth ≈ 0.8 and will not be discussed here. The chiral soliton model calculation [63]
is not available in the kinematic range of our data and will also not be discussed. The
other three models will be discussed in Section 6.5.1. The second category of An

1

predictions refers to those being developed particularly for constructing parton dis-
tribution functions (pdf) and are fitted to a large amount of world data. This latter
group includes the LSS(BBS) parameterization [39], the LSS parameterization [44]
and the statistical model prediction [46]. They will be discussed in Section 6.5.2. In
Section 6.5.3 we will give an outlook on possible measurements of An

1 in the future
and conclude the dissertation.

6.5.1 An
1 and Models

In Figure 6-11 we compare the An
1 results with existing world data and the three

models described in Chapter 2: the SU(6) model [22], the constituent quark model
(CQM) [36] and the perturbative QCD (pQCD) based BBS parameterization [38].
We itemize the discussion as follows:

• The new datum at x = 0.33 agrees with world data. The three new data
points show a zero crossing point at x ≈ 0.47 and the datum at x = 0.60
is significantly positive. The new data clearly show the trend that An

1 turns
positive and continue to increase at large x.
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Figure 6-11: An
1 results compared with model predictions. Curves: predictions of An

1

from pQCD based BBS parameterization [38], constituent quark model (yellow, or
light shaded band) [36] and the SU(6) symmetry [22].
Data from Hermes [29] and SLAC [26][27][20] are published results without being
re-analyzed for the improved nuclear corrections. However the effect due to nuclear
corrections is small, as described in Section 5.7.5, and will not affect the final
conclusion.

BBS

SU(6)

CQM
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• The new data do not agree with the SU(6) prediction that An
1 is a constant zero.

This is within our expectation since SU(6) symmetry is known to be broken [32].

• Compared with the predictions from the BBS parameterization, which is based
on the pQCD predicted hadron helicity conservation (HHC):

– In the region of 0.4 < x < 1, as shown in Figure 6-11, the prediction is
in general higher than data. This disagreement may mean that there is
problem with the theoretical basis of the pQCD calculation.

– The pQCD calculation is based on the hadron helicity conservation (HHC).
Its disagreement with the data might indicate that HHC cannot be applied
to the quarks probed in our DIS region. Since HHC is derived from the
assumption that the orbital angular momentum of the quarks is zero, the
discrepancy between data and the prediction might further imply that
the quarks’ orbital angular momentum contributes significantly to the nu-
cleon’s spin at the limit of x→ 1 in the deep inelastic domain.

• Compared with the CQM predictions:

– The CQM predictions are higher than the new data at all three x points.
In the best case, the new datum at x = 0.60 is smaller than the CQM
prediction by about one standard deviation (1σ);

– However, only the CQM gives roughly the approximate trend of An
1 data

in the large x region, i.e., An
1 is positive and continues to increase in the

large x region.

One may interpret the disagreement between the CQM prediction and the data
as follows:

– The main problem of CQM, besides the fact that the constituent quark
concept does not have a clear origin in quantum chromodynamics (QCD),
is that in the CQM there is no q − q̄ sea and no gluon. As a result, it is
unlikely that the CQM gives the correct prediction for An

1 over all x;

– The disagreement between the CQM predictions and the data might be
explained by the polarization of the q − q̄ sea quarks and the gluons.
Also, this disagreement becomes larger in the low x region. This can
be understood as the fact that there are more q− q̄ sea quarks and gluons
at low x, as can be seen from Figure 2-1.
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6.5.2 An
1 and Parton Distribution Parameterizations

In Figure 6-12 we compare the An
1 results with predictions from the pQCD hadron

helicity conservation (HHC) based LSS(BBS) parameterization [39] and the statistical
model prediction [46]. The gn1 /F

n
1 predictions from the LSS parameterization [44],

which is not constrained by the pQCD based HHC, are compared with the gn1 /F
n
1

results in Figure 6-13. We itemize the discussion as follows:

Figure 6-12: An
1 results compared with An

1 predictions from the pQCD based
LSS(BBS) parameterization and from the statistical model at Q2 = 4 (GeV/c)2.

