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ABSTRACT

This dissertation presents results of experiment E94-010 performed at Jefferson

Laboratory (simply known as JLab) in Hall A.

The experiment aimed to measure the low Q2 evolution of the Gerasimov-Drell-

Hearn (GDH) integral from Q2 = 0.1 to 0.9 GeV2. The GDH sum rule at the

real photon point provides an important test of Quantum Chromodynamics (QCD).

The low Q2 evolution of the GDH integral contests various resonance models, Chiral

Perturbation Theory (χPT) and lattice QCD calculations, but more importantly, it

helps us understand the transition between partonic and hadronic degrees of freedom.

At high Q2, beyond 1 GeV2, the difference of the GDH integrals for the proton and

the neutron is related to the Bjorken sum rule, another fundamental test of QCD. In

addition, results of the measurements for the spin structure functions g1 and g2, cross

sections, and asymmetries are presented.

E94-010 was the first experiment of its kind at JLab. It used a high-pressure,

polarized 3He target with a gas pressure of 10 atm and average target polarization

of 35%. For the first time, the polarized electron source delivered an average beam

polarization of 70% with a beam current of 15 µA. The limit on the beam current

was only imposed by the target. The experiment required six different beam energies

from 0.86 to 5.1 GeV. This was the first time the accelerator ever reached 5.1 GeV.

Both High-Resolution Spectrometers of Hall A, used in singles mode, were positioned

at 15.5◦ each.

xvi



MEASUREMENT OF THE NEUTRON (3He) SPIN STRUCTURE FUNCTIONS

AT LOW Q2: A CONNECTION BETWEEN THE BJORKEN AND

GERASIMOV-DRELL-HEARN SUM RULE



Chapter 1

PHYSICS MOTIVATION

1.1 Introduction

Jefferson Laboratory experiment E94-010 [1], also known as the GDH experiment,

with co-spokepersons Z.-E. Meziani, G. Cates, and J.-P. Chen (for a complete list

of collaborators and institutions represented, see the addendum) was an experiment

with many firsts: It was the commissioning experiment for the newly formed polarized
3He collaboration at the Thomas Jefferson National Accelerator Facility (Jefferson

Laboratory), in Newport News, Virginia. It was the first experiment to run at this

laboratory requiring both polarized beam and a polarized target from September 25

to December 24, 1998. The purpose of this experiment was to explore the connection

between two powerful sum rules of hadronic physics, a Gerasimov-Drell-Hearn (GDH)

sum rule I(0) applicable to the real photon limit corresponding to a vanishing four-

momentum transfer squared (Q2 = 0) and a virtual photon Bjorken sum rule valid

at high Q2. It was the successor of the high energy work at SLAC, involving many

of the same people, which studied both neutron and proton scattering at high Q2

to test the fundamental Bjorken sum rule. The present experiment proposed to test

the Q2 evolution of a generalized GDH sum rule I(Q2) to see if the gap between

the low energy and high energy theorems could be bridged. In 3He, the two protons

couple to zero spin as a first approximation. Therefore, polarized 3He is a good

approximation to a free neutron target; see Fig. 1.1. As compared to the other choice

of using polarized deuterium as a source for polarized neutrons, 3He targets are easier

to make and require a weak holding field compared to current deuterated ammonia

2
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He
3

p p

n

n

n

Figure 1.1: The 3He nucleus is composed of two protons with opposite spins most of

the time and one neutron whose spin dictates the overall spin of the nucleus. Thus, to

a fair approximation, a polarized 3He nucleus behaves much like a polarized neutron.

targets, which must be brute force polarized by using superconducting magfnets at

high fields which can have the effect of distorting incident and outgoing electron

momenta. Furthermore, the targets can be made in relatively pure form, avoiding

the severe dilution effects of ND3 ammonia cells. However, the nuclear corrections

are more pronounced in 3He and require sophisticated corrections to the data.

Three essential pieces of apparatus were needed to carry out this effort: first the

high intensity polarized electron source of the Continuous Electron Beam Accelerator

Facility (CEBAF) at Jefferson Laboratory was used to provide electrons of the desired

energies (1-5 GeV) with the needed high currents. Secondly, a polarized target of

sufficient density and polarization had to be developed by this collaboration. Finally,

the Hall A High Resolution Spectrometers were employed to detect the data. In order

to acquire data over an extended region of Q2 and energy transfer ν = E − E ′, the

run plan called for measurements of data at multiple beam energies and spectrometer

settings, as shown in the kinematics diagram of Fig. 1.2. Data were acquired at six



CHAPTER 1. PHYSICS MOTIVATION 4

incident beam energies of 0.86, 1.7, 2.6, 3.4, 4.2, and 5.1 GeV, and interpolations were

made to extract results at six constant Q2 values ranging from 0.1 to 0.9 GeV2. The

average target polarization was 35%, while the average beam polarization was 70%.

0.50 1.00 1.50 2.00 2.50

W (GeV )

0.01

0.10

1.00

Q
2
 (

G
e

V
2
/c

2
)

Kinematic coverage of JLab E94-010 Experiment

E = 0.862 G eV

E =1.720 G eV

E = 2.591 G eV

E = 3.384 G eV

E = 4.255 G eV E = 5.070 G eV
ii

i

i

i

i

��

Figure 1.2: Kinematic coverage of Jefferson Laboratory experiment E94-010. Plotted

in the figure are the Q2, W range of our experiment with each bin indicating different

setting of E, E ′. The different colored bands represent the six different beam energies.

The nominal scattering angle was fixed throughout the experiment at 15.5◦. Each

block represents one E, E ′ spectrometer setting.

Because any discussion of sum rules is deeply theoretical in nature and requires

a basic understanding of quantum electrodynamics, the remainder of this chapter

will be spent on the development of the mathematical formalism and a review of

the essential physical concepts. The second chapter will then present a detailed

description of the physical apparatus. The third chapter will present the analysis of



CHAPTER 1. PHYSICS MOTIVATION 5

the data, which forms the core subject matter of this Ph.D. dissertation, while the

final chapter presents a discussion of the experimental results and their significance.

The success of this experiment has opened the door to a large, active experimental

program of polarized 3He studies at Jefferson Laboratory. The present and future

directions of this program will be briefly reviewed as part of the concluding remarks.

1.2 Kinematics

u(k, s)

ū(k′, s′)

θ

u(p, S)

ū(X)

−ieγµ

−igµν/q2

−ieΓν

Figure 1.3: Kinematics for inelastic electron-nucleon scattering in the one-photon

exchange approximation. Here the four-momentum transfer is carried by the virtual

photon and is absorbed on a nucleon of mass M leading to an excited system of

invariant mass W which is in the continuum.

Fig. 1.3 shows a typical Feynman diagram for inclusive inelastic electron-nucleon

scattering. The incident electron has four-momentum k = (E,k) and spin four-vector

s. The scattered electron has four-momentum k′ = (E ′,k′) and spin four-vector s′.
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The scattering angle θ is with respect to the incident momentum direction. The

exchanged virtual photon has four-momentum q = (ν,q). The energy transfer or

energy loss is ν. The preferred Lorentz frame is the lab frame where the target

nucleon is at rest before the collision and has four-momentum p = (M,0) and spin

four-vector S satisfying S2 = −1 and S · p = 0. M is the target nucleon rest mass.

The recoiling hadronic system X has four-momentum W known as the invariant mass.

Energy-momentum conservation at the leptonic vertex requires q = k − k ′, that is,

q2 = (k − k′)2 = k2 + k′2 − 2k · k′ = m2 +m2 − 2EE ′ + 2|k||k′| cos θ, (1.1)

where m = 0.511 MeV is the mass of the electron. The lowest beam energy for E94-

010 was 862 MeV which is much larger than the rest mass of the electron. Therefore

the mass terms can be safely dropped from Eq. (1.1). Einstein’s energy-momentum

relation E2 = |k|2 + m2 may also forgo the mass term at high energies and becomes

E = |k|. The net result is a simpler expression for Eq. (1.1):

q2 = −2EE ′ + 2EE ′ cos θ = −2EE ′(1− cos θ) = −4EE ′ sin2 θ

2
, (1.2)

It is customary to introduce a new Lorentz invariant Q2 to do away with the minus

sign in Eq. (1.2):

Q2 = −q2 = 4EE ′ sin2 θ

2
. (1.3)

Energy-momentum conservation at the hadronic vertex gives:

W 2 = (p+ q)2 = p2 + q2 + 2p · q = M 2 −Q2 + 2Mν. (1.4)

1.3 Cross Section

The differential cross section for the scattering process A+B → 1 + 2 + · · ·+ n is [2]

dσ =
1

F
|M(A+B → {pi})|2dΠn (1.5)

where F = |vA − vB|2EA · 2EB = 4 [(pA · pB)−m2
Am

2
B]

1
2 is the incident flux for a

general collinear collision between A and B,

dΠn = (2π)4δ4(pA + pB −
n∑

i=1

pi)
n∏

i=1

d3pi
(2π)32Ei

(1.6)
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is the relativistically invariant n-body phase space or Lorentz invariant phase space,

and M(pA + pB → {pi}) is the invariant amplitude. The amplitude M isolates the

dynamics of the particular scattering process under study from the kinematics in the

cross section. vA and vB are the velocities of the initial states in the laboratory frame.

1.4 Leptonic and Hadronic Tensors

The Feynman rules of quantum electrodynamics (QED) for Dirac particles summa-

rized in [2] give, for the differential cross section of the inelastic electron-nucleon

scattering process of Fig. 1.3

dσ =
1

(2E)(2M)

∑

spins

∑

X

∣∣∣∣ū(k′, s′)(−ieγµ)u(k, s)

(−igµν
q2

)
ū(X)(−ieΓν)u(p, S)

∣∣∣∣
2

× d3k′

(2π)32E ′

N∏

i=1

d3p′i
(2π)32E ′i

(2π)4δ4(p+ q −
N∑

i=1

p′i), (1.7)

where the sum
∑

X includes all possible many-particle states X. u and ū are Dirac

spinors and the structure of the hadron vertex is encapsulated in Γν . The phase space

factor for the scattered electron is

d3k′

(2π)32E ′
=
E ′2dE ′dΩ

(2π)32E ′
=
E ′dE ′dΩ

2(2π)3
. (1.8)

Futhermore, the invariant amplitude can be separated into the leptonic tensor Lµν

and the hadronic tensor W µν [3] where

Lµν =
∑

s,s′

|ū(k′, s′)γµu(k, s)|2 , (1.9)

W µν =
1

4πM

∑

spins

∑

N

|ū(X)Γµu(p, S)|2
∫ N∏

i=1

d3p′i
(2π)32E ′i

×(2π)4δ4(p+ q −
N∑

i=1

p′i). (1.10)

Finally, the differential cross section can be written as

d2σ

dΩdE ′
=
α2

Q4

E ′

E
LµνWµν , (1.11)

where the definition of the fine-structure constant α = e2/4π was used.
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1.4.1 Leptonic Tensor Lµν

The leptonic tensor can be completely calculated in QED since the electron is a Dirac

point particle. In polarized experiments, the incident electron is ususally polarized

along the beam direction (Transverse polarizatin states are smaller by a factor of 1/γ

relative to the longitudinal part). Let ↓ denote the helicity of a left-handed electron

and ↑ denote the helicity of a right-handed electron. The corresponding projection

operators PL = (1− γ5)/2 and PR = (1 + γ5)/2 must be applied to the spinor u(k, s)

to obtain the respective helicity states. The leptonic tensor is then summed over all

final spin states since the detectors are typically insensitive to polarization. Eq. (1.9),

with the aid of trace technology, is transformed into [2]

Lµν(↓) =
∑

s,s′

∣∣∣∣ū(k′, s′)γµ
(

1− γ5

2

)
u(k, s)

∣∣∣∣
2

, (1.12)

= 2(kµk′ν + k′µkν − gµνk · k′ + iεµναβkαk
′
β), (1.13)

where all mass terms were dropped in the high energy limit. εµναβ is the totally

antisymmetric tensor. The leptonic tensor can be separated into symmetric and

antisymmetric parts under µ, ν interchange.

LµνS (↓) = 2(kµk′ν + k′µkν − gµνk · k′), (1.14)

LµνA (↓) = 2iεµναβkαk
′
β. (1.15)

Similarly, for a right-handed incident electron,

LµνS (↑) = 2(kµk′ν + k′µkν − gµνk · k′), (1.16)

LµνA (↑) = −2iεµναβkαk
′
β. (1.17)

1.4.2 Hadronic Tensor W µν

The form of the hadronic tensor is constrained by gauge invariance and symmetry

principles. It can be formulated as [4]

Wµν = W1(ν,Q2)

(
−gµν +

qµqν
q2

)

+
W2(ν,Q2)

M2

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)

+iεµναβq
αSβMG1(ν,Q2)

+iεµναβq
α(p · qSβ − q · Spβ)

G2(ν,Q2)

M
, (1.18)
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where W1 and W2 are the spin-averaged structure functions. G1 and G2 are the spin-

dependent structure functions. All structure functions depend only on the variables

ν and Q2. G1 and G2 are the only structure functions multiplying terms with the

nucleon spin S, hence the nomenclature. In analogy to the leptonic case, the hadronic

tensor also lends itself to partition into symmetric and antisymmetric sections,

W S
µν = W1(ν,Q2)

(
−gµν +

qµqν
q2

)

+
W2(ν,Q2)

M2

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
,

WA
µν = iεµναβq

αSβMG1(ν,Q2)

+iεµναβq
α(p · qSβ − q · Spβ)

G2(ν,Q2)

M
. (1.19)

Note that the symmetric part involves the unpolarized structure functions while the

antisymmetric part involves the polarized structure functions only.

1.4.3 Contraction of Lµν and Wµν

The cross section is proportional to the contraction of the leptonic and hadronic

tensors (1.11). The contraction of a symmetric and antisymmetric tensor is zero,

that is, LµνS W
A
µν = LµνA W

S
µν = 0, resulting in,

LµνWµν = LµνS W
S
µν + LµνA W

A
µν . (1.20)

First, contraction of the symmetric (spin-averaged) tensors is considered.

LµνS W
S
µν = 2(kµk′ν + k′µkν − gµνk · k′)

×
[
2W1

(
−gµν +

qµqν
q2

)

+
W2

M2

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)]
(1.21)

= 2W1

[
k · k′ + 2(k · q)(k′ · q)

q2

]

+
2W2

M2

[
2

(
k · p− (p · q)(k · q)

q2

)(
k′ · p− (p · q)(k′ · q)

q2

)

− (k · k′)
(
p2 − (p · q)2

q2

)]
. (1.22)
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In the high energy limit and in the target nucleon rest frame, k2 = k′2 = 0, and

|k| = E and |k′| = E ′. Therefore,

Q2 = −q2 = 4EE ′ sin2 θ

2
, (1.23)

k · k′ =
1

2
Q2, (1.24)

k · q = −1

2
Q2, (1.25)

k′ · q =
1

2
Q2, (1.26)

k · p = ME, (1.27)

k′ · p = ME ′, (1.28)

p · q = Mν, (1.29)

p2 = M2. (1.30)

The contraction becomes

LµνS W
S
µν = 8W1EE

′ sin2 θ

2
+ 4W2EE

′ cos2 θ

2
. (1.31)

The spin-averaged cross section is then

d2σ

dΩdE ′
=

4α2

Q4
E ′2
[
2W1(ν,Q2) sin2 θ

2
+W2(ν,Q2) cos2 θ

2

]
. (1.32)

Second, contraction of the antisymmetric (spin-dependent) tensors yields

LµνA W
A
µν = ±iεµναβkαk′β

[
iεµνρσq

ρSσMG1 + iεµνρσq
ρ(p · qSσ − q · Spσ)

G2

M

]

= ±4[(k · q)(k′ · S)− (k · S)(k′ · q)]MG1

±4[(k · q)(k′ · S)(p · q)− (k · S)(k′ · q)(p · q)

−(k · q)(k′ · p)(q · S) + (k · p)(k′ · q)(q · S)]
G2

M
. (1.33)

where + (-) stands for a left-handed (right-handed) incident electron. In a typical

double-polarization experiment, the spin of the incident electron is flipped pseudo-

randomly along the beam line. The spin of the target nucleon is held stationary

in a direction parallel or perpendicular to the beam line. Thus the four polarized

cross sections of interest are σ↓↑, σ↑↑, σ↓→, and σ↑→ where the first arrow superscript

denotes electron polarization and the second arrow superscript denotes target nucleon

polarization. For the case of a longitudinally polarized target and left-handed
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S

k S

k′

θ

Figure 1.4: Incident (k) and scattered (k′) electron momentum with nucleon spin (S)

longitudinal with respect to beam line in nucleon rest frame.

S

k

S k′

θ

Figure 1.5: Incident (k) and scattered (k′) electron momentum with nucleon spin (S)

transverse with respect to beam line in nucleon rest frame.

electron, the nucleon spin can be chosen to be S = (0, 0, 0, 1) as shown in Fig. 1.4. It

follows that

k · S = −E, (1.34)

k′ · S = −E ′ cos θ, (1.35)

q · S = −E + E ′ cos θ. (1.36)

The contraction of the spin-dependent leptonic and hadronic tensors becomes

LµνA (↓)WA
µν(↑) = 2Q2(E + E ′ cos θ)MG1 − 2Q4G2. (1.37)

The right-handed electron counterpart differs only by a minus sign,

LµνA (↑)WA
µν(↑) = −2Q2(E + E ′ cos θ)MG1 + 2Q4G2. (1.38)

For the case of a transversely polarized target and left-handed electron, the nucleon

spin can be chosen to be either S = (0, 1, 0, 0) or S = (0, 0, 1, 0) as shown in Fig. 1.5.
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This time, it follows that

k · S = 0, (1.39)

k′ · S = −E ′ sin θ, (1.40)

q · S = E ′ sin θ. (1.41)

The contraction of the spin-dependent leptonic and hadronic tensors now becomes

LµνA (↓)WA
µν(→) = 2Q2E ′ sin θ(MG1 + 2EG2). (1.42)

Again, the right-handed counterpart differs only by a minus sign,

LµνA (↑)WA
µν(→) = −2Q2E ′ sin θ(MG1 + 2EG2). (1.43)

For the purpose of forming asymmetries, the sum and differences of polarized cross

sections are of interest.

∆σ‖ =
d2σ

dΩdE ′
(↓↑ − ↑↑) =

4α2

Q2

E ′

E
[(E + E ′ cos θ)MG1 −Q2G2], (1.44)

Σσ‖ =
d2σ

dΩdE ′
(↓↑ + ↑↑) =

8α2

Q4
E ′2
[
2W1 sin2 θ

2
+W2 cos2 θ

2

]
, (1.45)

∆σ⊥ =
d2σ

dΩdE ′
(↓→ − ↑→) =

4α2

Q2

E ′2

E
sin θ[MG1 + 2EG2], (1.46)

Σσ⊥ =
d2σ

dΩdE ′
(↓→ + ↑→) =

8α2

Q4
E ′2
[
2W1 sin2 θ

2
+W2 cos2 θ

2

]
. (1.47)

Note Σσ‖ = Σσ⊥ because they do not dependent on beam and target polarizations

(involve only unpolarized structure functions W1 and W2).

1.5 Virtual Photon-Nucleon Total Cross Section

Consider real photon-nucleon scattering as shown in Fig. 1.6. For an incident real

photon (q2 = 0) with energy K, transverse polarization εµλ(q), and helicity λ = ±1,

the cross section defined in section 1.3 and the Feynman rules of QED [2] yield

dσ =
1

(2K)(2M)
|εµλ(q)ū(X)(−ieΓµ)u(p, S)|2

∫ N∏

i=1

d3p′i
(2π)32E ′i

×(2π)4δ4(p+ q −
N∑

i=1

p′i). (1.48)
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εµλ(q)

u(p, S)

ū(X)

−ieΓµ(q, p, S)

Figure 1.6: Real photon-nucleon scattering. X can be any excited final state.

Using the definition of the hadronic tensor in Eq. (1.10), the total cross section is

written as

σ(γN → X) =
4π2α

K
εµ∗Wµνε

ν . (1.49)

The invariant mass W of the final state is:

W 2 = (p+ q)2 = M2 + 2MK. (1.50)

Real photons possess two transverse polarization states. A common convention is to

use [2]:

ε+ =
1√
2

(0, 1, i, 0), (1.51)

ε− =
1√
2

(0, 1,−i, 0). (1.52)

Virtual photons have an additional polarization state chosen as:

ε0 =
1√
Q2

(
√
ν2 +Q2, 0, 0, ν). (1.53)

Generalizing the total cross section to virtual photon-nucleon scattering (q2 6= 0)

raises one difficulty: the flux factor 4MK is ill-defined or arbitrary. One particular

convention is to preserve Eq. (1.50) in defining the virtual photon flux:

K =
W 2 −M2

2M
= ν − Q2

2M
. (1.54)
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This is known as the Hand convention [5]. Another convention commonly used is the

Gilman convention [6]:

K = |q| =
√
ν2 +Q2. (1.55)

The leptonic tensor is well-known and completely computable in QED. The interesting

hadronic physics happens at the hadronic vertex. By way of the optical theorem,

the virtual photon-nucleon (photoabsorption) total cross section may be related to

the imaginary (absorptive) part of the forward virtual Compton amplitude,Mab→cd,

where a, b, c and d represent helicities of the incident virtual photon and nucleon

and scattered virtual photon and nucleon respectively. The forward virtual Compton

amplitudes are related to the hadronic tensor by helicity decomposition:

Mab→cd = εµ∗(λc)Wµνε
ν(λa), (1.56)

where εµ(λ) is the photon polarization four-vector of helicity λ. The virtual photon

of spin 1 has three helicity states: two transverse, +1 and -1, and one longitudinal, 0.