LSS(BBS)

STAT. MODEL

• In Figure 6-12, the new An
1 results at all three x points and existing world data

in the region x > 0.2 do not agree with the pQCD based calculation using
LSS(BBS) parameterization;
The results for the flavor decomposition of the polarized quark distribution
(∆d + ∆d̄)/(d + d̄) presented in Section 6.3 also do not agree with the pQCD
based predictions using LSS(BBS) parameterization and favor the CQM predic-
tions. These two observations, following the previous data for F p,el

2 (Q2)/F p,el
1 (Q2) ∼

1/Q [41][42], may again indicate that pQCD based hadron helicity conservation
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Figure 6-13: gn1 /F
n
1 results compared with gn1 /F

n
1 predictions from the LSS parame-

terization at Q2 = 5 (GeV/c)2.

LSS

cannot be applied to the quarks probed in DIS. As was described in Section 2.5,
the orbital angular momentum of the quarks may play an important role.

• In Figure 6-12, the new An
1 datum at x = 0.33 agrees with the prediction of the

statistical model. But the data at x = 0.47 and x = 0.60 are smaller than this
prediction. Although this model can be refined if the new data are included in
the fit, as has been explained in Section 2.6, the statistical model itself should
not work well in the region x > 0.6.

• In Figure 6-13, the new gn1 /F
n
1 data at x = 0.33 and x = 0.47 agree well

with the calculation based on the LSS parameterization. However the LSS
parameterization is a pure fit to world data and does not have any physical
interpretation in terms of an explicit model. This parameterization can be
improved at the highest data point at x = 0.60.
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6.5.3 Future of An
1 Measurements

In this experiment we have measured An
1 up to x = 0.60. We have observed a trend

that An
1 turns positive around x = 0.47 and continues to increase. However it is not

clear whether the data will follow the prediction from CQM that An
1 continues rising

and approaches 1 for x > 0.60, or will stay around 0.2, which would agree more with
the predictions from the statistical model. If An

1 increases dramatically in the region
x > 0.7 and exceeds Ap

1, then the ratio ∆d/d will turn positive at higher x and will
favor the pQCD prediction that ∆d/d→ 1 at x→ 1, instead of the CQM prediction
that ∆d/d→ −1/3 at x→ 1. On the other hand, if the CQM is validated by the new
data at higher x, then one can obtain information about how the current quarks and
gluons in QCD form constituent quarks in the non-perturbative regime. This will be
of fundamental importance in the study of the nucleon structure.

Therefore an extension of the An
1 measurement to larger x will reveal more about

the spin structure of the neutron in the valence quark region. This has been planned
at JLAB. A measurement of An

1 in the resonance region and the testing of duality for
the polarized structure functions will be carried out in Hall A in 2003 [176]. As one
of the major physics programs of the JLAB 12 GeV upgrade [177], the measurement
of An

1 will be extended up to x = 0.8 and a larger Q2 range of 2 < Q2 < 10 (GeV/c)2.

6.6 Conclusions

To conclude, we have presented precise data on the 3He and the neutron spin asymme-
tries and polarized structure functions A1, g1/F1, and g1 at three kinematics x = 0.33,
0.47 and 0.60, with Q2 = 2.7, 3.6 and 4.9 (GeV/c)2, respectively. The data in the
region of x > 0.4 have improved the precision of the world data by one order of mag-
nitude. The new data were compared with various theoretical predictions. The data
do not agree with the predictions from the SU(6) symmetry and the pQCD based
parameterizations. The prediction from the constituent quark models is in general
considerably larger than the data, but it gives approximately the correct trend of
data at the larger values of x. The new data may provide critical inputs to the polar-
ized parton distribution parameterizations. The data presented in this dissertation
can greatly help to elucidate the valence quark structure and the constituent quark
concepts. Within the framework of models, the new data may also provide valuable
information as to the importance of the sea quark and the gluon polarizations inside
the nucleon.