The nucleon of spin 1/2 has two helicity states: +1/2 and -1/2. Angular momentum

conservation restricts the number of possible amplitudes to ten. Additional symme-

try laws futher reduce the number of independent amplitudes to four, the number

of independent structure functions. There are three helicity-preserving amplitudes

(M1 1
2
→1 1

2
,M1− 1

2
→1− 1

2
andM0 1

2
→0 1

2
) and one helicity-flip amplitude (M0 1

2
→1− 1

2
) with

respect to nucleon polarization. The relationships between the photoabsorption cross

sections and the structure functions result from combining (1.49) and (1.56):

σ1/2 =
4π2α

K
M1− 1

2
→1− 1

2
=

4π2α

K

[
W1 +MνG1 −Q2G2

]
, (1.57)

σ3/2 =
4π2α

K
M1 1

2
→1 1

2
=

4π2α

K

[
W1 −MνG1 +Q2G2

]
, (1.58)

σL =
4π2α

K
M0 1

2
→0 1

2
=

4π2α

K

[
W2

(
1 +

ν2

Q2

)
−W1

]
, (1.59)

σLT =
4π2α

K
M0 1

2
→1− 1

2
=

4π2α

K

√
Q2 [MG1 + νG2] . (1.60)

The numerical subscripts, 1/2 and 3/2, on the transverse photoabsorption cross sec-

tions designate the total angular momentum projection along the q axis. The lon-

gitudinal photoabsorption cross section is σL and the photoabsorption cross section

resulting from transverse and longitudinal interference is σLT . The total transverse
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photoabsorption cross section is defined by:

σT =
1

2
(σ1/2 + σ3/2) =

4π2α

K
W1. (1.61)

The transverse-transverse interference photoabsorption cross section is defined by:

σTT =
1

2
(σ1/2 − σ3/2) =

4π2α

K
(MνG1 −Q2G2). (1.62)

1.6 Virtual Photon-Nucleon Asymmetries

Having introduced virtual photoabsorption cross sections, these may be used to define

virtual photoabsorption asymmetries A1 and A2:

A1 =
σ1/2 − σ3/2

σ1/2 + σ3/2

=
σTT
σT

=
1

W1

(MνG1 −Q2G2), (1.63)

A2 =
2σLT

σ1/2 + σ3/2

=
σLT
σT

=

√
Q2

W1

(MG1 + νG2). (1.64)

1.7 Experimental Cross Sections and Asymmetries

The longitudinal, A‖, and transverse, A⊥ asymmetries are defined as:

A‖ =
σ↓↑ − σ↑↑
σ↓↑ + σ↑↑

=
∆σ‖
Σσ‖

, (1.65)

A⊥ =
σ↓→ − σ↑→
σ↓→ + σ↑→

=
∆σ⊥
Σσ⊥

. (1.66)

The measured asymmetries and cross sections can be related to the corresponding

virtual photoabsorption quantities with:

A‖ = D(A1 + ηA2), (1.67)

A⊥ = d(A2 − ζA1), (1.68)

and

d2σ

dΩdE ′
= Γ(σT + εσL), (1.69)

d2σ

dΩdE ′
(↓↑ − ↑↑) = 2ΓD(1 + εR)(σTT + ησLT ), (1.70)

d2σ

dΩdE ′
(↓→ − ↑→) = 2Γd(1 + εR)(σLT − ζσTT ), (1.71)
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where

Γ =
α

4π2

K

Q2

E ′

E

2

1− ε , (1.72)

1

ε
= 1 + 2

(
1 +

1

γ2

)
tan2 θ

2
, (1.73)

γ =
√
Q2/ν, (1.74)

D(1 + εR) = 1− E ′ε/E, (1.75)

d(1 + εR) =
√

2ε/(1 + ε), (1.76)

η = ε
√
Q2/(E − E ′ε), (1.77)

ζ = η(1 + ε)/2ε, (1.78)

R = σL/σT . (1.79)

The polarization of the virtual photon in the laboratory frame is ε and the photon

depolarization factor is D. A typical doubly-polarized experiment would measure

σ↓↑, σ↑↑, σ↓→ and σ↑→ from which σTT and σLT can be extracted using the set of

equations above. Note σTT is needed for the GDH sum rule.

1.8 The Bjorken Sum Rule

A sum rule is a comparison between an integral over all excitation energies invoking

closure, which is then compared to a specific experimental result. For example, the

Bjorken sum rule is a sum of inelastic electron scattering from the nucleon which,

in the infinite Q2 limit, can be related to the β decay of the nucleon. In the limit

Q2 →∞ and ν →∞, yet finite Bjorken scaling variable x = Q2/2Mν, the structure

functions scale as:

MW1(ν,Q2) → F1(x), (1.80)

νW2(ν,Q2) → F2(x), (1.81)

M2νG1(ν,Q2) → g1(x), (1.82)

Mν2G2(ν,Q2) → g2(x). (1.83)

The Bjorken sum rule, radiatively corrected to finite Q2, is fundamental to our under-

standing of Quantum Chromodynamics (QCD). The importance of QCD sum rules is

that they are model-independent. The Bjorken sum rule relates the first moments of
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Experiment Q2 Γp1 − Γn1 Bjorken sum rule

CERN SMC [11] 5 GeV2 0.181+0.012+0.018+0.015
−0.011−0.018−0.006 0.181± 0.003

SLAC E154 [12] 5 GeV2 0.171± 0.005± 0.010± 0.006 0.181± 0.003

Table 1.1: Tests of the Bjorken sum rule [10]. The errors for Γp1 − Γn1 are statistical,

systematic, and theoretical. The Bjorken sum rule is calculated to order α2
s [13].

the polarized spin structure functions with the ratio of axial to axial-vector coupling

constants of neutron β-decay [7]:

Γp1 − Γn1 =

∫ 1

0

(gp1(x)− gn1 (x)) dx =
1

6

∣∣∣∣
gA
gV

∣∣∣∣ , (1.84)

where ΓN1 =
∫ 1

0
gN1 (x)dx is the first moment of the structure function gN1 for the

nucleon N , gA and gV are the axial and vector neutron β-decay coupling constants,

respectively. Their ratio is gA/gV = −1.2601± 0.0025 [8]. The Bjorken sum rule was

initially derived in the framework of U(6)⊗U(6) current algebra of Gell-Mann, Feyn-

man, and Zweig [9], then was later rederived in QCD under the Operator Product

Expansion (OPE) formalism. Historically, its is rather amusing to note that Bjorken

referred to his sum rule as a “worthless equation” due to the absence of polarized ex-

periments at the time. In an attempt to “salvage” the sum rule, he chose to emphasize

an inequality involving unpolarized cross sections instead [7]. Nowadays, with the aid

of rapid technological advances in both polarized sources and targets, the Bjorken sum

rule has been verified to better than 10% [10]. Experiments are always performed at

finite Q2. The OPE method can be used to extend the validity of the Bjorken sum

rule to finite Q2 [4]. In fact, QCD radiative corrections to the Bjorken sum rule have

been calculated to third order in the strong coupling constant [13]. In this respect,

the Bjorken sum rule provides validation for the QCD radiative corrections:

Γp−n1 (Q2) =

∫ 1

0

(
gp1(x,Q2)− gn1 (x,Q2)

)
dx

=
1

6

∣∣∣∣
gA
gV

∣∣∣∣
[
1−

(αs
π

)
− 3.5833

(αs
π

)2

− 20.2153
(αs
π

)3
]

(1.85)

where αs(Q
2) = 12π/(33 − 2nf ) ln(Q2/Λ2) is the strong coupling constant. nf = 3

is the number of flavors: u, d, and s. Λ is a free parameter fixed by experiment.

It determines the transition from quark and gluonic degrees of freedom to hadronic
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and mesonic degrees of freedom. Λ is believed to lie in the range 0.1 to 0.5 GeV [3].

Estimates of QCD corrections to order α4
s have been made in Ref. [14].

Conversely, assuming the validity of the Bjorken sum rule, a value for the strong

coupling constant can be extracted. It is standard convention to quote this value at

the mass of the Z boson MZ = 91.19 GeV [15],

αs(MZ) = 0.118+0.010
−0.024. (1.86)

1.9 The Gerasimov-Drell-Hearn Sum Rule

1.9.1 Introduction

In the limit Q2 → 0 (real photon scattering), the Gerasimov-Drell-Hearn sum rule [16]

relates the helicity structure of the sum over all nucleon photo-excitations with its

anomalous magnetic moment. It is based on general physics principles: Lorentz and

gauge invariance, crossing symmetry, causality, and unitarity.

IGDH =

∫ ∞

νthr

dν

ν
(σ1/2 − σ3/2) = −2π2α

M2
κ2 =

{
−204.5 µb for the proton

−232.8 µb for the neutron
, (1.87)

where νthr = m2
π/2M + mπ ≈ 150 MeV is the threshold energy for pion photopro-

duction. σ1/2 and σ3/2 are the photoabsorption cross sections of total helicity 1/2

and 3/2, respectively. α = e2/4π ≈ 1/137 is the fine structure constant, M is the

nucleon mass (Mp = 938.3 MeV/c2 and Mn = 939.6 MeV/c2), and κ is the anomalous

magnetic moment of the nucleon defined by µp/µN = 1 + κp = 2.793 for the proton

and µn/µN = κn = −1.913 for the neutron. µp and µn are the proton and neutron

magnetic moment, respectively. µN = eh̄/2Mpc is the nuclear magneton.

1.9.2 Derivation

The starting point for deriving the GDH sum rule is the forward Compton ampli-

tude [17,18] depicted in Fig. 1.7. The form of the amplitude used is that of Drell and

Hearn [16].

T (ν) = χ†[f1(ν)ε̂∗ · ε̂+ iνf2(ν)σ · (ε̂∗× ε̂)]χ, (1.88)
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γ(q, ε) γ(q, ε)

N(p, s) N(p, s)

Figure 1.7: Feynman diagram for forward Compton scattering. The photon γ has

four-momentum q and spin ε, and the nucleon N has four-momentum p and spin s.

where ν is the photon energy, χ is the spin of the nucleon, ε̂ is photon polarization

vector, and σ is the Pauli spin matrices vector. Crossing symmetry requires that

f1(ν) and f2(ν) are even.

Consider a photon of helicity λ = +1 and polarization four-vector

ε+ = (0, 1, i, 0)/
√

2. (1.89)

It follows that:

ε̂∗ · ε̂ = 1, (1.90)

ε̂∗× ε̂ = iê3, (1.91)

For a nucleon with spin axis quantized along the photon polarization vector, χ+ =
(

1
0

)

for spin +1
2

and χ− =
(

0
1

)
for spin −1

2
. Therefore the amplitudes T3/2 and T1/2 where

the photon and nucleon spins are parallel and antiparallel, respectively, are:

T3/2 = f1 − νf2, (1.92)

T1/2 = f1 + νf2. (1.93)

The Low Energy Theorem (LET) of Low, Gell-Mann, and Goldberger [19] asserts

that the forward Compton amplitude can be expanded in powers of the frequency

and the expansion coefficients are expressed in terms of macroscopic properties of the

nucleon [20]:

f1(ν) = − α

M
+ (αE + βM)ν2 +O(ν4), (1.94)

f2(ν) = − ακ2

2M2
+ γν2 +O(ν4), (1.95)



CHAPTER 1. PHYSICS MOTIVATION 20

σ ∼
∑

X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ

N

X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= Im




γ γ

N N




Figure 1.8: Feynman diagram for the optical theorem. The total cross section is

related to the absorptive (imaginary) part of the forward amplitude.

where αE and βM are the electric and magnetic polarizabilities of the nucleon, re-

spectively. κ is the anomalous magnetic moment of the nucleon and γ is the vector

polarizability of the nucleon.

The optical theorem [2] connects the forward Compton amplitude to the total

photoabsorption cross section:

Im T1/2(3/2) =
ν

4π
σ1/2(3/2). (1.96)

This is illustrated in Fig. 1.8. Thus,

Im f1 =
ν

8π
(σ1/2 + σ3/2), (1.97)

Im f2 =
1

8π
(σ1/2 − σ3/2). (1.98)

If the additional assumption is made that |f2(ν)| → 0 as ν → ∞ (no subtraction

hypothesis) so that the half-circles at ∞ do not contribute to the Cauchy integral,

then an unsubtracted dispersion relation emerges for f2(ν):

Re f2(ν) =
2

π

∫ ∞

νthr

ν ′dν ′

ν ′2 − ν2
Im f2(ν ′). (1.99)

Combining Eqs. (1.95), (1.98) and (1.99), and taking the limit ν → 0 results in:

− ακ2

2M2
= Re f2(0) =

1

4π2

∫ ∞

νthr

dν

ν
(σ1/2 − σ3/2). (1.100)

In a similar fashion, other sum rules may be derived [21]. Baldin’s sum rule [22] is:

αE + βM =
1

2π2

∫ ∞

νthr

dν

ν2
σtotal, (1.101)
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where σtotal = (σ1/2 + σ3/2)/2. The forward spin polarizability [18] is:

γ =
1

4π2

∫ ∞

νthr

dν

ν3
(σ1/2 − σ3/2). (1.102)

1.9.3 Experimental Verification

Up until very recently, the only experimental verification of the GDH sum rule avail-

able was from phase shift analysis of pion photoproduction data. Recently real photon

experiments have been completed at both Mainz and Bonn, but the data is not yet

analyzed or published. Karliner [23] used isospin decomposition of the anomalous

magnetic moments of the proton and neutron:

κp =
1

2
κS +

1

2
κV , (1.103)

κn =
1

2
κS −

1

2
κV , (1.104)

into isoscalar (κS) and isovector (κV ) components. Three GDH sum rules immediately

follow. They are the isovector-isovector (VV), isoscalar-isoscalar (SS), and isovector-

isoscalar (VS) interference or mixed sum rules. They may be written down as:

IV V =

∫ ∞

νthr

dν

ν

(
σV V1/2 − σV V3/2

)
=

2π2α

M2

(
1

2
κV

)2

= −218.5 µb, (1.105)

ISS =

∫ ∞

νthr

dν

ν

(
σSS1/2 − σSS3/2

)
=

2π2α

M2

(
1

2
κS

)2

= −0.3 µb, (1.106)

IV S =

∫ ∞

νthr

dν

ν

(
σV S1/2 − σV S3/2

)
=

2π2α

M2

(
1

2
κV κS

)
= +14.7 µb. (1.107)

The proton and neutron GDH sum rules can be recovered from the individual isospin

components:

Ip = IV V + ISS + IV S, (1.108)

In = IV V + ISS − IV S. (1.109)

Single-pion photoproduction amplitudes can be decomposed into amplitudes of defi-

nite isospin [23–25]:

M(γ + p→ π+ + n) =
1√
3

[
M (3) −

√
2
(
M (1) −M (0)

)]
, (1.110)

M(γ + p→ π0 + p) =
1√
3

[√
2M (3) +

(
M (1) −M (0)

)]
, (1.111)

M(γ + n→ π− + p) =
1√
3

[
M (3) −

√
2
(
M (1) +M (0)

)]
, (1.112)
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γ(k) π(q)

N(p1) N(p2)

Figure 1.9: Feynman diagram for pion photoproduction γ +N → π +N .

where M (3) is the amplitude for isospin 3/2, M (1) for isospin 1/2, and M (0) is the

isoscalar amplitude. The cross sections for different isospin states are related to the

isospin amplitudes:

σV V ∝ |M (3)|2 + |M (1)|2, (1.113)

σSS ∝ |M (0)|2, (1.114)

σV S ∝ −[(M (0))∗M (1) +M (0)(M (1))∗]. (1.115)

The cross sections of definite helicity can be separated into terms with amplitudes

of definite parity and angular momentum [23]:

σ1/2 =
8πq

k

∞∑

l=0

(l + 1)
(
|Al+|2 + |A(l+1)−|2

)
, (1.116)

σ3/2 =
8πq

k

∞∑

l=0

1

4
[l(l + 1)(l + 2)]

(
|Bl+|2 + |B(l+1)−|2

)
, (1.117)

where Al± and Bl± are amplitudes for a state with pion orbital angular momentum

l, parity P = (−1)l+1, and total angular momentum j = l ± 1/2. See Fig. 1.9 for a

definition of kinematic variables. Isospin and angular momentum decomposition as

outlined above permit us to estimate the GDH sum rule from pion photoproduction

cross sections. Table 1.2 summarizes the experimental situation at the time. Clearly,

the isovector-isovector sum rule is saturated and the isoscalar-isoscalar sum rule is

small. Only the interference term seems in disagreement and even carries the wrong

sign! Nonetheless the conclusion was that the GDH sum rule held and more precise

measurements were needed.
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GDH Experiment Theory

Integral (µb) (µb)

IV V -219 -218.5

ISS -2.92 -0.3

IV S -39 +14.7

Ip -261 -204.1

In -183 -233.5

Table 1.2: Early experimental tests of the GDH sum rule from analysis of pion photo-

production data [23]. The column titled Experimental is an evaluation of the integral∫∞
νthr

dν/ν(σ1/2 − σ3/2) from ν = 0.8 GeV to ν = 1.2 GeV. The column titled Theory

represents the quantity −2π2ακ2/M2.

1.10 The Generalized GDH Integral

Let us recall the definitions of the virtual photoabsorption cross sections defined

earlier:

σT =
1

2
(σ3/2 + σ1/2), (1.118)

σ′TT =
1

2
(σ3/2 − σ1/2), (1.119)

and their relations to the structure functions:

σT =
4π2α

MK
F1, (1.120)

σL =
4π2α

K

[
F2

ν

(
1 +

1

γ2

)
− F1

M

]
, (1.121)

σ′LT = −4π2α

MK
γ(g1 + g2), (1.122)

σ′TT = −4π2α

MK
(g1 − γ2g2), (1.123)

where γ =
√
Q2/ν, σ′LT = −σLT , and σ′TT = −σTT . The virtual photon flux factor

is:

K =

{
ν(1− x) for the Hand convention [5]

ν
√

1 + γ2 for the Gilman convention [6]
. (1.124)
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Different model dependent conventions exist. However, here we use the Hand conven-

tion because it is related to the Compton amplitude. Drechsel et al. [26] generalized

the GDH integral with the following Q2-dependence:

I1(Q2) =
2M2

Q2

∫ x0

0

g1(x,Q2)dx→
{
−1

4
κ2
N for Q2 → 0

2M2

Q2 Γ1 +O(1/Q4) for Q2 →∞
, (1.125)

where x0 = Q2/(2Mmπ + m2
π + Q2) is the threshold of single-pion production. The

integral I1 can be recast in terms of the virtual photoabsorption cross sections:

I1(Q2) =
M2

8π2α

∫ ∞

ν0

1− x
1 + γ2

(σ1/2 − σ3/2 − 2γσ′LT )
dν

ν
, (1.126)

where ν0 = mπ + (m2
π + Q2)/2M is the threshold energy for single-pion production.

The term γσ′LT is of order Q2 and vanishes in the real photon limit. At finite Q2,

however, the contribution of σ′LT to I1(Q2) is significant. To remedy this situation,

several alternate definitions of the GDH integral have been proposed [17,26]:

IA(Q2) =
M2

8π2α

∫ ∞

ν0

(1− x)(σ1/2 − σ3/2)
dν

ν

=
2M2

Q2

∫ x0

0

(g1 − γ2g2)dx, (1.127)

IB(Q2) =
M2

8π2α

∫ ∞

ν0

1− x√
1 + γ2

(σ1/2 − σ3/2)
dν

ν

=
2M2

Q2

∫ x0

0

1√
1 + γ2

(g1 − γ2g2)dx, (1.128)

IC(Q2) =
M2

8π2α

∫ ∞

ν0

(σ1/2 − σ3/2)
dν

ν

=
2M2

Q2

∫ x0

0

1

1− x(g1 − γ2g2)dx. (1.129)

Plots of the different GDH integrals, as produced with MAID 2000 extended ver-

sion [27], are shown in Fig. 1.10. Note that variations between the different GDH

integrals are significant. Therefore when comparing results from various theoretical

models and experimental data, it is paramount to specify which definition is being

employed.
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Figure 1.10: The GDH integrals I1, IA, IB, and IC for the neutron, integrated up to

Wmax = 2 GeV, generated with MAID 2000 extended version [27]. The × at the real

photon point (Q2 = 0) is the value of the GDH sum rule.
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1.11 Chiral Perturbation Theory

1.11.1 Chiral Symmetry

The Lagrangian for a massless Dirac particle is [28]

L = ψi/∂ψ. (1.130)

The Dirac wave function ψ can be separated into components of definite chirality

(handedness),

ψ = ψL + ψR, ψL,R = ΓL,Rψ, (1.131)

where ΓL,R = (1± γ5)/2 are the left- and right-handed chirality projection operators,

respectively. They obey the following relationships:

ΓL + ΓR = 1, Γ2
L,R = ΓL,R, ΓLΓR = ΓRΓL = 0, (1.132)

which follow from properties of the Dirac γ-matrices [3]. A massless particle’s chirality

is a Lorentz-invariant. Two observers in different frames of reference will see the same

chirality for a particle. A typical example in the Standard Model is the neutrino which

always appears left-handed. The Lagrangian L is invariant under the global chiral

phase transformations

ψL,R(x)→ exp (−iαL,R)ψL,R(x), (1.133)

where αL,R are arbitrary real constants. By virtue of Noether’s theorem, the following

conserved currents result:

JµL,R = ψL,Rγ
µψL,R. (1.134)

The corresponding chiral charges are defined as

QL,R =

∫
d3xJ0

L,R(x). (1.135)

Linear combinations of the chiral currents provide the vector current,

V µ = JµL + JµR = ψγµψ, (1.136)

and the axial-vector current,

Aµ = JµL − JµR = ψγµγ5ψ. (1.137)
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In a similar fashion, the vector charge Q and axial-vector charge Q5 are

Q = QL +QR, Q5 = QL −QR. (1.138)

The vector charge Q and axial-vector charge Q5 are simply the sum and difference,

respectively, of left- and right-handed particles.