Results for the transverse asymmetry and the polarized structure function A2,
g2/F1 and g2 for

3He and the neutron were presented. The uncertainties in the neutron
results are comparable to the most recent data from SLAC experiment E155x [168].
Although the new data are not conclusive enough because of the relatively large error
bars, they might provide information on higher twist effects in the polarized structure
function g2.
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Results on asymmetries in pion photo-production were presented as a byprod-
uct of the experiment. If the theories of pion asymmetries can be extended to the
JLAB kinematic range, these data may provide information on the polarized quark
distribution functions and the gluon polarization.

Finally, results on the polarized quark distribution (∆u+∆ū)/(u+ ū) and (∆d+
∆d̄)/(d+d̄) deduced from our data were presented. The new results for (∆d+∆d̄)/(d+
d̄) do not agree with the predictions from pQCD based hadron helicity conservation.



200



Appendix A

3He Unpolarized Structure
Functions from World Fits

The 3He unpolarized structure functions F
3He
1 and F

3He
2 can be calculated from world

fits of the proton and the deuteron F2 structure functions [142], a world fit for the
ratio R = σL/σT [143], and the deuteron and 3He EMC effects [144].

The latest world fit of the proton and the deuteron structure functions F p
2 and

FD
2 in the deep inelastic region [142] was performed by the New Muon Collaboration

(NMC). It is usually referred to as the “F2NMC95 fit”. In Section 1.5 we have
mentioned that there are two definitions of the F2 structure function for a nuclear
target. The deuteron FD

2 published in F2NMC95 fit is given in the per nucleon
definition. To be consistent, in the following we still use the not per nucleon definition
for FD

2 , which is two times the F2NMC95 fit.
To correct for the nuclear EMC effect [2] we define the EMC ratios for the deuteron

and the 3He as

RD ≡ FD
2

F n
2 + F p

2

; (A.1)

R3He ≡ F
3He
2

F n
2 + 2F p

2

. (A.2)

For the data analysis in this experiment we used the calculations of R by Melnitchouk
[144], and construct the F2 structure functions for the neutron and the 3He as

F n
2 =

FD
2

RD
− F p

2 ; (A.3)

F
3He
2 = R3He(F n

2 + 2F p
2 ) . (A.4)
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The 3He structure function F
3He
1 is calculated using Eq. (1.18)

F1(x,Q
2) =

F2(x,Q
2)(1 + γ2)

2x
(

1 +R(x,Q2)
) ,

where the ratio R = σL/σT is from the latest world fit [143]. It was performed by the
E143 collaboration at SLAC and is usually referred to as the “R1998 fit”. In this fit,
the ratio R is assumed to be nuclear independent, i. e., Rn = Rp = R

3He.
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Appendix B

Radiation Length of Materials for
Hall A Polarized 3He Target

In this appendix we summarize the thickness and the radiation length for material
traversed by the incident and the scattered electrons during the An

1 experiment. The
information listed here was used in the single arm Monte-Carlo (SAMC) simulation
for evaluating radiation effects caused by internal and external bremsstrahlung, and
energy loss due to ionizations.

Figure B-1 shows the material traversed by the incident and the scattered elec-
trons.

• Material traversed by the incident electrons includes:
(1) Exit window of beam pipe, 16 mils a Be;
(2) 5cm air b;
(3) Aluminum enclosure of the target scattering chamber, 15 mils Al;
(4) Target cell upstream window, 132 µm glass for “Gore” and 144 µm glass for
“Tilghman”;
(5) 3He gas inside the target chamber of the polarized cell under running con-
ditions, 1/2 of target cell length. For the An

1 experiment it is 12.5 cm.