1.11.2 Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT) [28, 29] is an effective field theory that requires

global chiral symmetry of the Lagrangian. The quarks are considered massless par-

ticles. Pions and kaons are the Goldstone bosons under SU(3) symmetry breaking.

They are the degrees of freedom of the effective theory. In Heavy Baryon Chiral

Perturbation Theory (HBχPT) the nucleons are considered infinitely heavy.

1.11.3 The GDH Sum Rule at Low Q2

From Q2 = 0 to about 0.2 GeV2, the GDH sum rule can be described in the language

of ChPT in terms of hadronic degrees of freedom. Bernard et al. [30] calculated the

slope of IC at Q2 = 0 in ChPT to order p3 where p is an arbitrary external momentum.

They obtained1:

I ′C(0) =
1

6
M2

(
gA

4πmπfπ

)2

= 9.1 GeV−2, (1.139)

where gA = 1.26 is the axial coupling constant, fπ = 92.4 MeV is the pion decay

constant, M = 938 MeV is the proton mass, and mπ = 138 MeV is the pion mass. Ji

1The exact relationship between IC and Bernard et al. [30] GDH integral is IC(Q2) =
M2

8π2αIBKM (q2). Moreover, their slope for the GDH integral is taken with respect to q2 = −Q2.

Hence, the sign flip.
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et al. [31] performed the order p4 calculation and found:

I ′A(0) =
1

6
M2

(
gA

4πmπfπ

)2 [
1− π

4

mπ

M
(13 + 2τ3 + 2κV )

]

=

{
−14.5 GeV−2 for the proton

−10.3 GeV−2 for the neutron
, (1.140)

I ′1(0) =
1

6
M2

(
gA

4πmπfπ

)2
π

8

mπ

M
[1 + 3κV + 2τ3(1 + 3κS)]

=

{
7.0 GeV−2 for the proton

5.7 GeV−2 for the neutron
, (1.141)

where κV = 3.706 and κS = −0.120 are the isovector and isoscalar components of the

anomalous magnetic moment, respectively. The isospin τ3 is +1 and -1 for the proton

and neutron, respectively. The difference between the O(p3) and O(p4) calculations is

quite significant. In fact, the next-to-leading order contribution to the GDH integral

is more than twice the leading order and of opposite sign! This explains the sign

reversal of the slope when going from order p3 to order p4.

1.12 GDH Integral from 3He

1.12.1 Introduction

C. Ciofi degli Atti and S. Scopetta [32,33] pointed out that the neutron spin structure

function gn1 (x), asymmetry An(x), and Gerasimov-Drell-Hearn (GDH) integral may be

reasonably extracted from those of 3He in the resonance and deep inelastic scattering

(DIS) region if nuclear effects are taken into account.

1.12.2 No Nuclear Effects

To a good approximation, the 3He nucleus sits in a pure symmetric S state and the

spin structure functions and asymmetries are simply:

g
3He
1 (x) = gn1 (x), (1.142)

A3He(x) = fnAn(x), (1.143)

where x = Q2/2Mν is the Bjorken variable, An(x) = 2xgn1 (x)/F n
2 (x) is the neutron

asymmetry, and fn = F n
2 (x)/(2F p

2 (x) + F n
2 (x)) is the neutron dilution factor.
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1.12.3 The Effective Nucleon Polarizations

In a more realistic model of the 3He nucleus, the 3He wave function is an admixture of

a symmetric S state, a state S’ of mixed symmetry, and a state D of mixed symmetry.

The 3He nucleus has even parity (JP = 1
2

+
). Conservation of parity requires that

the P-state only enters in second order in the wave function. Hence the P-state

contribution is negligible (see pp. 180-190 of Ref. [34] and p. 320 of Ref. [35]).

If Fermi motion and binding effects are ignored, the spin structure functions and

asymmetries are written:

g
3He
1 (x) = 2ppg

p
1(x) + png

n
1 (x), (1.144)

A3He(x) = 2fpppAp + fnpnAn, (1.145)

where

fN = FN
2 (x)/(2F p

2 (x) + F n
2 (x)), (1.146)

AN(x) = 2xgN1 (x)/FN
2 (x). (1.147)

Here, fN is the nucleon dilution factor, AN(x) is the nucleon asymmetry, and pN is

the effective nucleon polarization given by:

pp = P (+)
p − P (−)

p = −0.028± 0.004, (1.148)

pn = P (+)
n − P (−)

n = 0.86± 0.02, (1.149)

where P
(+)
n = 1−∆ and P

(−)
n = ∆ are the probabilities of having a neutron with spin

parallel and antiparallel with the spin of the 3He nucleus, respectively. P
(±)
p = 1

2
∓∆′

are the equivalent quantities for the proton. The quantities ∆ = 1
3
(PS′ + 2PD) and

∆′ = 1
6
(PD − PS′) are model-dependent. A fit on world calculations of the three-

nucleon system yields ∆ = 0.07 ± 0.01 and ∆′ = 0.014 ± 0.002 [36]. Afnan and

Birrell [37] solved the Faddeev equations [38–41] in momentum space with a unitary

pole expansion (UPE) of a Reid soft core (RSC) nucleon-nucleon potential [42] using

the partial wave decomposition of Derrick and Blatt [35] involving basis states of

definite symmetry (S=symmetric, A=antisymmetric, and M=mixed) for the 3He wave

function. They obtained the percentage probabilities PS = 89.2%, PS′ = 1.6%, and

PD = 9.1% for the three-body system. The 3He nucleus is mostly in the S state,

in which both protons carry opposite spins and cancel each other. The effective

polarization of the neutron contributes the most to the overall nuclear polarization.
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1.12.4 The Convolution Approach

Fermi motion and binding effects are included by using the convolution approach of

C. Ciofi degli Atti et al. [32] in which the spin structure functions of the individual

nucleons are weighted by the nuclear spectral functions of 3He, integrated over en-

ergy, momentum, and the Bjorken variable, then finally summed over all constituent

nucleons. The full expression is presented in Ref. [32]. The formula is based on two

different prescriptions from Refs. [41] and [44], that nonetheless yield the same re-

sult in the Bjorken limit. The nuclear spectral functions are related to the effective

nucleon polarizations. The spin structure functions obtained with the convolution

approach differ from those of Eq. (1.144) by at most 4% for x ≤ 0.9 in the DIS

region. The disagreement is more pronounced in the resonance region where Fermi

motion smears the peaks of the dominant resonances (see Fig. 1.11).

Figure 1.11: Comparison of g
3He
1 calculated with Fermi motion and binding effects

(solid curve) vs. effective nucleon polarizations only (dashed curve) in (a) DIS at

Q2 = 10 GeV2 and (b) resonance at Q2 = 1 GeV2. The figure is taken from Ref. [33].

1.12.5 First Moment and the GDH Integral

The first moment ΓN =
∫ 1

0
gN1 (x)dx of the structure function gN1 (x) is of interest

because it enters the expression for the Bjorken sum rule [7]:

Γp − Γn =

∫ 1

0

(gp1(x)− gn1 (x)) dx =
1

6

gA
gV

(
1− αS

π

)
(1.150)

where gA and gV are the axial and vector coupling constants respectively from neutron

beta decay, and αS is the strong coupling constant. The importance of the Bjorken
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Sum Rule as a proving ground for our present knowledge of Quantum Chromody-

namics (QCD) in the high Q2 regime can hardly be overemphasized. At low Q2, the

integrated quantity of interest is the Gerasimov-Drell-Hearn sum rule [16]:

IGDH(Q2 = 0) =

∫ ∞

νthr

dν

ν

(
σ1/2(ν,Q2 = 0)− σ3/2(ν,Q2 = 0)

)
= −2π2α

M2
κ2 (1.151)

where νthr = (Q2 + 2mπM + m2
π)/2M is the pion production threshold energy, σ1/2

and σ3/2 are the virtual photoabsorption cross sections with photon-nucleon total

helicity 1/2 and 3/2, respectively, α is the fine structure constant, M is the hadron

mass, and κ is the anomalous magnetic moment of the nucleon. The GDH integral:

IGDH(Q2) =

∫ ∞

νthr

dν

ν

(
σ1/2(ν,Q2)− σ3/2(ν,Q2)

)
(1.152)

is measured at finite Q2 and can be related to the spin structure function gA1 (ν,Q2)

of a spin 1/2 target A by:

IA(Q2) =
8π2α

M

∫ ∞

νthr

dν

ν

(1 +Q2/ν2)

K
gA1 (ν,Q2) (1.153)

where K is the virtual photon flux. The integrated quantities, ΓN(Q2) and IA(Q2),

differ by at most 5% when Fermi motion and binding effects are compared with the

nuclear effects of effective nucleon polarizations only. See Fig. 1.12. Therefore the

following expressions:

Γ̃n(Q2) =
1

pn

(
Γ

3He(Q2)− 2ppΓ
p(Q2)

)
, (1.154)

Ĩn(Q2) =
1

pn

(
I

3He(Q2)− 2ppI
p(Q2)

)
(1.155)

were used to extract integrated quantities of the neutron from 3He. gp1 from the MAID

model [27] was used as input.

1.13 The GDH Integral for the Proton

The GDH integral for the proton has recently been measured at MAMI (Mainz) by

direct measurement of the total photoabsorption cross section of circularly polarized

real photons produced by bremsstrahlung of longitudinally polarized electrons, in the
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Figure 1.12: The crosses represent the GDH integral for the neutron Ĩn(Q2) obtained

with Eq. (1.155) where the model of Burkert et al. [45] was used for gp1 and the

convolution formula of Ciofi degli Atti et al. [33] for g
3He
1 coupled with Eq. (1.153) to

get Ip(Q2) and I
3He(Q2), respectively. The solid curve represents the GDH integral

for the neutron In(Q2) obtained with the model of Burkert et al. [45] for gn1 and

Eq. (1.153). The dots represent the GDH integral for 3He as acquired previously.

Note Ĩn(Q2) and In(Q2) differ only by at most 5%. The figure is taken from Ref. [33].

energy range 200 < Eγ < 800 MeV, on longitudinally polarized protons [46]. The

GDH sum rule for the proton is
∫ ∞

ν0

dν

ν
(σ3/2 − σ1/2) =

2π2α

M2
κ2 = 205 µb, (1.156)

where the integral on the left is adopted for the GDH integral. The Mainz measure-

ment for the GDH integral between 200 and 800 MeV was 226±5 (stat)±12 (syst) µb.

Outside the measured range of energies, theoretical models may be reasonably em-

ployed to predict the missing contributions to the GDH integral. The UIM model [27]

(also known as the MAID model) gives −30 µb below 200 MeV and 40 µb in the range

800 < Eγ < 1650 MeV. Beyond 1650 MeV, Bianchi and Thomas [47] predict a contri-

bution of −26 µb. The resulting GDH integral is 210 µb, a value consistent with the

GDH sum rule of 205 µb within experimental errors. Fig. 1.13 shows the GDH inte-
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Figure 1.13: GDH integrand for the proton (left) and running GDH integral (right).

“This work” refers to the data of Mainz [46] and “Ref.[1]” is a reference to an earlier

measurement by the same group but at a more restricted range of photon energies.

HDT [48] and SAID [49] are multipole analysis models and UIM [27] is a unitary

isobar model.

grand (left) and the running GDH integral (right) along with some theoretical model

predictions. Notice that the MAID model (curve labeled UIM in Fig. 1.13) gives a

reasonable fit over the bulk of the data region. The contribution to the GDH integral

at higher photon energies, where the theory begins to diverge from the data, is in fact

suppressed by a factor of 1/ν. This gives us confidence that we can make a reason-

able correction to the 3He data using the MAID model. In the final result, systematic

errors due to this correction are included in the analysis of the GDH integrand for

the neutron.
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EXPERIMENTAL SETUP

2.1 Continuous Electron Beam Accelerator Facil-

ity

2.1.1 Injector, Linac, and ARC

The Continuous Electron Beam Accelerator Facility (CEBAF), shown in Figure 2.1 is

an electron accelerator with a 45-MeV injector and two 500-MeV linear accelerators

(linacs) that can deliver high duty cycle, polarized electron beams simultaneously in

three end stations (Hall A, B, and C) after a maximum of five recirculation passes.

The polarized beam is produced by a strained GaAs photocathode. A chopper with

slits of different sizes is placed in front of the beam to allow for delivery of different

currents in each hall. The chopper’s frequency is 1.497 GHz. After the chopper,

the beam enters the injector, a set of two and a quarter cryomodules, where it is

accelerated to 45 MeV. Each cryomodule consists of eight superconducting niobium

cavities maintained at 2 K by liquid helium supplied by the Central Helium Liquefier.

The beam then enters the North Linac, a set of twenty cryomodules, where it is

accelerated by an additional 0.5 GeV. Before entering the recirculation arcs, the beam

is split into components of different momenta (from different number of recirculation

passes). This is done because each momentum requires a different bending magnetic

field. Hence, there are five separate arcs with different magnet settings. The beam,

as a whole, is bent by the East Arc in a half-circle. The beam is then recombined and

enters the South Linac, another string of twenty cryomodules, where it is accelerated

34
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Figure 2.1: The Continuous Electron Beam Accelerator Facility (CEBAF) features a

45-MeV injector and two 500-MeV linear accelerators (linacs) that can deliver high

duty cycle, polarized electrons beam simultaneously in three end stations (Hall A, B,

and C) after a maximum of five recirculation passes.

by an additional 0.5 GeV. Now, the beam is bent in another half-circle, the West

Arc, back to the North Linac. The cycle is repeated up to a total of five recirculation

passes or until the desired beam energy is achieved. At which point the beam is

extracted from the accelerator and split among the halls at the Beam Switch Yard

(BSY).

2.1.2 Beam Energy and Spin Precesssion

The actual relationship between single linac energy and final beam energy at an end

station is:

E = (2n+ α)El, (2.1)

with some minor corrections due to synchrotron radiation at the recirculating arcs.

El is the single linac energy, n is the number of recirculation passes, and α = 0.1125
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is the ratio of injector energy to linac energy. In addition, the spin of the electron in

its rest frame will precess due to Thomas precession [52]:

∆θ = γ

(
g − 2

2

)
∆φ, (2.2)

where ∆θ is the precession of the spin in the electron rest frame, γ = E/mec
2 and

me = 0.510998902 MeV/c2 is the electron rest mass, (g−2)/2 = (115965.77±0.35)×
10−8 is the anomalous magnetic moment of the electron, and ∆φ is the rotation angle

of the momentum in the lab frame. The single linac energy can be conveniently

adjusted anywhere from 200 to 600 MeV in order to allow for maximal longitudinal

polarization of the beam in all three halls [53–55].

2.1.3 Mott Polarimeter

The Mott polarimeter is a device used to measure beam polarization at the injector.

It is based on the principle of Mott polarimetry in which the left-right asymmetry

in the cross sections of the scattered electrons is exploited to infer the polarization

of the initial incident beam. The Injector Group [56] at Jefferson Lab operates a 5

MeV Mott polarimeter [57–59]. The projectile is a polarized electron beam and the

target is a gold foil (Au, Z=79) of thickness 1 µm. The rate achieved is 1 kHz/µA.

The scattering angle is at 172.6◦ where the analyzing power is at a maximum, -0.52,

but there is a dilution factor of 0.006 due to multiple scatterings. A schematic of

the polarimeter is shown in Fig. 2.2. The polarimeter is equipped with two detectors

shown in Fig 2.3.

Principle of Operation

The differential cross section for Mott scattering of a polarized electron from a heavy

nucleus is given by [60]:

σ(θ, φ) = I(θ)[1 + S(θ)P · n̂], (2.3)

where I(θ) = |f |2 + |g|2 is the differential cross section for a beam with no initial

transverse polarization.

S(θ) = i
fg∗ − f ∗g
|f |2 + |g|2 =

2 Im(f ∗g)

|f |2 + |g|2 (2.4)
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Figure 2.2: Cross section of the Jefferson Lab 5 MeV Mott polarimeter. The polarized

electron beam enters through an entrance on the left and travels along the central

axis. The beam is scattered by a gold foil target lowered into the scattering chamber

with a target ladder. The scattered electrons are registered by two detectors placed

at ±172.6◦ from the incident beam direction.

is real and is the so-called Sherman function [61] or analyzing power. It establishes

the link between asymmetry and polarization. Plots of the Sherman function S(θ)

for several electron kinetic energies are graphed in Fig. 2.4. Note the location in

scattering angle θ = 172.6◦ of the Jefferson Lab Mott polarimeter which corresponds

to a maximum analyzing power S(θ). The complex scattering amplitudes f and g,

defined in Ref. [60], are matrix elements of the scattering matrix, and P is the initial

polarization vector of the electron. Other useful combinations of the functions f and

g are the so-called spin-rotation functions:

T (θ) =
|f |2 − |g|2
|f |2 + |g|2 , (2.5)

U(θ) =
fg∗ − f ∗g
|f |2 + |g|2 =

2 Re(fg∗)

|f |2 + |g|2 . (2.6)

S, T and U satisfy the identity S2 + T 2 + U 2 = 1. Together they determine how the

polarization P is altered by scattering.

A derivation of the differential cross section for Mott scattering has traditionally

been carried out by solving the Dirac equation with a Coulomb potential. The am-
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Figure 2.3: Cross section of a detector for the Jefferson Lab 5 MeV Mott polarimeter.

The scattered electron enters through an aluminum collimator, with an angular ac-

ceptance of 1◦ in θ and 40◦ in φ, on the right and triggers a signal in a NE102a plastic

scintillator attached to a phototube. A second phototube is mounted at right angle

to the primary one. Its signal is used as a trigger and serves to eliminate background

noise from stray radiation.

plitudes are broken down in partial-wave analysis. The literature on the subject is

extensive; see Refs. [60, 63–65].

Experimental Technique

Consider the equipment setup shown in Fig. 2.5 for a Mott polarimeter. Assume

perfect alignment and negligible instrumental errors. The number of counts in D1

and D2 for a spin-up electron e ↑ is [60]

L↑ = nNε1Ω1I(θ)(1 + PS(θ)), (2.7)

R↑ = nNε2Ω2I(θ)(1− PS(θ)), (2.8)

respectively. Here, n is the number of incident electrons, N is the number of target

nuclei per unit area, and P is the polarization of the incident beam. ε and Ω are

the detector efficiency and angular acceptance, respectively. If the polarization of the

incident electron beam is reversed, the number of counts for a spin-down electron e ↓
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Figure 2.4: Plots of the Sherman function S(θ) for electron kinetic energies of 5.0,

2.0, 1.0, 0.4 and 0.1 MeV generated with Formula (1A-402) of Ref. [62] for a point

nucleus with no screening.

is

L↓ = n′N ′ε1Ω1I(θ)(1− PS(θ)), (2.9)

R↓ = n′N ′ε2Ω2I(θ)(1 + PS(θ)). (2.10)

By introducing the quantities N+ and N−,

N+ =
√
L↑R↓ =

√
nn′NN ′ε1ε2Ω1Ω2I(1 + PS), (2.11)

N− =
√
R↑L↓ =

√
nn′NN ′ε1ε2Ω1Ω2I(1− PS), (2.12)

the asymmetry A can be written as

A =
N+ −N−
N+ +N−

=
(1 + PS)− (1− PS)

(1 + PS) + (1− PS)
= PS. (2.13)

This equation is affectionately called the “APS rule” and relates the polarization P to

the asymmetry A via the Sherman function S. Note that all instrumental systematics

cancel out.
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Figure 2.5: Detector arrangement for Mott polarimetry. The incident electron e−

with polarization P is elastically scattered from nuclei in a gold foil and picked up by

detectors D1 and D2 at an angle θ to the left and right of the beam line, respectively.

Using the 5 MeV Mott polarimeter, the Injector Group can measure beam polar-

ization at the injector with an instrumental precision of 0.5% and with an instrumental

helicity-correlated false asymmetry of (4± 6)× 10−4 [59].

2.2 Beamline in Hall A

Hall A [50], the largest of the three end stations, has a diameter of 53 m. The layout

of the Hall showing the two High Resolution Spectrometers is shown in Fig. 2.6. The

electron beam from the beamline is incident upon the target on the target platform in

the center of the hall. The beam is then scattered into one of the spectrometers. The

two spectrometers were designed for coincidence (e,e’X) experiments with the nominal

Electron arm to the left looking from above and the Hadron arm to the right. For

this experiments both spectrometers were used to detect electrons in single arm data

acquisition (DAQ) mode and the Electron and Hadron arms will be referred to as the



CHAPTER 2. EXPERIMENTAL SETUP 41

Figure 2.6: Layout of Hall A showing the beamline, the target platform in the center,

and the Electron and Hadron spectrometers.

Left and Right spectrometers, respectively. The scattered electrons are then detected

in detectors housed in the detector hut of each spectrometer. The left spectrometer

can be moved to a central scattering angle from 12.5◦ to 165◦ from the beamline. The

Right spectrometer has an angular range of 12.5◦ to 130◦.

2.2.1 Beamline

Fig. 2.7 shows the schematic of the main elements of the beamline. The beam pa-

rameters are summarized in Table 2.1 [66].

2.2.2 Absolute Beam Energy Measurement

The ARC Method

The beam enters Hall A through a 40-m arc section with a bend angle θ = 34.3318◦

as shown in Fig. 2.8. A series of eight dipoles and nine quadrupoles are stationed

along the arc section to bend and focus the beam, respectively. The beam energy can

be calculated from accurate knowledge of the bend angle and magnetic field in the
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Figure 2.7: Hall A beamline elements from shield wall to target chamber.