• Material traversed by the scattered electrons includes:
(6) 3He gas inside the target chamber of the polarized cell under running condi-
tions, (r−xtg)/ sin θ, where r∼1cm is the target cell radius, xtg is the x position
of scattering point in hall coordinates, θ is scattering angle;
(7) Target cell wall, 1.3∼1.7 mm glass;
(8) 4He inside target enclosure, 45.7 cm;
(9) Aluminum enclosure of the target scattering chamber, 15 mils Al c;
(10) Air gap between target enclosure and HRS, 65.1 cm for left arm and 64.2
cm for right arm;
(11) Spectrometer entrance window, 14 mils Kapton;
(12) Spectrometer exit window, 4 mils Ti.
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Figure B-1: Radiation length of materials for Hall A Polarized 3He Target
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The radiation length for each material is listed in Table B.1.

a. 1 mil=2.54×10−3cm

b. density for gases are evaluated at 20◦ C, 1 atm

c. for E94010 it was 10 mil
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Table B.1: Radiation length X0 and density for material traversed by the electrons
during the An

1 experiment.

material X0 (g/cm2) (cm) density
air 36.66 30420 1.205 g/l c

4He 94.32 755164 0.1249 g/l
3He 67.42 -
Be 65.19 35.28 1.848 g/cm3

Al 24.01 8.9 2.70 g/cm3

Kapton 40.56 28.6 1.42 g/cm3

Ti 16.17 3.56 4.54 g/cm3

Glass 19.5 7.04 GE180, 2.77 g/cm3
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Appendix C

Cell Wall Thickness Data

The thickness of the target cell glass wall and its upstream window are important
inputs for external radiative correction, as described in Section 5.4.3. In this appendix
we list the cell wall and window thickness data for the cells used during the An

1

experiment.
The measurements of the cell windows were performed at the Univ. of Virginia

(UVa) [119] and the results are given in Table C.1 for cell “Gore”, “Tilghman” and
the 25 cm reference cell.

Table C.1: Cell window thickness data. For each cell, the two windows are labeled
either by numbers or by letters.

cell upstream (µm) downstream (µm)
Gore (B) 132 (A) 126

Tilghman (A) 144 (B) 152
Reference Cell (#17) 135 (#16) 138

For the cell walls, since the wall thickness varies along the beam direction, one
needs to take the average value within the spectrometer acceptance as the input for
the external radiative correction. The acceptance is determined by the spectrometer
central angles θ and the software ztg cuts used in the data analysis. This information
is given in Table C.2 for each kinematics of the An

1 experiment. The measurements
of the cell glass wall were done at both UVa [119] and at JLAB Target Lab [120].
For each cell, the measurements were performed at a few points on each side of the
target chamber. The locations of the measurements are labeled alphabetically and
the data for these measured points are given in Table C.3, C.4 and C.5, for cell
“Gore”, “Tilghman” and the 25 cm reference cell, respectively. The location of each
point on the target chamber is shown in Figure C-1, C-2 and C-3, for the three cells,
respectively. The paths of the scattered electrons at the upstream and downstream
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Table C.2: Data taking kinematics and the three cells used for the An
1 experiment.

kinematics θ ztg cut cell
elastic 20◦ ±6 cm Gore, Reference Cell
x = 0.61 20◦ ±6 cm Gore, Reference Cell
x = 0.48 35◦ ∼ ±10 cm Tilghman, Reference Cell
x = 0.33 35◦ ∼ ±10 cm Tilghman, Reference Cell

extremes of the acceptance are shown in the Figures. For the radiative corrections
at each kinematics, only the data points between the two extreme paths should be
averaged.

Table C.3: “Gore” wall thickness data from UVa and JLAB.

source A B C D E F G H I J
UVa 1.32 1.34 1.54 1.51 1.31 - - - - -
JLab 1.54 1.56 1.33 1.33 1.29 1.35 1.49 1.50 1.30 1.27

Table C.4: “Tilghman” wall thickness data from UVa and JLAB.

source A B C D E F G H I J
UVa 1.31 1.35 1.33 1.33 1.43 1.44 1.43 1.48 - -
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Figure C-1: “Gore” wall thickness data from UVa (cyan labels) and JLAB (purple
labels); The arrows show the upstream and downstream extremes of the acceptance
for x = 0.61 (blue) and elastic (green) kinematics.
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Figure C-2: “Tilghman” wall thickness data from UVa (cyan labels) and JLAB (pur-
ple labels); The arrows show the upstream and downstream extremes of the accep-
tance for x = 0.33 and 0.48 kinematics.
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Table C.5: 25 cm reference cell wall thickness data from UVa and JLAB.

source A B C D E F G H I J
UVa 1.41 1.39 1.40 1.38 1.41 1.38 1.46 1.45 1.45 1.48
JLab - 1.44 1.44 14.6 1.38 1.43 1.39 - 1.38 1.33
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Figure C-3: 25 cm reference cell wall thickness data from UVa (cyan labels) and
JLAB (purple labels); The arrows show the upstream and downstream extremes of
the acceptance for x = 0.33 and 0.48 (cyan), x = 0.61 (blue), and elastic (green)
kinematics.
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Appendix D

Structure Functions for Radiative
Corrections

For radiative corrections, one needs polarized and unpolarized structure functions
within a large kinematic range. In this section we give a list of world fits for the
structure functions which we used for the internal and the external radiative correc-
tions in the An

1 experiment.

D.1 Internal Radiative Correction

The structure functions’ kinematic coverage required by POLRAD 2.0 [145] to do
the internal radiative correction at each x point of the An

1 experiment is shown in
Figure D-1. For x = 0.33 and x = 0.48, the required coverage extends from the
deep inelastic to the resonance region (W 2 < 4 GeV2). For x = 0.61, only coverage
of the resonance region is required. However, the structure functions in the original
POLRAD 2.0 do not cover the resonance region and the ones in the deep inelastic
region are not up-to-date. Also the nuclear EMC effects are not included. We have
added to POLRAD 2.0 the latest world fits for the unpolarized and the polarized
structure functions in both the deep inelastic and the resonance region, corrections
for the nuclear EMC effects, and the latest world fit for the ratio R = σL/σT . We list
them as follows:

• Proton and deuteron unpolarized structure functions F p
2 (x,Q

2), FD
2 (x,Q2) in

the deep inelastic region:

– f2nmc95 [142]: This is a fit performed by the NMC collaboration. It is
valid for 0.006 < x < 0.9 and 0.5 < Q2 < 75 (GeV/c)2.

• Proton unpolarized structure function F p
2 (x,Q

2) in the resonance region:
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Figure D-1: Kinematic range needed by POLRAD 2.0 for internal radiative correc-
tions.
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– slac94 [156]: This is a fit including all the inclusive SLAC data in the range
1.1 < W 2 < 5 GeV2. It has three background terms and three resonances.
Each of these terms is multiplied by a polynomial in Q2;

– hallc02 [157]: This fit includes the latest JLAB Hall C data in the resonance
region of 1.15 < W 2 < 3.9 GeV2, 0.16 < Q2 < 6.0 (GeV/c)2.

• EMC effects of the deuteron and 3He [144]:
The nuclear EMC ratios for the deuteron and the 3He are defined as R2D(x) ≡
F

2D
2 (x)/[F p

2 (x) + F n
2 (x)] and R3He(x) ≡ F

3He
2 (x)/[2F p

2 (x) + F n
2 (x)]. These two

EMC ratios are used to obtain the neutron and the 3He structure function F2’s
from the fits of the proton and the deuteron F p

2 and FD
2 ;

• The ratio R = σL/σT :
We use the latest world fit “R1998” [143] for the ratio R. In this fit R is assumed
to be independent of the nuclear target, i. e., Rp = Rn = RA. “R1998” is valid
for 0.005 6 x 6 0.86 and 0.5 6 Q2 6 130 GeV2.