Energy 0.8− 6.0 GeV

Energy spread 2.5× 10−5

Current 1− 190 µA

Emittance 2× 10−9 m-rad

Duty cycle 100% CW

Instantaneous size 35 µm

Table 2.1: Beam parameters.

dipoles.

An electron carrying charge e and velocity v in a magnetic field B is subject to

the Lorentz force F :

F =
dp

dt
= ev ×B. (2.14)

The incremental change in momentum ∆p for a small time increment ∆t is

∆p = e∆l‖B⊥, (2.15)

where ∆l‖ is the component of the displacement along the path length and B⊥ is the

magnetic field component orthogonal to the path length. The change in momentum

defines a small angle θ = ∆p/p. In addition, at high enough energy, the energy of the

electron E is simply E = pc. It therefore follows that

E =
0.299792

θ

∫
dl‖B⊥, (2.16)
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where distances are measured in meters, magnetic fields in teslas, angles in radians,

and the resulting energy is in GeV. ARC energy measurements taken in Hall A during

E94-010 are shown in Table 2.2. The ARC method covers a beam energy range of 0.5

Figure 2.8: ARC equipment for absolute beam energy measurement in Hall A.

to 6 GeV with an accuracy of ∆p/p ≤ 2× 10−4 (FWHM). The ARC equipment was

built and installed by a group from CEA/DAPNIA of Saclay, France. Much technical

information about the ARC apparatus in Hall A is available in Ref. [67].

The eP Method

The eP method for measuring beam energies utilizes the elastic reaction p(e, e′p).

The target is a rotating tape of CH2 of thickness 10-30 µm. The electron and proton

are detected in coincidence in silicon strip detectors with pitch 100 µm, augmented

with scintillators and gas Cherenkov counters (CO2). The eP equipment was built

and installed by a group from CNRS/IN2P3 of Clermont-Ferrand, France. The beam

energy is given by

E = M

(
cos θe + sin θe/ tan θp − 1

1− cos θe

)
, (2.17)

where θe and θp are the angles from the beamline of the scattered electron and scat-

tered proton, respectively. The angle θp is fixed at 60◦ and θe varies with incident
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beam energy from 9◦ to 41◦. The energy range covered is 0.5 to 6 GeV. The accuracy

achieved is ∆p/p ≤ 2× 10−4 (FWHM). A schematic of the eP apparatus is shown in

Fig 2.9.

Figure 2.9: eP equipment for absolute beam energy measurement in Hall A. Beam

enters from the right and exits from the left. The scattered electrons and protons are

detected in the two vertical detection chambers.

2.2.3 Beam Position Monitors

The beam position monitors (BPMs) measure the beam position in the xy-plane

(transverse to the beamline). This measurement is noninvasive, thus allowing con-

tinuous monitoring and adjustement of the beam position. Five BPMs are located

between the Hall A shield wall and the target. However, the BPMs of primary interest

for Hall A are IPM1H03A, located 7.524 m upstream of the target, and IPM1H03B,

located 1.286 m upstream of the target. A BPM consists of a cavity with a four-wire

antenna array tuned to the fundamental beam frequency of 1.497 GHz. Two wires are

for the x-position and the other two for the y-position. A beam of charged particles
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Hall A Beam Energy Measurements

E94-010 Oct-Dec 1998

Date Mode Enominal EeP EARC

Oct 24 Disp 3385 3379.7

Nov 3 Disp 1709.1

Nov 6 Disp 4255 4236.2 4232.64

Nov 20 Achr 4233.2

Dec 8 Disp 2594 2581.1 2578.8

Dec 8 Achr 2594 2582.33

Dec 17 Achr 5055.16

Dec 22 Achr 5055.82

Table 2.2: Table of energy measurements made in Hall A during E94-010. The mode

indicates whether the energy tune was dispersive (Disp) or achromatic (Achr). All

energies are in MeV.

(current) induces a signal in each wire. The asymmetry between the induced signals

from the wires is proportional to the distance from the beam. The beam position can

be determined within 100 µm for currents above 1 µA. A diagram of the Hall A BPM

subsystem and its associated electronics is shown in Fig. 2.10.

2.2.4 Beam Current Monitors

The beam current monitors (BCMs) allow measurement of the beam current in Hall

A. The Hall A beam current monitors consist of one Unser (Parametric Current

Transformer) and two radio-frequency (RF) cavity monitors tuned at 1.497 GHz

(beam frequency). The Unser has an absolute accuracy of ± 300 nA at 100 µA. The

RF cavities have a non-linearity of less than 0.2%. A block diagram of the Hall A

beam current monitors are shown in Fig. 2.11 and currents obtained with the BCMs

during a typical run is shown in Fig. 2.12.
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Figure 2.10: Hall A beam position monitors. The wire strip chambers use four wires

pickup coils. Sums and differences are taken from the outputs to determine the

average current and the mean beam x and y displacements from the central axis.
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Figure 2.11: Block diagram of the Hall A beam current monitors.

2.2.5 Møller Polarimeter

Møller polarimetry [68] is a method for measuring beam polarization at high energies

at the target based on the reaction ~e + ~e → e + e, known as Møller scattering. The

Møller spin-dependent cross section is

dσ

dΩ
=
dσ0

dΩ

[
1 +

∑

i,j

P b
i AijP

t
j

]
, (2.18)
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Figure 2.12: Beam current in Hall A during E94-010 for a typical run. Note that

the beam is relatively constant except at dips occuring at 23 and 40 minutes usually

caused by RF trips.

where

dσ0

dΩ
=

α2

4m2

1

ξ2

(4− sin2 θ)2

sin4 θ
, (2.19)

Azz = −(7 + cos2 θ) sin2 θ

(3 + cos2 θ)2
, (2.20)

Axx = −Ayy = −1

ξ

2 sin3 θ cos θ

(3 + cos2 θ)2
, (2.21)

Axy = Ayx = Ayz = Azy = 0, (2.22)

ξ =

√
E +m

2m
, (2.23)

i, j = x, y, z, (2.24)

where dσ0/dΩ is the unpolarized cross section in the ultrarelativistic limit (E �
m). The quantities P b

i and P t
j are components of the beam and target polarizations

respectively. The Aij are asymmetry parameters. The asymmetry parameters assume
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Figure 2.13: Tree-level Feynman diagrams for Møller scattering ~e+ ~e→ e+ e.

maxima at θ = 90◦:

Azz = −7

9
, (2.25)

Axx = −Ayy = −1

9
, (2.26)

at which point dσ0/dΩ = 9α2/4m2 = 0.179 barn/sr. Axx and Ayy are suppressed by

a factor of 1/ξ. Therefore, at high energy, Azz becomes the dominant term. A Monte

Carlo simulation of the Møller spectrometer acceptance gives Azz = 0.76. The raw

asymmetry along the longitudinal beam direction is:

Araw =
σ↑↑ − σ↑↓
σ↑↑ + σ↑↓

= PbAzzPt cos θt, (2.27)

where the arrow superscripts denote target and beam polarizations respectively, and

θt is the angle between the beam direction and the target foil. The beam polarization

can then be inferred:

Pb =
Araw

Pt cos θtAzz
. (2.28)

The Hall A Møller polarimeter is situated 17.5 m upstream of the Hall A target

platform. The target is a foil made of Supermendur, a ferromagnetic Fe-Co alloy

(49% Fe, 49% Co, 2% V by weight), with thickness 12.5 µm. Polarization is induced

on the target electrons by applying an external magnetic field of 300 Gauss which

forces alignment of the electron spins along the field direction. The target polarization

is obtained from:

Pt =
M

neµB

g′ − 1

g′
ge

ge − 1
, (2.29)
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Figure 2.14: The optics of the Møller polarimeter is QQQD. The target on the left is

a foill of ferromagnetic Fe-Co alloy called Supermendur. The detector on the right is

a lead-glass calorimeter.

where M is the foil magnetization, ne is the electron density, ge = 2.002319 is the free

electron g-factor, µB = 9.273× 10−21 G cm3 is the Bohr magneton, and g′ = 1.916±
0.002 is the magnetomechanical ratio due to the orbital contribution to magnetization

for a 50-50 Fe-Co alloy, assuming the Vanadium’s contribution to be negligible. A

target polarization of 7.60± 0.23% was achieved. The scattered electrons are focused

by a QQQD spectrometer and detected in coincidence in lead-glass calorimeters. The

optics of the Møller polarimeter is shown in Fig. 2.14. A Møller measurement is an

invasive procedure that takes about an hour and an additional forty minutes to alter

magnet settings. The results of the Møller polarimeter measurements along with the

Mott polarimeter measurements from the injector, for comparison, obtained during

E94-010 are displayed in Fig. 2.15. The average beam polarization was about 72%

during this experiment.
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Figure 2.15: Møller and Mott polarimeter measurements taken during E94-010. The

average beam polarization is about 72%. The Møller measurements were carried out

in the Hall A end station, whereas the Mott measurements were made at the injecter.

2.2.6 Fast Raster

The Hall A fast raster is a couple of horizontal (X) and vertical (Y) air-core dipole

magnets located 23 m upstream of teh target. It rasters the beam on target with an

amplitude of several millimeters to prevent overheating due to prolonged application

of the beam at a single spot. The fast raster can be operated in either sinusoidal or

amplitude modulated mode.

In sinusoidal mode, both the X and Y dipole pairs are driven with pure sine waves.

The ratio of frequencies is irrational (not a ratio of integers) so that the beam sweeps

the targeted area in a non-Lissajous pattern, i.e., the entire phase space is filled at a
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Figure 2.16: Target ladder containing the main polarized target cell (top), the seven
12C foils (center middle), the BeO target window (front middle), and the reference

cell (bottom).

pseudo-random but predictable way.

In the amplitude modulated scheme, both the X and Y dipole pairs are driven at

18 kHz with a 90◦ relative phase. The resulting pattern is circular. Furthermore, the

radius is modulated at 1 kHz.

For this experiment, the amplitude modulated scheme was used to raster the

beam.

2.2.7 Target Scattering Chamber

The targets are enclosed in the target scattering chamber which is made of a high-

density polymer. Inside the target scattering chamber are several targets:

• The polarized 3He cell is the main target used throughout most of the produc-

tion runs. The target is a 40-cm long gas cylinder oriented along the beam

axis. In addition to helium, the target cell contains traces of nitrogen gas used

to quench depolarization of helium from photons emitted during the optical

pumping process and traces of rubidium. The target cell is described in more

detail in a later section.
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• The reference cell is of identical construction to the main target cell. It is used in

one of two modes. When used as an empty reference cell, it maintains a vacuum

and is used to estimate the backgound from the glass windows. When used as

a nitrogen reference cell, it is filled with nitrogen gas and used to estimate the

backgound from nitrogen contamination.

• The BeO (beryllium oxide) target is used as a bull’s-eye for beam position and

spot size alignment before any production run is taken.

• The optics alignment target consists of an array of seven 12C foils. Since this

was the first time that such a long cell had been used in Hall A, additional optics

studies were required to extend the optics database used to map the particle

trajectories. Results of measurements made with this target will be shown in

the section discussing spectrometer optics.

A diagram of the target ladder is shown in Fig. 2.16.

2.2.8 Beam Exit Channel and Beam Dump

After the target chamber the beam is channeled into the beam dump. This exit beam

pipe is made of a thin walled aluminum spiral corrugated pipe of welded construction.

The diameter varies from 6 inches to 36 inches. The pipe is maintained at a vacuum

of 10−5 Torr with a turbomolecular pump. A diffuser with a beryllium window is

connected via a 12-inch port to this exit of the pipe. The beam dump can sustain 1

MW of power (200 µA at 5 GeV).

2.3 High Resolution Spectrometers

The High-Resolution Spectrometers (HRS) [69] consist of nearly identical Electron

and Hadron arms shown in Fig. 2.6, and can be operated in singles or coincidence

mode. Each arm has a QQDQ configuration of magnetic elements shown in Fig. 2.17.

All quadrupole (Q) and dipole (D) magnets are superconducting magnets. General

characteristics of the HRS are summarized in Table 2.3. The layout of the detector

package in both spectrometer arms are displayed in Figs. 2.18 and 2.19. In the Elec-

tron arm, E94-010 utilized the Vertical Drift Chamber (VDC) for reconstruction of
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Momentum range 0.3-4.0 GeV/c

Configuration QQDQ

Bend angle 45◦

Optical length 23.4 m

Momentum acceptance ±4.5%

Dispersion (D) 12.4 cm/%

Radial linear magnification (M) 2.5

D/M 5

Momentum resolution (FWHM) 1× 10−4

Angular acceptance:

Horizontal ±28 mr

Vertical ±60 mr

Solid angle:

Rectangular approximation 6.7 msr

Elliptical approximation 5.3 msr

Angular resolution (FWHM):

Horizontal 0.6 mr

Vertical 2.0 mr

Transverse length acceptance ±5 cm

Transverse position resolution (FWHM) 1.5 mm

Spectrometer angle determination accuracy 0.1 mr

Table 2.3: Hall A HRS general characteristics.
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Figure 2.17: QQDQ configuration of magnetic elements for HRS in Hall A.

particle tracks, the scintillator planes S1 and S2 for triggering, the gas Cherenkov

for pion rejection, and the preshower and shower counters for scattered energy mea-

surement. The aerogel Cherenkov was not used for this experiment; see Fig. 2.18.

In the Hadron arm, the experiment used the Vertical Drift Chamber (VDC) for re-

construction of particle tracks, the scintillator planes S1 and S2 for triggering, and

the gas Cherenkov for pion rejection. The aerogel Cherenkov, the carbon analyzer

or focal-plane polarimeter (FPP), and the scintillator plane S3, typically used in co-

incidence experiments, were not utilized in this experiment. However, a lead glass

calorimeter (not shown in the figure) was added in the rear for particle identification;

see Fig. 2.19.

2.3.1 Coordinate Systems

The spectrometer optics allows one to reconstruct physical variables at the target from

physical quantities measured at the focal plane in the detector hut, as illustrated in

Fig. 2.20. Even though five different coordinate systems are described in the ESPACE

manual [70], only two will be considered here.
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Figure 2.18: Hall A HRS Electron arm detector package. E94-010 made use of the Ver-

tical Drift Chamber (VDC) for reconstruction of particle tracks, the scintillator planes

S1 and S2 for triggering, the gas Cherenkov for pion rejection, and the preshower and

shower counters for scattered energy measurement. The aerogel Cherenkov was not

used for this experiment.

Spectrometer Reconstructed Coordinate System

The origin of this coordinate system is defined as a point at a distance of 1.25 m from

the center of the central sieve-slit hole. The z-axis ẑtg points from the origin to the

center of the central sieve-slit hole. The x-axis x̂tg is orthogonal to the z-axis and

points downwards. The angle in the horizontal plane (yz-plane) is φtg and the angle

in the vertical plane (xz-plane) is θtg. The spectrometer angle between the beam line

and the z-axis is Θ0. The spectrometer reconstructed coordinate system is illustrated

in Fig. 2.21.

Spectrometer Focal-Plane Coordinate System

The origin of this coordinate system is defined by the intersection of wire 184 in the

first wire plane of the drift chamber and the projection on the first wire plane of wire

184 in the second plane. The z-axis ẑfp is the projection of the central ray in the

vertical plane. The x-axis x̂fp is perpendicular to the z-axis and points downward.
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Figure 2.19: Hall A HRS Hadron arm detector package. E94-010 made use of the

Vertical Drift Chamber (VDC) for reconstruction of particle tracks, the S1 and S2

scintillator planes for triggering, and the gas Cherenkov for pion rejection. The carbon

analyzer or focal-plane polarimeter (FPP) was not utilized in this experiment. Neither

was the aerogel Cherenkov nor the S3 scintillator plane, typically used in coincidence

experiments. However, a lead glass calorimeter (not shown in the figure) was added

in the rear for particle identification.

As a result, the x- and z-axis vary with fractional momentum ∆p/p of the charged

particle. The spectrometer focal-plane coordinate system is illustrated in Fig. 2.22.

2.3.2 Transport

Kinematic variables at the focal plane can be mapped to kinematic variables at the

target using the spectrometer optics tensor [71, 72]. Assuming mid-plane symmetry
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Figure 2.20: The spectrometer central ray is scattered at the target. The central ray

is then deflected by an angle of 45◦ at the dipole magnet (not shown). The position

of the central ray is finally measured at the focal plane with the aid of the vertical

drift chamber (VDC). The matrix elements of the spectrometer optics tensor map

the kinematic variables at the focal plane (fp) to those at the target (tg).

sieve slit

beam line

Y

X

Θ0
Z

θtg φtg

Figure 2.21: Spectrometer reconstructed coordinate system. The origin is a point

1.25 m from the center of the sieve slit located at the entrance of the spectrometer.
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Figure 2.22: Spectrometer focal-plane coordinate system.

and setting xtg = 0, a first-order approximation to this matrix is:




δ

θ

y

φ




tg

=




〈δ|x〉 〈δ|θ〉 0 0

〈θ|x〉 〈θ|θ〉 0 0

0 0 〈y|y〉 〈y|φ〉
0 0 〈φ|y〉 〈φ|φ〉







x

θ

y

φ




fp

, (2.30)

where δ = (p−p0)/p0 is the fractional momentum of the particle, p is the momentum,

and p0 is the central momentum of the spectrometer. This simple matrix assumes a

block-diagonal form because of mid-plane symmetry. In practice, the matrix above

poorly describes the spectrometer optics. Instead, each target variable is expanded

as a power series (up to fifth order) in the focal plane variables. That is:

ytg =
∑

j,k,l

Yjklθ
j
fpy

k
fpφ

l
fp, (2.31)

θtg =
∑

j,k,l

Tjklθ
j
fpy

k
fpφ

l
fp, (2.32)

φtg =
∑

j,k,l

Pjklθ
j
fpy

k
fpφ

l
fp, (2.33)

δtg =
∑

j,k,l

Djklθ
j
fpy

k
fpφ

l
fp, (2.34)

(2.35)
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where the transfer tensors Yjkl, Tjkl, Pjkl, and Djkl are polynomials in xfp, i.e. Yjkl =
∑

iCix
i
fp. The subscripts j, k, and l of the transfer tensors are just powers of the focal

plane variables θfp, yfp, and φfp, respectively. The Ci’s are the matrix elements of

the spectrometer optics tensor. Optimum values for the transfer tensors are obtained

by minimizing the χ2 of the following aberration functions:

∆(y) =
∑

s

[∑
j,k,l Yjklθ

j
fpy

k
fpφ

l
fp − y0

tg

σsy

]2

, (2.36)

∆(θ, φ) =
∑

s

[∑
j,k,l Tjklθ

j
fpy

k
fpφ

l
fp − θ0

tg

σsθ

]2

+
∑

s

[∑
j,k,l Pjklθ

j
fpy

k
fpφ

l
fp − φ0

tg

σsφ

]2

, (2.37)

∆(δ) =
∑

s

[∑
j,k,lDjklθ

j
fpy

k
fpφ

l
fp − δ0

tg

σsδ

]2

, (2.38)

where σ is the resolution of the subscript variable.

2.3.3 Optics

The evolution of the transport matrix elements as a function of optical path length

(z) is shown in Fig. 2.23. The 〈x|θ0〉 term is large in the dipole to provide good

momentum resolution at the moderate bending angle of 45◦. The 〈y|y0〉 term remains

small inside the entire spectrometer to allow the use of extended targets (10 cm at

90◦). The spectrometer is a double-focusing design providing point-to-point focus

in the dispersive direction, 〈x|θ0〉 = 0, and point-to-point focus in the transverse

direction, 〈y|φ0〉 = 0, at the focal plane, z ≈ 20 m. There is a transverse crossover in

the middle of the dipole to keep the transverse elements 〈y|y0〉 small.

2.3.4 Extended Target Optics Studies

In previous measurements, the longest target used in Hall A was a 15-cm long hydro-

gen cryotarget. The polarized 3He target cells are limited in density due to the need

to obtain long polarization lifetimes. This led us to the design of a 40-cm long cell

to obtain the desired luminosity. This, in turn, requires a new set of optics measure-

ments to obtain a database over a larger range of ytg. Measurements were undertaken
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Figure 2.23: Evolution of the first-order transport matrix elements along the optical

path length of the HRS.
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at the beginning of our experiment using an array of thin 12C foils spanning the tar-

get length of helium in conjunction with the installation of a sieve slit collimator in

front of the first quadrupole of the spectrometer. Measurements were taken on elas-

tic scattering on 12C at various positions of the focal plane. The methodology used

was to obtain a simultaneous bid to a collection of dispersive, angular, and extended

target matrix elements. Although the measurements were taken simultaneously, the

experimental procedure conceptually can be broken down into three tasks:

1. Measurements of the elastic scattering from 12C at the center of the focal plane

were used to obtain the best momentum focus, then the peak was scanned to

obtain a set of dispersive matrix elements. By this mean, a central momentum

resolution better than 10−4 was obtained.

2. The angular matrix elements were constrained by the passage of the electrons

through the holes in the sieve slit as shown in Fig. 2.24. The fitting routine

required both a good resolution of the virtual image and a proper spacing of the

holes in the spectrum. As shown in the figure, the sieve slit consists of a 7× 7

array of small holes machined through a lead collimator. Two of the holes were

enlarged to resolve ambiguities in the orientation of the collimator coordinate

system. As shown in the reconstructed image in the right of the collimator,

these two holes are clearly resolved. After correcting the matrix elements, the

holes are aligned exactly as predicted.