• Proton and neutron polarized structure functions gp1(x,Q
2), gn1 (x,Q

2) in the
deep inelastic region:

– The polarized structure function g1 is obtained by g1 = F1(
g1
F1
);

– The unpolarized structure function F1 is calculated from Eq. (1.18) using
the F2 and R fits listed above;

– The proton structure function ratio gp1/F
p
1 is obtained from a fit to all

world data using a functional form xα(a+ bx), see Appendix F;

– The neutron structure function ratio gn1 /F
n
1 is obtained from a fit to all

world data from polarized 3He target experiments using a second order
polynomial fit a+ bx+ cx2, see Appendix F.

D.2 External Radiative Correction

The single arm Monte-Carlo (SAMC) program does not include the helicity dependent
internal radiation effects. So we used SAMC only for the external corrections, and
the internal ones were performed by POLRAD 2.0, as described in Section 5.6.6,.

In order to do external radiative corrections, the internally radiated polarized
structure functions gir1 and gir2 are needed by SAMC. Their kinematic coverages re-
quired by SAMC are shown in Figure D-2. A grid of (x, y, Q2, W 2) covering these
ranges was created and we ran POLRAD 2.0 for each kinematics on this grid. The
gir1 and gir2 generated by POLRAD 2.0 on the grid were then read by SAMC which
simulates the external radiation effects and gives the full radiative corrections.
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Figure D-2: Kinematic range for external radiative corrections
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Appendix E

Polarized Structure Functions from
the E155 Fit

The latest world fits of the proton and the neutron structure function ratios gp1/F
p
1

and gn1 /F
n
1 were performed by the E155 collaboration at SLAC [20]. They are usually

referred to as the “E155 fit”. In this section we describe how to obtain the proton
and the neutron polarized structure functions g1, g2 and the asymmetries A1, A2 from
the E155 fit. The neutron structure functions and asymmetries calculated from the
E155 fit are used to compare with the new data form this experiment in Chapter 6.

The E155 fit gives

( gp1
F p
1

)E155 fit

= x0.700(0.817 + 1.014x− 1.489x2)(1− 0.04

Q2
) ; (E.1)

( gn1
F n
1

)E155 fit

= x−0.335(−0.013− 0.33x+ 0.761x2)(1 +
0.13

Q2
) , (E.2)

where Q2 is the four momentum transfer in (GeV/c)2. To calculate the asymme-
tries A1 and A2, we assume the higher twist effects are small and use g2 = gWW

2 ,
where gWW

2 is the twist-two term given by Eq. (1.37). In the following we denote
gp,WW
2 (g2n,WW ) the twist-two term of the proton gp2 (neutron gn2 ). The assumption
g2 = gWW

2 is reasonable since at least for the proton, the gp2 data from the E155x
experiment [168] at SLAC show good agreement with the twist-two term gp,WW

2 . We
then perform the following procedure at a constant Q2:

• For the proton structure function F p
2 , we use the latest world fit “F2NMC95” [142]

directly;

• For the neutron structure function F n
2 , we use proton and deuteron unpolarized

structure functions F p
2 and FD

2 from F2NMC95 fit [142], with the deuteron
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EMC effect included, as

F n
2 =

FD
2

RD
− F p

2 ,

where RD is the deuteron EMC ratio [144].