3. The critical item for this set of measurements was to obtain an extended set

of ytg matrix elements. This requires a simultaneous fit to optimize ytg. As

shown in Fig. 2.25 only the central five foils are visible in the acceptance of

the spectrometer. At a forward scattering angle of 15.5◦, the resolution along

the z direction is not very good, only about 1.5 cm (FWHM). However, this

corresponds to a 4 mm (FWHM) resolution in the ytg direction. Again the

observed array spacing is exactly as predicted.

The target is sufficiently long that the end windows are usually out of the acceptance.

Although in some cases, one or both of the target windows can be seen. Using the new

set of matrix elements, we can cut the windows out of the analysis using the analysis

software. This totally eliminates the major source of background to the experiment.

Further details on spectrometer optics can be found in Ref. [50].
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Figure 2.24: Geometric (left) and reconstructed (right) configurations of the sieve slit.

The two large holes, which allow for an unambiguous identification of the orientation

of the image at the focal plane, can be clearly identified in the right figure.

2.4 Focal Plane Instrumentation

2.4.1 Vertical Drift Chamber

The Vertical Drift Chamber (VDC) [73], designed and constructed by the Nuclear

Interactions Group at the MIT Laboratory for Nuclear Science, is used for particle

tracking. Each spectrometer has one VDC mounted on rails and inserted between

the exit of the quadrupole magnet Q3 and the entrance of the detector hut. Each

VDC is capable of achieving a resolution of 145 µm FWHM when operated at −4.8

kV or 225 µm FWHM at −4.0 kV.

Description

A layout of a VDC is shown in Figs. 2.26 and 2.27. Each VDC has a lower and an

upper chamber. The lower chamber is upstream of the central ray and the upper

chamber is downstream. The dimensions of the active area of each chamber are 211.8

cm (dispersive direction ) × 28.8 cm (transverse direction). The distance between

corresponding planes in each chamber is 33.5 cm. The placement of each chamber is

such that the central ray passes through the center of the active area. Each chamber
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Figure 2.25: Reconstructed position along the beam line (zreact) for 862 MeV electrons

scattered from the set of 12C foil targets. The lines indicate the expected positions of

the foils. The central five of seven thin foils are visible within the ytg acceptance of

the HRS.
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Figure 2.26: Layout of the Hall A VDC. The lower and upper chambers lie in the

horizontal plane and are aligned in such a way that the central ray passes through

the center of the active area of each chamber.

has three high-voltage planes in the horizontal. Sandwiched between two high-voltage

planes is a wire plane. Each wire planes contains 368 sense wires at 45◦ from the

dispersive direction; wires from different wire planes are orthogonal to each other.

Each sense wire is made of gold-plated tungsten and is 20 µm in diameter. The sense

wire-to-sense wire distance is 4.243 mm.

Principle of Operation

A VDC consists of a plane of evenly spaced, anode wires. Directly above and below the

wires are two conducting planes kept at a negative high voltage. A 1/r electric field

is generated near each wire; see Fig. 2.29. The entire chamber is filled with an argon-

ethane gas mixture at 50%/50% proportion by volume. A charged particle traveling

through the chamber leaves behind a trail of electrons and ions from the gas mixture.

As these electrons approach the anode wires along the electric field lines, an avalanche

of electrons and ions is created that induces a negative signal in the conducting wire.

This signal is captured by dedicated electronics, amplified, discriminated, and read
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Figure 2.27: Side and top view of the Hall A VDC. The lower and upper chambers

lie in the horizontal plane of the hall. The central ray is angled at 45◦ from each

chamber and crosses the center of the active area of each chamber. Each chamber

has two wire planes where one set of sense wires is angled at 45◦ from the particle

trajectory and the other set is angled at −45◦. The lower (upstream) wire plane is

identified as the U-plane and the upper (downstream) wire plane is identified as the

V-plane.
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Figure 2.28: Cross-sectional view of a Vertical Drift Chamber (VDC). A VDC has

three high-voltage (HV) planes (solid lines) and two wire planes (dashed lines). The

flow of the argon-ethane gas mixture is indicated by the wiggly line. The wire frames

are labelled WF. The printed circuit boards (PCB) relay the signals to the readout

electronics.

out by the data acquisition system. The VDC readout electronics is pictured in

Fig. 2.30. The particle track is angled at 45◦ from the wire plane and typically

induces signals in five neighboring wires. By using the triggers from the scintillators

and some Time-to-Digital Converters (TDC), the drift time of the electrons from the

particle track to the anode wire can be estimated, and subsequently the distance of

the particle track to the anode wire. A single-wire drift-time spectrum is shown in

Fig. 2.31. The number of events per time bin is

dN

dt
=
dN

ds

ds

dt
, (2.39)

where dN/ds is constant. The relationship between drift distance and drift time is

shown in Fig. 2.32. Finally, a drift-distance spectrum is shown in Fig. 2.33.

2.4.2 Scintillator Planes

Each HRS contains two scintillator planes, S1 and S2. Each scintillator plane in

turn consists of six paddles. The active area on each S1 paddle is 29.cm × 35.5 cm.

The active area on each S2 paddle is 54.0 cm × 37.0 cm. Each paddle is made of 5
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Figure 2.29: A particle track through a VDC wire plane resulting in avalanches of

drift electrons in five sense wires. The paths of the drift electrons are the paths of

least time and are called geodetics. The ellipses drawn around each sense wires are

loci of transition where the electric fields change from linear to 1/r. The drift times

measured and knowledge of the drift velocities due to properties of the gas mixture

provide the perpendicular distances from the charged particle track to each sense

wire. A least square fit of these distances is finally used to reconstruct the particle

track.
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Figure 2.30: VDC readout electronics block diagram. The pulse induced by the

charged particle in the sense wire is first amplified, then discriminated. This signal

is used as a START signal to a time-to-digital converter (TDC). The STOP signal

comes from the event trigger in the S2 scintillator plane. The output of the TDC is

the drift time, the interval of time between initial ionization in the drift chamber and

induction of the signal in the sense wire.

mm-thick BICRON 408 plastic scintillator and use multi-strip adiabatic light guides

ending in a long cylindrical spool. At both ends of each paddle, at the cylindrical

spools, are 2-inch Burle 8575 photomultiplier tubes (PMT). There is a 10 mm overlap

between S1 paddles and a 5 mm overlap between S2 paddles.

Operation

Each PMT in a S2 scintillator paddle registers about 400-500 photons per passage of

a single charged particle. This yields about 80-100 photoelectrons in a fresh PMT.

The discriminator threshold is typically set to 45 mV. A typical PMT gain is 3× 106.

The high voltage (HV) is set to about 1.8-2.0 kV. The time resolution achieved is

about 0.2 ns.

2.4.3 Gas Cherenkov Counter

Principle

The Hall A CO2 gas Cherenkov counters, built by Saclay and INFN, operate by de-

tecting Cherenkov radiation. Cherenkov radiation is emitted when a charged particle

travels faster than light in a medium (in this case carbon dioxide) with a certain index

of refraction (n = 1.00041 at atmospheric pressure). This radiation is emitted in a

forward cone about the particle’s track at a well-defined angle as shown in Fig. 2.34.

After a time t, the charged particle has traveled a distance βct and electromagnetic
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Figure 2.31: A single-wire drift-time spectrum.

radiation emitted from the moving particle forms a coherent wavefront with radius

ct/n. The angle θ of the cone is related to the speed of the particle by:

cos θ =
ct/n

βct
=

1

βn
. (2.40)

The threshold of production for Cherenkov radiation is β = 1/n, i.e., θ = 0. The

threshold momentum for a particle of mass m is p = γβmc, where γ = 1/
√

1− β2.

Using me = 0.511 MeV/c2 for the electron and mπ = 139.6 MeV/c2 for the charged

pion, the threshold momenta for emission of Cherenkov radiation are 17.84 MeV/c

and 4.875 GeV/c for electrons and pions, respectively. In E94-010, the momentum

settings never exceeded the threshold for pions. Therefore, the Cherenkov counters

can be used effectively, in theory, for pion rejection. The Cherenkov counters were

designed achieve pion rejection of 1000:1.

Description

The Electron spectrometer detector is a tank filled with CO2 of dimension 1.996 m

× 0.558 m × 1.5 m. The Cherenkov light is reflected by 10 spherical mirrors and
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Figure 2.32: Drift distance vs. drift time conversion. The dotted curves represent the

possible range of fits for different angles of incidence.

collected by 5-inch PMTs of type Burle 8854. The signals are discriminated and sent

to scalers and the trigger electronics.

2.4.4 Lead-glass Calorimeter

Principle

An electron hitting a lead-glass calorimeter or shower counter will trigger an electro-

magnetic shower in the detector. This happens when a high-energy electron enters

the lead-glass and emmits bremstrahlung radiation. These photons in turn create

electron-positron pairs that emits more photons by bremstrahlung radiation. The

cycle is repeated until there is not enough energy left to create any electron-positron

pair. Visible light emitted by Cherenkov radiation is detected by PMTs at the end

of each lead-glass block.
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Figure 2.33: Drift-distance spectrum. Show is the drift time spectrum for Fig. 2.31

after making the drift-distance to drift-time conversion shown in Fig. 2.32. The re-

sulting spectrum is flat as expected when scattering in the structureless deep inelastic

region.

Description

The Electron arm has two layers of lead-glass blocks. The first layer constitutes the

preshower and the second layer the shower counter. Together, these two layers make

a total absorption calorimeter, i.e. the electron will lose all of its kinetic energy in

the detector in the form of radiation. A similar lead-glass detector was built for the

Hadron arm but unlike the Electron arm it was not total absorption.

2.5 Data Acquisition

Upon completion of E94-010, over 4 terabytes of raw data were successfully archived in

mass storage. A schematic of the Hall A DAQ (Data Acquisition) system is shown in

Fig. 2.35. The workhorse behind the data acquisition process is the CODA (CEBAF
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Figure 2.34: Cherenkov radiation. A charged particle in a medium with index of

refraction n travels from left to right at speed βc greater than the speed of light c/n

in that medium. A shock wave is created and propagates in a coherent wavefront

defined by the angle θ.

Online Data Acquisition) [74] software package.

2.5.1 Description

The Electron arm has one FASTBUS crate and the Hadron Arm has two FASTBUS

crates. The second FASTBUS crate in the Hadron Arm houses the FPP (Focal Plane

Polarimeter) electronics. The FPP was not used during this experiment. The crates

provide power to their modules and coordinate the flow of data between modules.

The crates house different types of modules:

• LeCroy 1877 TDCs operating in common-stop mode with 0.5 ns resolution for

the vertical drift chambers

• LeCroy 1875A TDCs operating in common-start mode with 0.1 ns resolution

for the trigger scintillators and Cherenkov counters

• LeCroy 1881M ADCs for the trigger scintillators, Cherenkov counters, and lead

glass counters
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Figure 2.35: The passage of a charged particle through one of the spectrometers

causes the Trigger Supervisor to initiate readouts of all ADCs, TDCs, and scalers in

the corresponding FASTBUS and VME crates. The Event Builder then assembles

the many fragments into a single event. Events are written into a CODA file which is

later sent to mass storage. The user controls the data acquisition system via a GUI

(Graphical User Interface) called Run Control running on a Unix workstation located

in the Counting House.
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Each spectrometer is equiped with a VME crate for BPM (Beam Position Monitor)

and raster data. The following nomenclature is used for refering to the readout

controllers (ROCs) in different crates in Hall A:

• ROC1: FASTBUS on E-arm

• ROC2: FASTBUS on H-arm

• ROC3: FASTBUS on H-arm for FPP (not used during E94-010)

• ROC14: VME on H-arm

• ROC15: VME on E-arm

The Trigger Supervisor is an electronic module developed by the Jefferson Lab Data

Acquisition Group to synchronize readouts and prescale trigger inputs. Each spec-

trometer has its own TS and can therefore be run independently. Experiments can

choose to run in 1-TS or 2-TS mode. In single Trigger Supervisor mode, only the

Trigger Supervisor in the Hadron Arm is operated. The naming scheme for Trigger

Supervisors is:

• TS0: TS on E-arm

• TS1: TS on H-arm

2.5.2 CODA

The CODA software package [74] is a toolkit developed by the Jefferson Lab Data

Acquisition Group to control complex data acquisition systems. The User’s Manual

for CODA 1.4 is a rich source of information about elementary concepts in CODA [74].

A charged particle incident upon one of the spectrometers generates electronic sig-

nals in the detectors (vertical drift chambers, trigger scintillators, Čerenkov counters,

and lead glass counters). These signals are sent to ROCs (Readout Controllers). Af-

ter suitable discrimination, signals from S1 and S2 scintillator planes, and Cherenkov

counters are utilized by the trigger electronics to classify the event as a possible trig-

ger type; T1 or T2 for the Electron Arm, and T3 or T4 for the Hadron Arm. In case

an event was registered, the Trigger Supervisor initiates readouts from all ROCs as

well as scaler in VME crates. The CODA Event Builder then bundles the multitude
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Figure 2.36: CODA physical record format. Shown here is the header for a CODA

physical structure. The actual elements of the data block are self-describing as to

type of data and length of arrays.

of readouts into a CODA event. Finally, the event is saved into a CODA file to be

archived later in mass storage. The CODA Data Distribution system can be used

effectively as a powerful tool that allows real-time display of scalers and histogram-

ming of detector signals to monitor the quality of data during the running of the

experiment. In addition, the codes DHIST and DATASPY, based on the DD system,

are used in Hall A for real-time data monitoring [75].

2.5.3 CODA File Format

A CODA file is a series of fixed-size physical records. Typically a physical record

would have size of 32,768 words where a word is 4 bytes (32 bits), thus the record

size is 128 KB. Each physical record has the structure shown in Fig. 2.36.
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Figure 2.37: ESPACE reads in a raw data file, a header file, a database file, and a

detector map, then writes several HBOOK files to disk.

2.5.4 ESPACE

ESPACE (Experiment Scanning Program for hall A Collaboration Experiments) [70]

is the de facto off-line analyzer for Hall A. ESPACE was originally developed by Eddy

Offermann and based on an earlier analyzer from Mainz. Much documentation about

ESPACE can be found on its website [70]. ESPACE accepts the following files for

input:

• Raw data file as output by CODA during each run

• Header file which contains information needed to construct some of the vari-

ables



CHAPTER 2. EXPERIMENTAL SETUP 78

• Database file which contains spectrometer constants and detectors

• Detector map which catalogs a comprehensive mapping between detector

readouts and electronic channels.

A KUMAC file is a macro file for the KUIP [76] command interpreter which provides

ESPACE with a PAW-like [77] interface. ESPACE executes the commands in the

KUMAC file then outputs several HBOOK files with ntuples and histograms. The

entire process is diagrammed in Figure 2.37.

2.6 Polarized 3He Target

2.6.1 Introduction

Experiment E94-010 utilized a polarized 3He target cell as a source of polarized neu-

trons. Polarization of the target cell is a two-step process: optical pumping and spin

exchange.

2.6.2 Optical Pumping

Alkali metals have a single electron in their outer shell. The ground state of that

electron is denoted 2S1/2. In the spectroscopic notation n2S+1LJ with n the principal

quantum number, S is the spin, L is the orbital angular momentum, and J is the

total angular momentum. 2S + 1 is the multiplicity of the state. Electrons have

spin S = 1/2 so the multiplicity is 2. L takes on the values S = 0, P = 1, D = 2,

F = 3, G = 4, etc. J = |L± S| is the sum of the orbital and spin angular momenta.

So for a P -state electron, J = |1 ± 1/2| = 1/2 or 3/2. It follows that alkali metals

also have an excited state split by spin-orbit coupling: 2P1/2 and 2P3/2. These states

undergo further Zeeman splitting by the introduction of an external magnetic field.

An electron in one of the excited states will drop down to the ground state via optical

transitions D1 (2P1/2 → 2S1/2) and D2 (2P3/2 → 2S1/2). These spectral lines are

termed a doublet (see Fig. 2.38), the most famous of which is the sodium doublet

appearing in the optical spectrum as two distinct lines at D1 = 589.59 nm and D2 =

588.96 nm. In optical pumping of alkali metals, right circularly polarized photons,

tuned to the wavelength of the D1 line are applied to a sample in a holding magnetic
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Figure 2.38: The doublet D1 and D2 of alkali metals are optical transitions from the

excited states 2P1/2 and 2P3/2 respectively to the ground state 2S1/2.
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Figure 2.39: A circularly polarized beam of light tuned to the D1 line forces atoms

from themJ = −1/2 ground state to themJ = +1/2 excited state. They in turn decay

back to both levels mJ = −1/2 and mJ = +1/2 of the ground state. Eventually, the

pumping cycle depopulates the mJ = −1/2 ground state in favor of the mJ = +1/2

ground state. This technique is known as optical pumping.
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field. These pumping photons must be in the direction of the applied magnetic field.

Because of selection rules in optical transitions, only transitions from the ground state
2S1/2, mJ = −1/2 to the excited state 2P1/2, mJ = +1/2 are induced. Transitions

back to the ground states 2S1/2, mJ = +1/2 and 2S1/2, mJ = −1/2 occur by emission

of linearly polarized light π and right circularly polarized light σ+, respectively, as

shown in Fig. 2.39. In time, the pumping cycle will depopulate the ground state

mJ = −1/2 in favor of mJ = +1/2. The polarization of the alkali metal can be

reduced by relaxation processes that include collisions between atoms and collisions

with the wall of the container. Moreover, when the excited electrons radiatively

decay back to the ground state, they do so by emitting unpolarized fluorescence

photons at the D1 or D2 line. That is they would tend to populate the mJ = +1/2

and mJ = −1/2 ground state equally. To quench this depolarization process, trace

amounts of a buffer gas, in this case nitrogen (N2), are introduced into the target

cell. This way, the excited electrons are able to decay radiationlessly, by transferring

energy to the vibrational, rotational, and translational degrees of freedom of the

N2 molecule, to the ground state. Unfortunately, since the introduction of nitrogen

dilutes the 3He cross section, there is a tradeoff between its quenching ability and

its polluting of the 3He cross section. Typically, the nitrogen to 3He number density

ratio is about 1:80. The alkali metal used in E94-010 was rubidium. Its D1 line is at

795 nm and D2 line at 780 nm [78]. The natural abundance of the two stable isotopes

of rubidium is 72.165% for 85Rb (I = 5/2) and 27.835% for 87Rb (I = 3/2) [43].

2.6.3 Spin Exchange

The spin exchange process involves the hyperfine interaction of the electronic spin of

Rb with the nuclear spin of 3He. Schematically, the reaction is

Rb(↑) + 3He(↓)→ Rb(↓) + 3He(↑). (2.41)

The magnetic dipole moment µn of the neutron in the 3He nucleus is [79, 80]

µn =
gne

2mp

I = gnµNI (2.42)

where gn is the neutron g-factor, I is the nuclear spin, and µN = e/2mp is the nuclear

magneton. The magnetic dipole moment µe of the rubidium valence electron is

µe = − e

me

S = −2µBS (2.43)
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where S is the electronic spin and µB = e/2me is the Bohr magneton. The magnetic

field generated by µn is [52]

B =
3(µn · r̂)− µn

r3
+

8π

3
µnδ(r) (2.44)

The potential energy of a dipole in an external magnetic field is U = −µ ·B, therefore

the interaction Hamiltonian is

HSE = −
[

3(µn · r̂)(µe · r̂)− (µn · µe)

r3

]
− 8π

3
(µn · µe)δ(r) (2.45)

For an electron in a spherically symmetric s state, the expectation value of the first

term vanishes and the spin exchange Hamiltonian becomes [81]

HSE =
16π

3
gnµNµBI · S|ψe(0)|2 (2.46)

The time evolution of the 3He polarization is [81,89]

PHe(t) = 〈PRb〉
[

γSE
γSE + Γ1

] [
1− e−(γSE+Γ1)t

]
(2.47)

where 〈PRb〉 is the average Rb polarization, γSE is the spin exchange rate, and Γ1 is

the 3He polarization relaxation rate excluding spin exchange.

2.6.4 NMR Polarimetry

Consider a magnetic dipole with moment µ immersed in a magnetic field B. The

torque τ experienced by the magnetic dipole in the presence of the magnetic field is

given by

τ = µ×B. (2.48)

If S is the spin that gives rise to the dipole, then

µ = γS (2.49)

where γ is the gyromagnetic ratio. Since torque is the rate of change of angular

momentum,

dµ

dt
= γµ×B. (2.50)
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In a macroscopic medium with many dipoles, it is customary to introduce the mag-

netization M as the magnetic dipole moment per unit volume. The magnetization is

given by [82]

dM

dt
= γM×B (2.51)

Eq. 2.51 describes the vector M as precessing in an inertial frame with angular veloc-

ity ω = −γB. In a physical sample, spin-lattice relaxation or longitudinal relaxation

involves the exchange of energy with other degrees of freedom (lattice). This relax-

ation mode is characterized by a relaxation time T1 and relaxes Mz to an equilibrium

value M0. Spin-spin relaxation or transverse relaxation involves destructive interfer-

ence with other spins. This relaxation mode is characterized by a relaxation time

T2 and relaxes Mx and My to 0 [83]. Phenomenologically, the equation of motion is

modified to provide the Bloch equations, first introduced by Felix Bloch in 1946 [84]:

dMx/dt = γ(MyBz −MzBy)−Mx/T2

dMy/dt = γ(MzBx −MxBz)−My/T2

dMz/dt = γ(MxBy −MyBx)− (Mz −M0)/T1





(2.52)

2.6.5 EPR Polarimetry

Principle

The EPR (Electron Paramagnetic Resonance) sometimes known as ESR (Electron

Spin Resonance) principle is very similar to NMR (Nuclear Magnetic Resonance).