• We calculate F p
1 (F n

1 ) using Eq. (1.18) and the calculated F p
2 (F n

2 ). For the
ratio R = σL/σT we used R1998 fit [143]. In R1998 fit, the ratio R is assumed
to be independent of the nuclear target, i. e., Rn = Rp = RA;

• We multiply the ratio g1/F1 from the E155 fit by the F1 calculated above,
obtain g1;

• We calculate gWW
2 using Eq. (1.37) and the g1 constructed above;

• Taking the ratio of gWW
2 and the calculated F1, we obtain gWW

2 /F1;

• Using Eq. (1.41) and (1.42) and the F1, g1 and g
WW
2 calculated above, we obtain

A1 and A2. Since the assumption g2 = gWW
2 was used and g2 is the dominant

term of the transverse asymmetry A2 in Eq. (1.42), the A2 obtained from the
above procedure is often called AWW

2 .
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Appendix F

Fit for Proton and Neutron g1/F1

Fits for world data g1/F1 were used for the 3He nuclear correction and radiative
corrections. The fits were performed using GNUPLOT version 3.7 [182]. In this
section we first describe the fitting algorithm used by GNUPLOT. Then the results
of the proton and neutron g1/F1 fits will be presented.

The program GNUPLOT [182] implements the NonLinear Least-Squares (NLLS)
Marquardt-Levenberg algorithm to minimize the chi-square χ2, between the central
values of the fit f(xi) and the data fi:

χ2 =
N
∑

i=1

[ [fi − f(xi)]
2

σ2
i

]

. (F.1)

The reduced chi-square χ2
v is defined as the chi-square per degree of freedom, where

v is the number of degrees of freedom.

χ2
v =

χ2

v
; (F.2)

v = N − n− 1 , (F.3)

where N is the number of data points used and n is the number of parameters of
the fitting function. Each data point used in the fitting procedure is weighted by the
statistical error σi as

wi =
1

σ2
i

. (F.4)

The error of the fitted function can be calculated by standard deviation of each fitted
parameter σai and the error matrix ǫ = {ǫij}.

(δf)2 = (
∂f

∂ai
)2ǫii(σai)

2 + 2
∑

i 6=j

(
∂f

∂ai
)(
∂f

∂aj
)ǫij(σai)(σaj) ; (F.5)
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ǫ is also called covariance matrix because its elements are the variances and covariance
of the fitted parameters ai and aj, hence it must be a symmetric matrix with unit
diagonal elements, i.e., σij = σji and σii = 1.

Assuming that in reality the distribution of the fitted data set is described by a
parent function, then if the fitting function is a good approximation to the parent
function, the reduced chi-square should be approximately unity, χ2

v = 1. A large χ2
v

may be caused by poor data quality or a bad fitting function. A too small χ2
v may

indicate an error in the assignment of the uncertainties in the measured variables.
For most purposes, the reduced chi-square χ2

v is an adequate measure of the fitting
quality directly. For a good fit it should be close to 1, and less than 1.5.

The latest fits for the proton and neutron g1/F1 were done by the E155 collabo-
ration [20] using function xα(a + bx + cx2)(1 + β/Q2). A factor of xα in the fitting
function takes into account the feature of the gluon distribution at small x. However,
we found that The E155 fits are not ideal for the purpose of data analysis for the
An

1 experiment. Since the fits are used for nuclear and radiation correction for data
points up to x = 0.61, the behavior of the fits in the high x region is very important.
Figure F-1 and F-2 show the E155 fit for proton and neutron (black curves). The
proton fit starts to drop above x=0.6 and finally reach 0.4 at x=1.0. The neutron fit
is not in good agreement with data from this experiment.

To choose a reasonable good fit for gp1/F
p
1 and gn1 /F

n
1 , five different fitting functions

have been tested and a comparison has been made in the reduced chi-square, as well
as the error in the fitted function. The error in the fitted function is calculated using
Eq. (F.5), then is further fitted by a 3rd order polynomial δf = e0+e1x+e2x

2+e3x
3.