Whereas NMR relies on the interaction of the nuclear spin with an external magnetic

field, EPR is a result of the electronic spin of paramagnetic substances interacting with

an external magnetic field. A paramagnetic material is one possessing an unpaired

outer shell electron producing a net, non-zero electronic spin. The case of paired

outer shell electrons with zero net spin or closed shell atoms is termed a diamagnetic

substance. The energy splitting ∆E in the presence of the magnetic field B provides

the fundamental equation of EPR [85]

hν = ∆E = gSµBB (2.53)

where h = 4.135 667 27(16) × 10−15 eV s is the Planck constant, ν is the frequency

in Hz, gS = −2.002 319 304 3737(82) is the Landé g-factor of the electron, and
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µB = eh̄/2me = 5.788 381 749(43) × 10−5 eV T−1 is the Bohr magneton [86–88].

During E94-010, the holding field was set around 18 G. This puts the resonance

frequency at about 50 MHz, in the RF (Radio Frequency) region.

EPR polarimetry involves measuring the shift of the Rb Zeeman resonance line

induced by the magnetic field created by polarized 3He [89]. There are two processes

responsible for shifting the Rb Zeeman resonance: Rb-He spin exchange and 3He

magnetization. The hyperfine structure Hamiltonian for an atom in a magnetic field

B is [90, 91]

H = hAI · S +B
3(I · S)2 + 3

2
(I · S)− I(I + 1)S(S + 1)

2I(2I − 1)S(2S − 1)

+gSµBS ·B + gIµNI ·B (2.54)

where I is the nuclear spin and S is the electronic spin. A is the magnetic dipole

interaction constant and B is the electric quadrupole interaction constant. Its is zero

for S = 0 or 1/2 because the electron distribution is spherically symmetric for these

cases. gI is the Landé g-factor of the Rb nucleus. The quantity µN = eh̄/2mp =

3.152 451 238(24) × 10−8 eV T−1 is the nuclear magneton [86]. The ratio µI/µN =

+1.353 351 5 and I = 5/2 for 85Rb [43]. Furthermore, since µI = gIµNI [85],

gI = 0.541 340 6. The Rb-He spin-exchange process contributes a K · S term to the

Hamiltonian [78]

H = hAI · S + hαK · S + gSµBS ·B + gIµNI ·B (2.55)

where K is the nuclear spin of 3He and α is the frequency shift parameter. The bulk

magnetization of the polarized 3He adds an effective static field δB to the external

magnetic field B

δB = GµHe[He]PHe (2.56)

where PHe is the polarization of 3He, [He] is the 3He number density, µHe is the mag-

netic moment of 3He, and G is a geometrical factor characterizing the target cell. For

example, G = 8π/3 for spherical volumes. The term I ·S dominates the Hamiltonian.

A = 1012 MHz in comparison to gSµBB/h = 50 MHz at B = 18 G. The I ·B term is

even more diminutive since µN/µB = me/mp ≈ 1/1836. Consequently, in considering

eigenstates of H, it is reasonable to invoke the eigenstates of total angular momentum

F = I + S. Their energies are given exactly by the Breit-Rabi formula [90–92] for an
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intermediate field, that is the interaction between the external magnetic field and the

atom is comparable to the hyperfine interaction,

E(F = I ± 1/2,MF ) = −hA
4
− gIµNBMF ±

hA

4
(2I + 1)

×
√

1 +
4MF

2I + 1
x+ x2 (2.57)

where x = 2(gSµBB + gIµNB + hα〈K〉)/hA(2I + 1). The energy difference between

adjacent energy levels is

∆E = E(F,MF )− E(F,MF − 1) (2.58)

=
hA

4
(2I + 1)

[√
1 +

4MF

2I + 1
x+ x2 −

√
1 +

4(MF − 1)

2I + 1
x+ x2

]
(2.59)

x� 1 at low magnetic field, so x2 can be dropped in expanding the radical terms in

Taylor series.

hν = ∆E =
hA

2
x =

(gSµB + gIµN)(B + δB) + hα〈K〉
2I + 1

(2.60)

where the classical magnetic field δB of the polarized 3He is shown explicitly. The

frequencies for each polarization direction are

ν↑ =
gSµB(B + δB) + hα〈K〉

h(2I + 1)
(2.61)

ν↓ =
gSµB(B − δB)− hα〈K〉

h(2I + 1)
(2.62)

where the gIµN term was ignored since it is much smaller then the corresponding

gSµB term. The EPR frequency shift is then

∆νEPR = ν↑ − ν↓ =
gSµB

h(2I + 1)
δB +

α〈K〉
2I + 1

(2.63)

The EPR frequency shift is usually written as [93]

∆νEPR =
gSµB

h(2I + 1)

8π

3
κ0µHe[He]PHe (2.64)

where κ0 is a constant that depends on temperature only [94]

κ0 = (5.17± 0.37)

[
1 +

T − 100◦C

(563± 30)◦C

]
(2.65)

Measuring the 3He polarization is reduced to measuring the difference in EPR fre-

quencies for each polarization orientation.
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Figure 2.40: Instrumentation for EPR polarimetry. The p-i-n diode picks up the

EPR signal from a window on top of the oven. That signal is extracted with a lock-

in amplifier, then sent to a PI controller box which outputs the frequency at which

the signal is zero (EPR resonance frequency). The resulting signal is mixed with a

modulation source, then sent to a VCO to provide the frequency that drives the EPR

coil. The EPR coil provides the RF excitation to induce EPR transitions of Rb in

the target cell.
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Figure 2.41: EPR lineshape.
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Figure 2.42: First derivative of EPR

lineshape.

Instrumentation

The apparatus to detect the EPR resonance of rubidium is shown in Fig. 2.40. A RF

field of 6 kHz modulated at 200 Hz was applied via the EPR coil. The field is trans-

verse to the main holding field. The effect of the RF field is to induce the transition

MF = 3 → 2 in rubidium. The electrons in the state MF = 2 are then optically

pumped to the excited P-states. Most of these excited electrons decay back to the

ground S-state radiationlessly with the help of the buffer gas (nitrogen). However, a

small minority, typically 3 to 5%, decays by emitting a D1 = 795 nm or D2 = 780 nm

fluorescence photon. Due to frequency modulation of the magnetic field, the intensity

of the fluorescence is proportional to the first derivative of the EPR resonance with

respect to the excitation frequency [95]. The EPR lineshape and its first derivative

are shown in Figs. 2.41 and 2.42. To avoid stray D1 radiation from the pumping

lasers, a D2 filter is placed in front of the p-i-n diode or photodiode that monitors

the fluorescence of the pumping chamber. The EPR signal from the photodiode is

extracted with a lock-in amplifier, then sent to a PI (proportional-integral) controller.

The PI controller locks in to the EPR resonance frequency which is the frequency at

which the first derivative of the EPR lineshape is zero. The resonance frequency is

mixed with a low frequency modulation source, then fed to a frequency counter and

a VCO (voltage-controlled oscillator) to drive the EPR coil. The purpose of the feed-

back circuit (PI controller) is to account for drifts in the holding field and hence drifts

in the EPR resonance frequency. The particulars of the feedback circuit are exposed

in Fig. 2.43. A typical EPR data taking session consisted of sweeping the frequency

through EPR resonance using the technique of AFP (Adiabatic Fast Passage) to flip
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Figure 2.43: The proportional-integral controller output coupled with the modulation

source Vmod adjusts the input to the voltage-controlled oscillator at Vout to keep the

input to the lock-in amplifier Vin at zero [89].
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Figure 2.44: Representative EPR frequency shift data set taken on 9/28/1998 at 9:53

pm. The difference in the EPR resonance frequencies between the alternate spin

directions is proportional to the 3He polarization. Here the EPR frequency shift is

roughly 21 kHz out of 12 MHz.
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Figure 2.45: Schematic of the polarized 3He target used during E94-010. The upper

right features a set of high-power lasers. The upper left displays the polarizing optics.

Only one set of Helmholtz coils is shown. The RF drive coils are used for both EPR

and NMR measurements. The target cell sits at the center with its pumping chamber

located inside an oven.

the spins at intervals of about a minute. A sample EPR data set is shown in Fig. 2.44.

The difference in EPR resonance frequencies is proportional to the 3He polarization.

2.6.6 Polarized 3He Target Setup

The setup of the polarized 3He target is shown in Fig. 2.45. A set of high-power diode

lasers is shown on the upper right. They are used for optical pumping of the target

cell. Four lasers are used for each pumping direction: longitudinal and transverse. In

the upper left is shown the polarizing optics which consists of focusing lenses, mirrors,

half-wave plates and quarter-wave plates. The latter are used to polarize the laser
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beam. The beam polarization achieved is close to 100%. The oven, in the center of

the diagram, holds the pumping chamber. The oven is used to bring the rubidium

in the pumping chamber to a temperature of 170◦C and in its gaseous state, to be

used in spin-exchange collisions with the helium in the target cell. There are two sets

of Helmholtz (main holding) coils, but only one set is shown in the diagram. The

other set is perpendicular to the first one. The combination of all four Helmholtz

coils provide a main holding magnetic field in any direction in the horizontal plane.

The field is utilized to define the polarization direction. The RF drive coils provide

a radio frequency field of 91 kHz during a NMR target polarization measurement.

The EPR drive coils achieve a similar purpose but for the EPR target polarization

measurement technique. The EPR p-i-n diode reads the shift in the rubidium optical

transition which is proportional to polarization. The pick-up coils, along the length

of the target chamber, are used to read the induced signal during an AFP/NMR

measurement of the target polarization. Not shown is the target ladder that includes

the reference cell and other targets used for calibration.
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ANALYSIS

There are two fundamental quantities of interest that are sought after in many ex-

perimental nuclear and particle physics experiments: cross section and asymmetry.

From these two observables, much of the physics being investigated can be readily

extracted. These quantities bridge the gap between experiment and theory in physics.

The experimental differential cross section is obtained with the following formula:
(

d2σ

dΩdE ′

)

exp

=
N

NincNtarget∆Ω∆E ′
, (3.1)

where σ is the total cross section, ∆Ω = ∆θ∆φ is the angular acceptance of the

spectrometer, ∆E ′ is the bin size in scattered electron energy, N is the number of

scattered electrons, Ninc = Q/e is the number of incident electrons and is simply

the accumulated charge Q normalized by the electronic charge e, and Ntarget is the

number of target nuclei per unit area. The experimental asymmetry is calculated

with the following formula:

Aexp =
1

fPbPt

N+/Q+ −N−/Q−
N+/Q+ +N−/Q−

, (3.2)

where f is a dilution factor introduced by unpolarized nuclei in the target cell, notably

nitrogen, Pb is the beam polarization, Pt is the target polarization, and N+(−) is the

number of detected scattered electrons with positive (negative) helicity.

3.1 Procedure of Analysis

A grand overview of the analysis procedure is illustrated in Fig. 3.1. The raw count-

ing rates N+ and N− for particles detected in the spectrometers may contain pions

90
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and other unwanted particles besides electrons. Thus, the events are subjected to

particle identification with the shower and Cherenkov counters. Events that fail to

provide a good track reconstruction by the drift chambers are also eliminated. In

addition, each detector introduces a detection efficiency which must be corrected for.

Normalizing the resulting scattered electrons counting rates N+
e and N−e by the total

beam charge, the dilution factor, the beam and target polarization, the target density,

the angular acceptance of the spectrometer obtained by Monte Carlo simulations, the

beam energy, and the radiative corrections provide the cross sections and asymme-

tries. Suitable combinations of the cross sections and various kinematical factors give

the structure functions and GDH sum rule for 3He. The corresponding physics quan-

tities for the neutron are extracted from 3He by accounting for nuclear effects with

the convolution approach of C. Ciofi degli Atti et al. [32].
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Figure 3.1: Analysis flowchart from raw counting rates to neutron structure functions

and the GDH sum rule.

3.2 Data Reduction

The event mode data goes through several stages of filtering in the process of extract-

ing cross sections and scattering asymmetries. These stages include:



CHAPTER 3. ANALYSIS 92

1. Event acquisition is limited by the data readout and data transferred rates,

requiring normalization to the raw trigger rate, as described in a later section.

2. Events are selected for processing by requiring the reconstruction of a good

event track in the wire chamber. Multiple tracks are rejected by the algorithm.

The results are renormalized to account for the events not analyzed and other

deadtime corrections.

3. “Good events” are further filtered by geometrical cuts and particle ID cuts

discussed further in the following sections.

4. The cross section generated must then be normalized for luminosity and accep-

tance. Most of these corrections are standard to event mode in Hall A HRS

event analysis.

Here only the cuts specific to this experiment will be discussed.

3.2.1 Geometrical Cuts

The main purpose of the geometrical cuts is to get rid of events coming from the

target windows and to cut off the edges of the spectrometer acceptance. That is, it is

desirable to stay within a well-understood part of the acceptance and keep away from

regions such as the edges of the acceptance where poor statistics yield large errors

and the acceptance is not well understod. The geometrical cuts are applied on target

variables θ, φ, y, and δ. Two two-dimensional cuts were applied to the data from

both the Electron and Hadron spectrometers. The first is a cut on the transverse

acceptance variables φ and y. The second is a cut on the bend plane observables θ

and δ. The geometrical cuts used in the final analysis are shown in Fig. 3.2.

3.2.2 Electron Arm Shower Counters

Calibration of the shower counters is essential in order to determine pion rejection

rates (π/e ratio). Cuts on the lead glass calorimeters along with cuts on the Cherenkov

counters can separate pions from electrons by several orders of magnitude. An un-

derstanding of the issues associated with these detectors such as detector efficiencies

and pion suppression abilities is of paramount importance. The calibration of the
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Figure 3.2: Geometrical cuts on target variables θ (Theta), φ (Phi), y (Y-target), and

δ (Dp) used in the final analysis. The concentration of events in the lower right-hand

quadrant outside the cut region in the left figure is due to the target windows.

shower counters for both the Electron and Hadron Arms during E94-010 is detailed

in Ref. [96]. The technique employed is described in detail in Ref. [97].

Calibration

Einstein’s relation, E2 = p2 + m2, simplifies to E ≈ p or E/p ≈ 1 for electrons

(me = 0.511 MeV) at the high beam energies of E94-010 (0.862-5.070 GeV). This is

verified in the plot of E/p vs. p in Fig. 3.3. The low data points come from runs

taken near the end of the experiment when the scintillator threshold was lowered

due to efficiency problems. It is believed that some of the helium which was used to

fill the target chamber escaped and corrupted the vacuum of the phototubes of the

scintillator counters thereby lowering their efficiency. The immediate solution was

to lower the threshold of the trigger scintillators which caused some noise in trigger.

However, after final cuts, this was no longer a problem. The high data points come

from runs with momentum settings near the limits of the spectrometers. The NMR

probe of the dipole proves unreliable and a gaussmeter must be used instead. The

difference can be attributed in part to a systematic error between the NMR probe

and the gaussmeter. The fractional resolution σ/E scales inversely as the square root
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of energy E. This is because electromagnetic showers obey a Poisson distribution, for

which the variance σ2 is equal to the mean energy E. A shower counter’s fractional

resolution is then:

σ

E
=

√
E

E
=

1√
E
. (3.3)

An additional factor is needed to account for various fundamental processes that

lead to energy deposition in the detector [98, 99]. In particular for lead-glass shower

counters, σ/E ∼ 5%/
√
E as indicated in Table 27.5 of Ref. [100]. This agrees well

with the measured values shown in Fig. 3.3 (σ/p ∼ 5.3%/
√
p) and Fig. 3.7 (σ/p ∼

4.2%/
√
p) for the Electron Arm and Hadron Arm, respectively.

Detection Efficiency

A T1 event is recorded when paddles from scintillator planes S1 and S2 fire in an

acceptable pattern, and the Cherenkov counter fires. The recipe for calculating the

efficiency of the calorimeter after selecting T1 events that pass the geometrical cuts

described above is:

efficiency =
events registered in preshower, shower, and Cherenkov counters

events registered in Cherenkov counter
. (3.4)

As can be seen in Fig. 3.4, the detection efficiency is consistently better than 99%

except at low energy (862 MeV) where a few events are omitted by the cluster forma-

tion algorithm. This fact is dramatically illustrated in Fig. 3.5. Many events to the

left of the histogram never enter the data acquisition system. A possible remedy for

the situation is to use the output of the raw ADCs instead. The E/p and preshower/p

cuts introduced in Fig. 3.5 excludes certain good electron events. Nonetheless, the

inefficiency of these cuts was kept below 1%. [

Pion Suppression

The estimate for pion contamination is achieved by applying cuts on different detec-

tors:

1. Cut on the preshower: An initial anti-Cherenkov cut, i.e. selection of all par-

ticles that fail to trigger the Cherenkov, is submitted. Ideally, no electrons are

left in the histogram. A cut is now made on the preshower where the pion peak



CHAPTER 3. ANALYSIS 95

0.86
0.88
0.9

0.92
0.94
0.96
0.98

1
1.02
1.04

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1720 MeV
2591 MeV
3384 MeV
4240 MeV
5070 MeV

 862  MeV

w
id

th

0.01293 + 0.05314/ x

σ/P vs. P

Electron Arm
E/P vs. P
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the shower counters in the Electron Arm.
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Figure 3.4: Detection efficiency for the Electron Arm. At low energy (862 MeV) the

cluster formation algorithm drops a few events.

is much more pronounced since not all of the pion energy is absorbed in this first

stage of the shower counter. The ratio of pions before to after the preshower

cut is the preshower pion suppression factor. It is typically around 4–5.

2. Cut on the Cherenkov: An E/p plot reveals two peaks. Pions are on the left

and electrons on the right. An E/p cut then separates pions from electrons. A

further anti-Cherenkov cut then selects pions. The ratio of pions before to after

the anti-Cherenkov cut is the Cherenkov pion suppression factor.

to obtain suppression factors. The results are shown in Fig. 3.6. The final pion

contamination is the ratio of pions to electrons inside the E/p cut, divided by the

preshower and Cherenkov suppression factors.

3.2.3 Hadron Arm Shower Counter

A calorimeter consisting of 32 (16×2) lead-glass blocks was added to the rear of the

detector stack in the Hadron Arm prior to E94-010.



CHAPTER 3. ANALYSIS 97

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

E/p cut

prsh/p cut

Lost events

P
re

sh
ow

er
 / 

P

Shower / P

Figure 3.5: Two-dimensional histogram of preshower/p vs. shower/p at 862 MeV

showing E/p and preshower/p cuts, where E =preshower+shower. The cluster forma-

tion algorithm drops some events on the left as is discussed in the left hand spectrum,

resulting in a reduced efficiency.

Calibration

The shower counter in the Hadron Arm is not a total absorption calorimeter. The

method used to calibrate the Electron Arm calorimeter cannot be used here. For

calibration purpose, only events that fire in a single block are examined. This is to

avoid miscalibration with events that pass through fissures between adjacent blocks in

the calorimeter. The method of analysis is fully described in Ref. [96]. The software

gain of each block is then manually adjusted to normalize the shower output by

particle momentum to unity. The results are displayed in Fig. 3.7. The detector

resolution σ/E of the Hadron Arm calorimeter is worse than that of the Electron

Arm by about 1%.
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Figure 3.6: (A) Pion suppression with a preshower cut. An anti-Cherenkov cut is

applied to the initial data sample to isolate pions. A preshower cut is made on the

pion population. A factor of 4-5 is obtained in this fashion for the ratio of pions

before to after the preshower cut. (B) Pion suppression with a Cherenkov cut. Pions

are identified as those particles to the left of the E/p cut. An anti-Cherenkov cut is

then applied to the pion sample. The resulting ratio of pions before and after the

anti-Cherenkov cut is of a couple of orders of magnitude.

Detection Efficiency

The detection efficiency of the Hadron Arm shower counter is reduced by the loss of

electrons that pass through the spacing between adjacent lead-glass blocks. However,

the detector efficiency is kept higher than 99%. The result is shown in Fig. 3.8.

Cut Efficiency

The cut on the Hadron shower was chosen in such a way to preserve inefficiency below

0.5%. The π/e ratios and detector efficiencies for both the Electron and Hadron Arms

are tabulated in Ref. [96].
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Figure 3.7: Plots of E/p and σ/p vs. p for the Hadron Arm. Note the shower counter

in the Hadron Arm is not a total absorption calorimeter.

3.2.4 Cherenkov Detectors

Calibration

Calibrating the Cherenkov detectors entails adjusting the offsets and gains of the

individual phototube ADCs. Since some electrons will fire several phototubes, one

needs to sum over all phototubes to obtain a good collection efficiency. Histograms

of the raw and calibrated Cherenkov ADCs are shown in Figs. 3.9 and 3.10. Note

the location of the single photoelectron peak on the left before and after calibration.

Stability

It was found that the output of the Cherenkov ADCs was reasonably stable over the

momentum range of E94-010 (see Fig. 3.11).
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Figure 3.8: Detection efficiency of the Hadron Arm shower counter. Electrons lost

in the spacing between blocks effectively reduce the detector efficiency. Nevertheless,

an efficiency of better than 99% is maintained throughout.

Detection Efficiency

The detection efficiency ε for a Poisson process like the emission of Cherenkov radia-

tion is:

ε = 1− e−µ, (3.5)

where µ is the average number of photoelectrons produced per meter, e−µ is the

probability of emitting no photoelectron, and µ ≈ 9 [102] yields ε ≈ 99.99%. The

method used to calculate efficiencies in the Electron and Hadron Arms is illustrated

in Figs. 3.12 and 3.13. For the Electron Arm (Fig. 3.12), a tight two-dimensional cut

is applied to the preshower vs. shower to select good electrons, followed by a cut on

the Cherenkov signal. The Cherenkov detection efficiency is the is the ratio of events

that pass the Cherenkov cut to these that pass the two-dimensional preshower vs.

shower cut:

Detection efficiency =
events registered in the Cherenkov detector

events that pass the preshower vs. shower 2-D cut
. (3.6)

For the Hadron Arm (Fig. 3.13), a shower/p cut is made to select good electrons.