The results of χ2
v for each fitting function are listed in Table F.1. The first three

functions have a factor of xα for the gluon distribution at small x. However for
neutron, because there is a large amount of data in the small x region which puts a
strong constraint on the fitting result, it turns out that none of these three is in a
good agreement with high x data from this experiment, especially the x = 0.61 point.
For the neutron two polynomial fits have also been tested and are listed in Table F.1.
The reduced chi-square of all five fits for neutron are above 1.5, which is again caused
by the large amount of data in the low x region, while some of them do not have good
statistics.

The world data set for the proton gp1/F
p
1 includes those from HERMES [30],

E143 [23] and E155 [20]. The neutron data gn1 /F
n
1 are from E143 (2H target) [23],

E155 (2H target) [20] and this experiment E99-117 (3He target).

Fits of the form gp1/F
p
1 = xα(a+bx)(1+β/Q2) and gn1 /F

n
1 = (a+bx+cx2)(1+β/Q2)

have been chosen for the analysis of this experiment. The proton fit is shown in
Figure F-1. The fitted parameters, their errors and the error matrix are given in
Table F.2. Compared with the E155 fit, the new fit result is increasing in the large x
region, which is expected from the theoretical predictions given in Chapter 2.
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Table F.1: Reduced chi-square of five fitting function for gp1/F
p
1 and gn1 /F

n
1

f(x,Q2) gp1/F
p
1 gn1 /F

n
1

xα(a+ bx)(1 + β/Q2) 0.7843 1.3426
xα(a+ bx+ cx2)(1 + β/Q2) 0.7811 1.3776
xα(a+ bx+ cx2 + dx3)(1 + β/Q2) 0.7740 1.3520
(a+ bx+ cx2)(1 + β/Q2) 0.7844 1.3271
(a+ bx+ cx2 + dx3)(1 + β/Q2) 0.7942 1.3539

Table F.2: Result of the fit gp1/F
p
1 = xα(a+ bx)(1 + β/Q2).

α = 0.8126 ± 0.0488
a = 1.2307 ± 0.1224
b = -0.4128 ± 0.2162
β = 0.0303 ± 0.1235

ǫ =









1.0000 0.9080 −0.8510 0.7230
0.9080 1.0000 −0.9670 0.4010
−0.8510 −0.9670 1.0000 −0.3690
0.7230 0.4010 −0.3690 1.0000









The neutron fit is shown in Figure F-2 and the fitted parameters are given in
Table F.3. Compared with the E155 fit, the new fit agrees more with the three new
data points from this experiment.

Table F.3: Result of the fit gn1 /F
n
1 = (a+ bx+ cx2)(1 + β/Q2).

a = -0.0490 ± 0.0518
b = -0.1618 ± 0.2173
c = 0.6979 ± 0.3445
β = 0.7510 ± 2.1740

ǫ =









1.0000 −0.7370 0.1480 0.9600
−0.7370 1.0000 −0.7520 −0.5810
0.1480 −0.7520 1.0000 −0.0390
0.9600 −0.5810 −0.0390 1.0000
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Figure F-1: Results of the fit gp1/F
p
1 = xα(a+ bx)(1 + β/Q2). The three curves show

the new fit from this analysis (red), the error in the new fit (green), and the E155
fit [20] (black).
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Figure F-2: Results of the fit gn1 /F
n
1 = (a + bx + cx2)(1 + β/Q2). The three curves

show the new fit from this analysis (red), the error in the new fit (green), and the
E155 fit [20] (black).

221



222 APPENDIX F. FIT FOR PROTON AND NEUTRON G1/F1



Bibliography

[1] SLAC E-080, M.J. Alguard et al., Phys. Rev. Lett. 41, 70 (1978); SLAC E-130,
G. Baum et al., Phys. Rev. Lett. 51, 1135 (1983).

[2] EMC, J. Ashman et al., Phys. Lett. B206, 364 (1988); EMC, J. Ashman et al.,
Nucl. Phys. B328, 1 (1989).

[3] N. N. Bogoliubov, Ann. Inst. Henri Poincaré 8, 163 (1968); F. E. Close, Nucl.
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