The Cherenkov detection efficiency is the number of events that fire the Cherenkov
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Figure 3.9: Raw Cherenkov ADC spectra.

counter to the number of events that pass the shower/p cut:

Detection efficiency =
events registered in the Cherenkov detector

events that pass the shower cut
. (3.7)

The efficiencies as a function of momentum were also investigated with the results

shown in Fig. 3.14. Pion contamination is more pronounced at lower momenta. See

tables in Ref. [96]. This degrades the detection efficiency.

Cut Efficiency

Values for detection and cut efficiencies are tabulated for all kinematics in the ap-

pendix of Ref. [101].
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Figure 3.10: Calibrated Cherenkov ADC spectra.
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data points are averages of the 10 single photoelectron peaks. The low data points

in the top plot are mostly from the 2.591 GeV and 5.070 GeV runs near the end of

the experiment when the threshold on the trigger scintillators had to be lowered.
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Figure 3.12: Detection efficiency of the Cherenkov detector for the Electron Arm.

The plot in the upper left shows preshower vs. shower output without any cuts. A

tight two-dimensional cut is applied to the preshower vs. shower histogram resulting

in the plot in the upper right. The bottom plot shows the output of the Cherenkov

counter with the previous cut. The efficiency is the number of electrons that fire the

Cherenkov counter to the number of events that pass the preshower vs. shower cut.
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events that fire the Cherenkov to the number of events that pass the shower cut. The

events in the hashed area are pions obtained with an anti-Cherenkov cut and serve

only to illustrate the amount of pion contaminants.
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3.3 Charge Determination

The beam charge is determined from a particular V/F (voltage-to-frequency) scaler

as the product of the current and the duration of the run:

Q = I × T = RV/F ×
T

αI
, (3.8)

where RV/F is the V/F rate and αI is a calibration constant. The charge is accurate

to better than 1%.

3.4 Acceptance

In order to understand the acceptance of the spectrometer, a simulation of the 12C

data was done and subsequently compared with data runs. The results are shown in

Fig. 3.15.

3.5 Monte Carlo Techniques

The Monte Carlo method is a powerful tool to simulate electron scattering on a com-

puter. Such a program was developed by A. Deur [103,104] and subsequently used to

understand the acceptance of the Jefferson Lab Hall A High Resolution Spectrometers

during E94-010 [105]. Often, in a Monte Carlo simulation, it is desired to generate

some distribution with a certain probability density function. Of particular interest

is the Gaussian or normal distribution. A popular algorithm for generating two inde-

pendent, normally distributed random numbers z1 and z2 with mean 0 and variance

1 is to generate two uniformly distributed random variables u1 and u2 in the interval

(0,1), then calculate z1 = cos 2πu1

√
−2 ln u2 and z2 = sin 2πu1

√
−2 ln u2 [87,106–108].

Repeated evaluations of the trigonometric functions is somewhat inefficient, so faster

algorithms have been developed and implemented. See for instance the Fortran rou-

tine RNORML (V120) from CERNLIB [109].

3.6 Passage of Electrons Through Matter

The dominant physical processes for energy loss by electrons traversing a layer of

material at the incident energies of E94-010 are:



CHAPTER 3. ANALYSIS 108

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Horizontal scattering angle
(Rd)

Foil 2

Foil 3

Foil 4

Foil 5

Foil 6

dp/p=-4% dp/p=-2%

Experimental data

dp/p=0 dp/p=+2% dp/p=+4%

C(e’,e) elastic
12 in the HRS frame.

0.862 GeV, 15.5 o
Simulation

Figure 3.15: Fractional momentum δ = dp/p spectra of carbon data for experimental

data (in green) and simulation (in red) as measured in the Electron Arm.
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• Ionization

• External bremsstrahlung

• Internal bremsstrahlung

3.6.1 Ionization

Energy loss by ionization is a consequence of inelastic collisions with the atomic

electrons of the material. The expression for the average energy loss per unit path

length also known as stopping power was first worked out using classical arguments

by Bohr. Later Bethe, Bloch and others developed a formula based on quantum

mechanics. The Bethe-Bloch formula [87,98] is

−dE
dx

= 2πNAr
2
emec

2ρ
Z

A

z2

β2

[
ln

(
2mec

2β2γ2Tmax

I2

)
− 2β2

]
(3.9)

where

2πNAr
2
emec

2 = 0.1535 MeV/g cm−2 (3.10)

and

NA is Avogadro’s number 6.02214199(47)× 1023 mol−1.

re is the classical electron radius 2.817940285(31)× 10−13 cm.

me is the mass of the electron 0.510998902(21) MeV/c2.

ρ is the density of the material.

Z is the atomic number of the material.

A is the atomic weight of the material.

z is the charge of the incident particle in e.

β = v/c is the speed of the incident particle.

γ = 1/
√

1− β2

Tmax is the maximum kinetic energy per collision.



CHAPTER 3. ANALYSIS 110

I = I0Z is the mean excitation potential and I0 ≈ 13.5 eV.

The energy loss by ionization of particles crossing a thin absorber, where the energy

lost by the particle is small compared to its incident energy, is a statistical process

and spread out according to a distribution which was first calculated by Landau. This

Landau straggling follows a distribution [98,110,111]:

f(x,∆) =
1

ξ
φ(λ) (3.11)

where

ξ = 2πNAr
2
emec

2ρ
Z

A

z2

β2
x (3.12)

φ(λ) =
1

2πi

∫ ε+i∞

ε−i∞
ez ln z+λzdz (3.13)

λ =
1

ξ

[
∆− ξ

(
ln
ξ

ε
+ 1− γE

)]
(3.14)

ln ε = ln

(
I2

2mec2β2γ2

)
+ β2 (3.15)

and

x is the thickness of the absorber.

∆ is the energy loss.

ξ is approximately the mean energy loss.

λ is a dimensionless variable.

φ(λ) is the probability density function.

γE is the Euler-Mascheroni constant 0.577216.

Often in Monte Carlo simulations of the energy loss it is desired to generate random

numbers according to the Landau distribution. It is useful to introduce a distribution

function Φ(λ) of the density φ(λ), and its inverse Ψ(x):

Φ(λ) =

∫ λ

−∞
φ(λ′)dλ′ (3.16)

Ψ(x) = Φ−1(x) (3.17)
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If x is a random variable distributed uniformly between 0 and 1, then Ψ(x) is the

corresponding is distributed according to the Landau density Φ(λ). The energy loss

can then be deduced from λ using Eq. (3.14). Figs. 3.16 and 3.17 show the Landau

density and distribution, respectively. The Landau density peaks at λ = −0.222782

with φ(λ) = 0.180655. The corresponding most probable energy loss is:

∆mp = ξ

[
ln
ξ

ε
+ 0.200002

]
(3.18)

For the purpose of evaluating φ(λ) a couple of integral representations of the Landau

distribution function have been derived [112]:

φ(λ) =
1

π
e−σ

∫ ∞

0

exp

[
σ

2
ln

(
1 +

u2

σ2

)
− u arctan

u

σ

]

cos

[
u

2
ln

(
1 +

u2

σ2

)
− u+ σ arctan

u

σ

]
du

φ(λ) =
1

π

∫ ∞

0

e−λuu−u sinπudu

where σ = e−λ−1 and the first formula is used for negative λ while the second formula

is used for positive λ. The CERNLIB program library contains the LANDAU (G110)

package which includes the Fortran routines DENLAN, DISLAN, and RANLAN

for evaluating φ(λ), Φ(λ), and Ψ(x) respectively [109].

3.6.2 External Bremsstrahlung

The emission of radiation by scattering from nuclei other than the target nucleon is

termed external bremsstrahlung [113]. Let Ie(E,∆, t) d∆ represent the probability
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of an electron with incident energy E traversing a material with thickness t in units

of radiation length to lose energy between ∆ and ∆ + d∆. The density function

Ie(E,∆, t) is [114,115]:

Ie(E,∆, t) =
1

Γ(bt)

1

∆

(
∆

E

)bt
φ

(
∆

E

)
(3.19)

where

b =
4

3

{
1 +

1

9
[(Z + 1)/(Z + ξ)][ln(183Z−1/3)]−1

}
(3.20)

ξ = ln(1440Z−2/3)/ ln(183Z−1/3) (3.21)

φ(v) = 1− v +
3

4
v2 (3.22)

and φ(v) is due to the screening of nuclear potentials by atomic electrons. For the

purpose of Monte Carlo simulations the integral of Ie(E,∆, t) is:

∫ ∆

0

Ie(E,∆
′, t) d∆′ =

1

Γ(1 + bt)

(
∆

E

)bt
+O

(
∆

E

)1+bt

(3.23)

Following the transformation method [106, 107], if R is a random number in [0,1] let

R = (∆/E)bt. Therefore the formula:

∆ = ER
1
bt (3.24)

will generate energy losses ∆ according to the external bremsstrahlung distribution

Ie(E,∆, t) provided:

1

Γ(1 + bt)
∼ 1 and

(
∆

E

)1+bt

�
(

∆

E

)bt
. (3.25)

3.6.3 Internal Bremsstrahlung

Internal bremsstrahlung refers to the real photons emitted during scattering with

the target nucleon. The scattering process has an angular distribution of 1/γ and

therefore strongly peaked along the direction of the incident and outgoing electrons.

The Feynman diagrams representing these processes are displayed in Fig. 3.18. This

effect can be approximated by placing an effective or virtual before and after the

target, each of thickness [114]:

bt =
α

π

[
ln

(
Q2

m2
e

)
− 1

]
(3.26)

where Q2 is the momentum transfer squared.
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Figure 3.18: Lowest order Feynman diagrams for real bremsstrahlung.

3.6.4 Multiple Scattering Through Small Angles

Charged particles traveling through a certain material suffer deflections due to multi-

ple Coulomb scatterings from nuclei. The distribution of scattering angles is described

by the theory of Molière and is approximately Gaussian for small angles with a tail

that follows a 1/ sin4(θ/2) dependence as a result of Rutherford single scatterings.

The width of the central Gaussian is given by [87,116]:

θ0 =
13.6 MeV

β2γmec2

√
t [1 + 0.038 ln t] (3.27)

where t is the target thickness in radiation lengths.

3.7 Radiators

In order to be able to calculate radiation loss by electrons going through various ma-

terials, a list of materials and some of their atomic and nuclear properties is required.

Such a list was originally compiled by F. Xiong [118] and reproduced in Fig. 3.19,

and Table 3.1 and 3.2. Corning 1720 [119] is an aluminosilicate glass used for the

construction of the reference cell. GE 180 [120] is another type of glass used for the

construction of the target cell Armageddon. The composition of both glasses and

some of their properties are listed in Table 3.4 and 3.5. The effective atomic num-

ber, atomic weight, and X0 for compounds and mixtures were calculated using the



CHAPTER 3. ANALYSIS 114

0.01" Be

θ
e25.7 cm

1" air

20 cm

Beam Dump
Beam Line

0.01" Al

0.01" Al

0.007" Kapton

0.004" Titanium
Detector

e

He3 Target Cell

0.13/0.142 mm glass window

~1.3  mm glass wall

42 cm

Detectore

Spectrometer

Hadron Arm

Electron ArmTarget Enclosure
65.2 cm air

64.2 cm air

He4 jets
45.7 cm

e

~

Figure 3.19: Radiators for E94-010.
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Material Length Thickness Thickness

(cm) (g/cm2) (radiation length)

Beryllium 0.0254 4.694× 10−2 7.200× 10−4

Air 2.54 3.060× 10−3 8.347× 10−5

Aluminum 0.0254 6.855× 10−2 2.855× 10−3

Helium 25.7 4.274× 10−3 4.532× 10−5

Corning 1720 0.013 3.302× 10−2 1.229× 10−3

or GE 180 0.013 3.588× 10−2 1.846× 10−3

Nitrogen 20 2.331× 10−2 6.135× 10−4

Table 3.1: Radiators before scattering for Electron and Hadron arms.

following formulas [98]:

Zeff =
∑

aiZi, (3.28)

Aeff =
∑

aiAi, (3.29)

1

X0

=
∑ wi

Xi

, (3.30)

where ai is the number of atom of the ith element in the compound, wi = aiAi/Aeff

is the fraction by weight of the ith element, Zi is the atomic number of the ith

element, and Ai is the atomic weight of the ith element. Values of Z, A, and X0 for

elements are taken from Table III.6 of Ref. [121]. Their densities are from Ref. [122].

Compositions and densities of air and kapton were obtained from Ref. [123] and

reproduced in Table 3.6 and 3.7. X0 for air and kapton are taken from Ref. [87].

The data and simulation are displayed in red and blue respectively in Figs. 3.20 and

3.21. The simulation is normalized by area to the data. δtg and ytg of the simulation

are slightly shifted to the left with respect to the data. θtg and φtg yield rather good

agreement between simulation and data. The excitation energy EX is defined by:

EX = W −M, (3.31)

W =
√
M2 −Q2 + 2Mν, (3.32)

Q2 = 4EE ′ sin2 θ

2
, (3.33)

ν = E − E ′, (3.34)
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Material Length Thickness Thickness

(cm) (g/cm2) (radiation length)

Corning 1720 0.4865 1.236 4.602× 10−2

or GE 180 0.4865 1.343 6.908× 10−2

Helium 42 6.985× 10−3 7.406× 10−5

Aluminum 0.0254 6.855× 10−2 2.855× 10−3

Air (Electron Arm) 65.2 7.855× 10−2 2.143× 10−3

Air (Hadron Arm) 64.2 7.735× 10−2 2.110× 10−3

Kapton 0.0178 2.528× 10−2 6.232× 10−4

Titanium 0.0102 4.631× 10−2 2.864× 10−3

Table 3.2: Radiators after scattering for Electron and Hadron arms

Material Z A Density X0

(g/cm3) (g/cm2)

Helium 2 4.002602 1.6632× 10−4 94.32

Beryllium 4 9.012182 1.848 65.19

Nitrogen 7 14.00674 1.1653× 10−3 37.99

Aluminum 13 26.981538 2.6989 24.01

Titanium 22 47.867 4.54 16.17

Kapton 6.35993 12.70147 1.42 40.56

Air 7.372747 14.801088 1.20479× 10−3 36.66

Corning 1720 33.0586 66.7270 2.54 26.86

GE 180 33.5138 82.9943 2.76 19.44

Table 3.3: Atomic and Nuclear Properties of Materials.
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Material Weight Z A X0

Percentage (g/cm2)

SiO2 60.7 30 60.0843 27.05

Al2O3 17.3 50 101.961276 17.29

B2O3 5.0 34 69.6202 38.42

Na2O 1.0 30 61.97894 29.17

K2O 0.2 46 94.196 18.90

MgO 7.4 20 40.3044 28.03

CaO 8.6 28 56.0774 19.01

As2O3 0.5 90 197.8414 14.18

Table 3.4: Composition of Corning 1720.

Material Weight Z A X0

Percentage (g/cm2)

SiO2 60.3 30 60.0843 27.05

CaO 6.5 28 56.0774 19.01

BaO 18.2 34 153.3264 9.02

SrO 0.25 46 103.6194 12.04

Al2O3 14.3 50 101.961276 17.29

Table 3.5: Composition of GE 180.

Material Fraction by weight

Carbon 0.000124

Nitrogen 0.755267

Oxygen 0.231781

Argon 0.012827

Table 3.6: Composition of

air.

Material Fraction by weight

Hydrogen 0.026362

Carbon 0.691133

Nitrogen 0.073270

Oxygen 0.209235

Table 3.7: Composition of kap-

ton.
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Figure 3.20: δtg, ytg, θtg, and φtg for nitrogen elastic peak at Ebeam=1.7169 GeV.
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Figure 3.21: Excitation energy spectrum in GeV for nitrogen elastic peak at

Ebeam=1.7169 GeV.
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where W is the missing mass, M is the target mass (in this case nitrogen), Q2 is

the four-momentum transfer squared, E is the beam energy, E ′ is the scattered en-

ergy, θ is the scattering angle, and ν is the energy loss. The simulated excitation

energy spectrum agrees well with the data, with the provision that the beam energy

dispersion be 3× 10−4.

3.8 Radiative Corrections

The measured cross section contains radiative effects. The method utilized to extract

the Born cross section from the experimentally measured cross section consists of

three main steps:

1. Subtract the elastic radiative tail.

2. Subtract the radiative tails of discrete levels such as the quasielastic and the ∆.

3. Unfold the Born cross section from the continuous spectrum by considering

external and internal radiative effects.

The contribution of the elastic radiative tail to the cross section is much more signif-

icant than that of the discrete levels. The elastic radiative tail runs throughout the

entire spectrum whereas the effects of the radiative tails of the discrete levels are only

felt by neighboring levels.

3.8.1 Elastic Radiative Tail

Following the treatment of Stein et al. [125], the elastic radiative tail in the peaking

approximation may be written as:

σpk tail = (σp + σb)Fsoft, (3.35)

where σp is the elastic radiative tail in the angle-peaking approximation with internal

radiation only and σb is the elastic radiative tail with straggling caused by target

bremsstrahlung and ionization loss only (external radiation). These cross sections
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are calculated by:

σp ≡
(

d2σ

dΩdEp

)

p

=
MT + (Es − ωs)(1− cos θ)

MT − Ep(1− cos θ)
σ̃el(Es − ωs)

[
btrφ(vs)

ωs

]

+σ̃el(Es)

[
btrφ(vp)

ωp

]
, (3.36)

σb ≡
(

d2σ

dΩdEp

)

b

=
MT + (Es − ωs)(1− cos θ)

MT − Ep(1− cos θ)
σ̃el(Es − ωs)

[
btrφ(vs)

ωs
+

ξ

2ω2
s

]

+σ̃el(Es)

[
btrφ(vp)

ωp
+

ξ

2ω2
p

]
, (3.37)

ωs = Es −
Ep

1− (Ep/MT )(1− cos θ)
, (3.38)

ωp =
Es

1 + (Es/MT )(1− cos θ)
− Ep, (3.39)

vs = ωs/Es, (3.40)

vp = ωp/(Ep + ωp), (3.41)

ξ =
πm

2α

ta + tb
(Z + η) ln(183Z−1/3

, (3.42)

b =
4

3
1 +

1

9
[(Z + 1)/(Z + η)][ln(183Z−1/3]−1, (3.43)

η = ln(1440Z−2/3)/ ln(183Z−1/3), (3.44)

tr =
1

b

α

π

[
ln

(
Q2

m2
e

)
− 1

]
, (3.45)

where σ̃el(E) = F̃ (Q2)σel(E) is the elastic cross section corrected by a factor F̃ (Q2).

The function φ(v) = 1 − v + 3
4
v2 characterizes the shape of the bremsstrahlung

spectrum. The variables tb and ta designate the total path lengths in units of radiation

lengths before and after scattering, respectively.
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Figure 3.22: Vacuum polarization. Figure 3.23: Vertex correction.

Factor F̃ (Q2)

The factor F̃ (Q2) represents all other corrections independent of ∆E = Epeak
p −Emin

p .

It is given by:

F̃ (Q2) = 1 + γEbT

+
2α

π

[
−14

9
+

13

12
ln

(
Q2

m2
e

)]

− α

2π
ln2

(
Es
Ep

)

+
α

π

[
π2

6
− Φ

(
cos2 θ

2

)]
, (3.46)

where γE ≈ 0.577216 is the Euler-Mascheroni constant [126]. The first term is an

approximation:

1/Γ(1 + bT ) ≈ 1 + γEbT. (3.47)

The second term is the sum of the vacuum polarization (Fig. 3.22) and vertex cor-

rection (Fig. 3.23) diagrams:

δvacuum =
2α

π

[
−5

9
+

1

3
ln

(
Q2

m2
e

)]
, (3.48)

δvertex =
2α

π

[
−1 +

3

4
ln

(
Q2

m2
e

)]
. (3.49)
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Figure 3.24: The Spence function Φ(x). Note the logarithmic scale on the x-axis.

The third term is an approximation to the sum of a couple of Spence functions:

Φ

(
Ep − Es
Ep

)
+ Φ

(
Es − Ep
Es

)
≈ −1

2
ln2

(
Es
Ep

)
. (3.50)

The last term is the Schwinger correction. The definition of the Spence function,

shown in Fig. 3.24, is

Φ(x) =

∫ x

0

− ln |1− y|
y

dy. (3.51)

Below are properties of the Spence function used in computer codes for the purpose

of its evaluation:

Φ(1) =
π2

6
, (3.52)

Φ(−1) = −π
2

12
, (3.53)

Φ(x) =
∞∑

n=1

xn

n2
= x+

x2

4
+
x3

9
+ · · · if |x| ≤ 1, (3.54)

Φ(x) = −1

2
ln2 |x|+ π2

3
− Φ

(
1

x

)
if x > 1, (3.55)

Φ(x) = −1

2
ln2 |x| − π2

6
− Φ

(
1

x

)
if x < −1. (3.56)
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Elastic Cross Section

The elastic cross section is defined as

σel ≡
(
dσ

dΩ

)

el

= σMott
E ′

E
|F (Q2, θ)|2, (3.57)

where the Mott cross section in the ultrarelativistic limit and the recoil factor are

σMott ≡
(
dσ

dΩ

)

Mott

=
Z2α2

4E2

cos2(θ/2)

sin4(θ/2)
, (3.58)

E ′

E
=

[
1 +

2E

MT

sin2 θ

2

]−1

, (3.59)

respectively. The form factor F (Q2, θ) depends on the target.

3.8.2 Elastic Form Factor of 14N

The elastic form factors of 14N used in the simulation are those of Ref. [124], where

data was taken at incident beam energy 250 MeV and scattering angles from 40 to

90◦, and incident beam energy 400 MeV and scattering angles from 32 to 85◦. The

data was then analyzed with a harmonic-well shell model in the Born approximation.

The Q2 and θ dependence of the elastic form factor can be explicitly separated by

introducing two separate form factors:

F 2(Q2, θ) = F 2
L(Q2) +

[
1

2
+ tan2 θ

2

]
F 2
T (Q2), (3.60)

where F 2
L(Q2) is the longitudinal or Coulomb form factor and F 2

T (Q2) is the transverse

form factor. Multipole expansions of the form factors gives:

F 2
L(Q2) =

∞∑

λ=0

F 2
Cλ(Q2), (3.61)

F 2
T (Q2) =

∞∑

λ=1

[F 2
Eλ(Q

2) + F 2
Mλ(Q2)]. (3.62)
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In the case of elastic scattering, only the C0, C2, and M1 terms contribute:

F 2
C0(Q2) =

∣∣∣∣
(

1− 2α

2 + 3α

)
e−(x+d)

∣∣∣∣
2

, (3.63)

F 2
C2(Q2) =

Q4

180

(J + 1)(2J + 3)

J(2J − 1)

(
Q

Z

)2

e−2(x+d), (3.64)

F 2
M1(Q2) =

2

3

J + 1

J

x

a2m2
p

( µ
Z

)2
[
1− 2

3
x+ α

2

3
x

]2

e−2(x+d), (3.65)

x =
1

4
Q2a2, (3.66)

d =
1

4
Q2

(
a2
p −

a2

A

)
, (3.67)

ap =
2

3

√
〈r2
p〉, (3.68)

where the parameters for 14N are summarized in Table 3.8. The experimental

Parameter Value

a 1.75± 1.2 fm

|µ| 30± 65 µN

α 0.44± 0.35

Q 1.52± 4.2 fm2

ap 0.63 fm

J 1

Z 7

A 14

Table 3.8: Parameters of elastic form factors for 14N.

points along with the corresponding calculated values for the 14N form factor are

displayed in Tables 3.9 and 3.10 for incident energies 250 and 400 MeV, respectively.

Figs. 3.25 and 3.26 are graphs of the data along with two theoretical fits. Both fits are

harmonic-well models. The fit by Ref. [124] uses the electric monopole (C0), electric

quadrupole (C2) and magnetic dipole (M1) terms. The fit by Ref. [125] only uses the

electric monopole term.
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θ q 104 × F 2(q2) 104 × F 2(q2)

(deg) (fm−1) (experimental) (calculated)

40 0.86 1643± 63 1840

50 1.07 637± 16 679

60 1.26 195± 6 209

70 1.45 42.3± 1.2 44.4

80 1.62 7.25± 0.54 7.84

90 1.78 3.50± 0.31 3.34

Table 3.9: Elastic form factors of 14N at Ebeam = 250 MeV.

θ q 104 × F 2(q2) 104 × F 2(q2)

(deg) (fm−1) (experimental) (calculated)

32 1.12 500± 15 496

35 1.22 261± 7 262

38 1.32 120± 4 126

40 1.38 73.2± 2.3 76.6

43 1.48 28.8± 0.9 30.0

45 1.55 14.7± 0.5 14.4

48 1.64 6.18± 0.19 5.67

50 1.70 3.56± 0.10 3.72

53 1.80 3.03± 0.13 3.33

55 1.86 3.32± 0.11 3.67

65 2.16 3.43± 0.15 3.39

75 2.44 1.72± 0.11 1.34

80 2.58 0.799± 0.076 0.686

85 2.70 0.310± 0.060 0.354

Table 3.10: Elastic form factors of 14N at Ebeam = 400 MeV.
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Figure 3.25: Elastic form factor of 14N at Ebeam = 250 MeV. The fits by Dally et

al. [124] and Stein et al. [125] are harmonic-well models.
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Figure 3.26: Elastic form factor of 14N at Ebeam = 400 MeV. The fits by Dally et

al. [124] and Stein et al. [125] are harmonic-well models.
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Electric Magnetic

a=0.675 ± 0.008 fm a=0.654 ± 0.024 fm

b=0.366 ± 0.025 fm b=0.456 ± 0.029 fm

c=0.836 ± 0.032 fm c=0.821 ± 0.053 fm

d=(-6.78 ± 0.83) × 10−3

q0=3.98 ± 0.09 fm−1

p=0.90 ± 0.16 fm−1

Table 3.11: Parameters for 3He elastic form factors.

3.8.3 Elastic Form Factor of 3He

In order to estimate the contribution of the 3He elastic radiative tail in the raw cross

section the 3He elastic form factor must be known. The 3He elastic form factor is

taken from Refs. [128] and [129]. Here, the differential cross section is given by:

σel = σMott
E ′

E

[
W2(q2) + 2W1(q2) tan2 θ

2

]
, (3.69)

W2(q2) =
F 2
e (q2) + τF 2

m(q2)(1 +K)2

1 + τ
, (3.70)

W1(q2) = τF 2
m(q2)(1 +K)2, (3.71)

τ = q2/4M2, (3.72)

F (q2) = e−a
2q2 − b2q2e−c

2q2

, (3.73)

∆F = d exp

[
−
(
q − q0

p

)2
]
, (3.74)

where 1 + K = −2.127624857 is the anomalous magnetic moment of the 3He nu-

cleus [43]. Here, F (q2) is the form factor and ∆F (q2) is a modification to the electric

form factor needed to reproduce the diffraction minimum in the fit. The parameters

used to fit the form factors are shown in Table 3.11. The experimental points with

errors are graphed in Figs. 3.27 and 3.28, and tabulated in Tables 3.12 and 3.13.

3.8.4 Elastic Radiative Tail Contributions

Using the elastic form factors of 14N and 3He established in the previous sections,

the amount of contamination in the raw data by the elastic radiative tails can be
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Figure 3.27: 3He electric form factor.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12  14  16

F
m

2 (q
2 )

q2 (fm-2)

3He magnetic form factor

Figure 3.28: 3He magnetic form factor.



CHAPTER 3. ANALYSIS 130

q2 (fm−2) F 2
e (q2) q2 (fm−2) F 2

e (q2)

0.347 (6.82± 0.17)× 10−1 3.50 (2.72± 0.09)× 10−2

0.400 (6.51± 0.16)× 10−1 4.00 (1.70± 0.06)× 10−2

0.451 (6.02± 0.15)× 10−1 4.50 (1.08± 0.05)× 10−2

0.500 (5.82± 0.15)× 10−1 5.00 (6.76± 0.23)× 10−3

0.542 (5.48± 0.14)× 10−1 5.50 (4.07± 0.14)× 10−3

0.600 (5.16± 0.13)× 10−1 6.00 (2.64± 0.08)× 10−3

0.639 (4.87± 0.12)× 10−1 6.50 (1.67± 0.10)× 10−3

0.700 (4.55± 0.11)× 10−1 7.00 (1.05± 0.06)× 10−3

0.800 (4.26± 0.11)× 10−1 7.50 (6.61± 0.80)× 10−4

0.900 (3.85± 0.10)× 10−1 8.00 (4.09± 0.59)× 10−4

1.000 (3.32± 0.08)× 10−1 9.00 (1.69± 0.39)× 10−4

1.100 (2.97± 0.08)× 10−1 9.50 (1.07± 0.34)× 10−4

1.200 (2.69± 0.07)× 10−1 10.00 (3.75± 3.15)× 10−5

1.500 (1.93± 0.05)× 10−1 11.00 (0.0 + 2.29,−0.00)× 10−5

1.800 (1.39± 0.04)× 10−1 11.50 (3.6 + 15,−3.6)× 10−6

2.000 (1.15± 0.03)× 10−1 12.50 (0.0 + 1.5,−0.0)× 10−5

2.20 (9.43± 0.24)× 10−2 13.50 (2.55± 0.91)× 10−5

2.50 (6.91± 0.18)× 10−2 14.00 (4.95± 1.62)× 10−5

2.70 (5.71± 0.17)× 10−2 16.00 (3.05± 0.62)× 10−5

2.80 (4.94± 0.16)× 10−2 18.00 (3.51± 0.99)× 10−5

3.00 (4.19± 0.11)× 10−2 20.00 (3.06± 0.64)× 10−5

Table 3.12: 3He electric form factors.
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q2 (fm−2) F 2
m(q2) q2 (fm−2) F 2

m(q2)

2.00 (1.03± 0.35)× 10−1 7.50 (1.06± 0.46)× 10−3

2.80 (4.90± 0.97)× 10−2 8.00 (3.80± 3.13)× 10−4

3.00 (3.88± 0.35)× 10−2 9.00 (2.04± 1.53)× 10−4

3.50 (1.42± 0.85)× 10−2 9.50 (1.20± 1.18)× 10−4

4.00 (1.39± 0.36)× 10−2 10.00 (1.93± 1.05)× 10−4

4.50 (1.04± 0.13)× 10−2 11.00 (1.46± 0.73)× 10−4

5.00 (5.28± 1.57)× 10−3 11.50 (5.66± 4.71)× 10−5

5.50 (5.56± 0.85)× 10−3 12.50 (4.2 + 5.3,−4.2)× 10−5

6.00 (3.07± 0.33)× 10−3 14.00 (0.5 + 0.9,−0.5)× 10−5

6.50 (2.13± 0.69)× 10−3 16.00 (0.3 + 0.7,−0.3)× 10−5

7.00 (1.29± 0.39)× 10−3

Table 3.13: 3He magnetic form factors.

estimated. Fig. 3.29 shows such an example for Ebeam=862 MeV and θ=15.5◦. The
14N cross section has been normalized by the factor 2[N]/[He] where the factor of 2

is a correction for nitrogen being a diatomic molecule, and [N] and [He] represent the

partial pressures of nitrogen and helium, respectively. Notice that the rise of the tail

in the raw data at high energy loss is not due to the elastic radiative tails of 14N or
3He. The rise of the tail was later proved to originate from multiple scattering of

electrons in the target materials [130].

3.8.5 Radiative Tail of a Discrete Level

The radiative tails of excited states was investigated and found to be negligible. In

addition, the contribution of rubidium to the radiative corrections is insignificant

since only trace amounts of the element enter the target cells.

3.8.6 Continuum Radiative Corrections

External Bremsstrahlung

External bremsstrahlung is the result of energy loss by electrons due to bremsstrahlung

in the field of atomic nuclei other than the nucleus causing the large angle scattering.
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Figure 3.29: Raw cross section at Ebeam=862 MeV.

This process is illustrated in the Feynman diagrams of Figs. 3.30 and 3.31 where

the electron traverses a radiator before and after scattering, respectively. In order

to remove external radiation to the continuum state, the following prescription of

Mo and Tsai [115] was employed:

σrad(Es, Ep, T ) =

∫ T

0

dt

T

∫ Es

Esmin (Ep)

dE ′s

∫ Epmax (E′s)

Ep

dE ′p

×Ie(Es, E ′s, t)σ(E ′s, E
′
p, t)Ie(E

′
p, Ep, T − t), (3.75)

Ie(E0, E, t) =
bt

E0 − E

[
E

E0

+
3

4

(
E0 − E
E0

)2
] [

ln

(
E0

E

)]bt
, (3.76)

Esmin
(Ep) =

m2
π + 2Mmπ + 2MEp

2M − 2Ep(1− cos θ)
, (3.77)

Epmax(E ′s) =
2ME ′s − 2Mmπ −m2

π

2M + 2E ′s(1− cos θ)
, (3.78)

where Ie(E0, E, t)dE is the probability of finding an electron in the energy interval

dE after an electron with initial energy E0 and final energy E travels a distance t

in units of radiation lengths. The unradiated cross section σ is the quantity sought.
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Figure 3.30: External

bremsstrahlung before scattering.

Figure 3.31: External

bremsstrahlung after scattering.

Figure 3.32: Internal

bremsstrahlung before scattering.

Figure 3.33: Internal

bremsstrahlung after

scattering.
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The unfolding procedure consists of solving for σ by iteration. The technique goes as

follows. The experimentally measured cross section σexp is used as a starting guess

for σ and inserted into the multidimensional integral above. A radiated cross section

σrad is obtained in this fashion. Next, the unradiated cross section σ is corrected by

a factor σexp/σrad:

σ ← σexp

σrad

× σ. (3.79)

The integration process is restarted and the entire unfolding procedure is repeated a

number of times until a satisfactory convergence is achieved. Typically, five passes

are sufficient [127].

Internal Bremsstrahlung

Internal bremsstrahlung constitutes the emission of a real photon before and after

scattering as in Figs. 3.32 and 3.33, respectively. Internal radiative corrections were

treated using a modified version of POLRAD [131] to account for the polarizations

of the beam and target.



Chapter 4

RESULTS

4.1 Experimental Cross Sections and Asymmetries

4.1.1 Inclusive Spin-Averaged Cross Sections

The spin-averaged inclusive inelastic cross section can be expressed in terms of two

invariant structure functions as follows [133–135]:

d2σ

dΩdE ′
=

(
dσ

dΩ

)

NS

[
W2(ν,Q2) + 2W1(ν,Q2) tan2 θ

2

]
, (4.1)

(
dσ

dΩ

)

NS

=

(
dσ

dΩ

)

Mott

E ′

E
, (4.2)

(
dσ

dΩ

)

Mott

=
α2

4E2

cos2(θ/2)

sin4(θ/2)
. (4.3)

The structure functions W1(ν,Q2) and W2(ν,Q2) embody the physics of interest.

The inclusive unpolarized inelastic cross sections for the six incident beam energies

of this experiment (862, 1717.9, 2580.5, 3381.8, 4238.6, and 5058.2 MeV) are shown

in Fig. 4.1. Displayed are the unpolarized cross sections after averaging over both

spectrometer arms and after removal of the elastic peak and its radiative tail. The

solid lines show the raw inelastic cross section before radiative corrections whereas the

dashed lines indicate cross sections after inelastic radiative corrections are applied.

The spectra are characterized by several important features, namely, the quasielastic,

resonance and deep inelastic regions. The quasielastic peak, centered at ν = Q2/2M ,

dominates the spectrum at the lower energies. The width of this peak is due to Fermi

motion of the constituent nucleons. As the beam energy is increased, contribution

135



CHAPTER 4. RESULTS 136

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  50  100  150  200  250  300  350  400  450  500

dσ
/d

Ω
dE

’ (
nb

/M
eV

/s
r)

ν=E-E’ (MeV)

Ebeam=0.86 GeV

Before radiative corrections
After radiative corrections

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  500  1000  1500  2000  2500

dσ
/d

Ω
dE

’ (
nb

/M
eV

/s
r)

ν=E-E’ (MeV)

Ebeam=3.4 GeV

Before radiative corrections
After radiative corrections

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  200  400  600  800  1000  1200

dσ
/d

Ω
dE

’ (
nb

/M
eV

/s
r)

ν=E-E’ (MeV)

Ebeam=1.7 GeV

Before radiative corrections
After radiative corrections

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  500  1000  1500  2000  2500  3000

dσ
/d

Ω
dE

’ (
nb

/M
eV

/s
r)

ν=E-E’ (MeV)

Ebeam=4.2 GeV

Before radiative corrections
After radiative corrections

 0

 2

 4

 6

 8

 10

 12

 0  200  400  600  800 1000 1200 1400 1600 1800 2000

dσ
/d

Ω
dE

’ (
nb

/M
eV

/s
r)

ν=E-E’ (MeV)

Ebeam=2.6 GeV

Before radiative corrections
After radiative corrections

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 1800  2000  2200  2400  2600  2800  3000  3200

dσ
/d

Ω
dE

’ (
nb

/M
eV

/s
r)

ν=E-E’ (MeV)

Ebeam=5.1 GeV

Before radiative corrections
After radiative corrections

Figure 4.1: Inclusive spin-averaged inelastic cross sections before (solid red lines)

and after (dashed blue lines) radiative corrections for the six beam energies of this

experiment. Indicated on the plots are the quasielastic, the first and second resonance

regions, and the deep inelastic scattering region. The elastic tail has already been

removed from this figure.
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from the first resonance region dominated by the ∆(1232) or P33 resonance becomes

apparent at an energy loss ν ≈ Q2/2M+300 MeV. As beam energy increases further,

additional resonances at increasing excitation energies become visible. At yet higher

energies, the quasielastic peak and resonance peaks diminish due to the falloff with

Q2 of their respective form factors. For W > 2 GeV scattering from point-like partons

occurs. In the deep inelastic scattering (DIS) region, as ν,Q2 → ∞ but finite Q2/ν,

the form factors W1(ν,Q2) and W2(ν,Q2) follow simple scaling limits to first order in

QCD:

MW1(ν,Q2) → F1(x), (4.4)

νW2(ν,Q2) → F2(x). (4.5)

F1(x) and F2(x) are now functions of a single dimensionless variable x = Q2/2Mν

known as the Bjorken scaling variable. Moreover, in the quark parton model, the

scaling structure functions F1(x) and F2(x) obey the Callan-Gross relation [136]:

2xF1(x) = F2(x). (4.6)

Nowadays, these partons are identified as due to point-like quark constituents. Note

that even below this point, the overlapping resonances appear to scale as predicted

by the Bloom-Gilman duality arguments. At the highest beam energies of 4.2 and

5.1 GeV, the contribution from the scaling region dominates the spectra.

4.1.2 Scattering Asymmetries

Traditionally, the asymmetries have been the easier physical quantities to extract,

chiefly, because various normalization factors cancel each other out. The asymmetries

were defined in the theory chapter as:

A‖ =
σ↓↑ − σ↑↑
σ↓↑ + σ↑↑

, (4.7)

A⊥ =
σ↓→ − σ↑→
σ↓→ + σ↑→

, (4.8)

where the first arrow superscript on the polarized cross sections refers to the beam

polarization and the second arrow superscript refers to the target polarization. For the

parallel asymmetry A‖, the target polarization is kept fixed along the beam direction

and the beam polarization, longitudinal to the beamline, is pseudo-randomly flipped.
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Figure 4.2: Parallel (red circles) and perpendicular (blue triangles) asymmetries as a

function of energy loss. The error bars are statistical only.
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For the perpendicular asymmetry A⊥, the target polarization is maintained transverse

to the beam direction and the beam polarization is again pseudo-randomly flipped.

A‖ has a large negative value at the ∆ (≈ 2%) and is Q2-independent. Similarly A⊥

has a large positive value at the ∆. It is interesting to note that A‖ and A⊥ are rough

mirror images of each other in the resonance region. In the deep inelastic scattering

regime, A‖ becomes large whereas A⊥ quickly dies out. The measured asymmetries

are diluted by contribution from unpolarized backgrounds such as nitrogen. However,

the results presented here have been corrected for dilution and radiative corrections.

4.2 Polarized Spin Structure Functions g1 and g2

The polarized structure functions G1(ν,Q2) and G2(ν,Q2) are related to the measured

polarized cross sections in the following way [133]:

d2σ

dΩdE ′
(↑↓ − ↑↑) =

4α2

M3Q2

E ′

E
[M(E + E ′ cos θ)G1 −Q2G2], (4.9)

d2σ

dΩdE ′
(↑→ − ↑←) =

4α2

M3Q2

E ′2

E
sin θ[MG1 + 2EG2]. (4.10)

Like their unpolarized counterparts, in the scaling limit, the polarized structure func-

tions G1(ν,Q2) and G2(ν,Q2) are replaced by the scaling polarized structure functions

g1(x) and g2(x) [133]:

ν

M
G1(ν,Q2)→ g1(x), (4.11)

ν2

M2
G2(ν,Q2)→ g2(x). (4.12)

Plots of the g1 and g2 structure functions for 3He as a function of energy loss ν are

shown in Fig 4.3. It is to be noted that the quasielastic region does not contribute

significantly to the structure functions. However, the ∆ and resonance regions play a

major role for both g1 and g2. In the scaling region, g1 dominates. Plots of g1 and g2

as a function of the Bjorken scaling variable x are shown in Fig. 4.4 at the six beam

energies of this experiment and at six chosen and equally spaced Q2: 0.10, 0.26, 0.42,

0.58, 0.74, and 0.90 GeV2. The evaluation of g1 and g2 from constant beam energy to

constant Q2 was done by interpolation and in a few instances by extrapolation [137].
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Figure 4.3: The 3He polarized structure functions g1 (red circles) and g2 (blue trian-

gles) as a function of invariant mass. The error bars are statistical only.
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4.3 Extraction of Neutron from 3He

In this experiment, all measurements were performed on a polarized 3He target. Hence

spin structure functions and asymmetries extracted so far are those of 3He. However,

in a näıve model of the 3He nucleus, all nucleons sit in a S-wave state. In this picture,

both protons carry opposite’ spins and cancel each other out. What is left is the

spin of the neutron. Thus, to a large extent, the neutron may be approximated by

a 3He nucleus. The spin structure functions and asymmetries for 3He and the neu-

tron are then identical. Unfortunately, the scenario just described is not completely

accurate. In a realistic model of the 3He wave function, where effective nucleon po-

larizations are taken into account but not nuclear effects, the S state is augmented by

an admixture of S’- and D-wave components, with a negligible P-wave contribution.

World calculations on the three-body system for the extra wave function percentages

give PD = 9.8% and PS′ = 1.4%. The prescription for getting at the neutron spin

structure functions and asymmetries from those of 3He and the proton is [33]:

g
3He
1 = 2ppg

p
1(x) + png

n
1 (x), (4.13)

A3H̃e = 2fpppA~p + fnpnA~n, (4.14)

Here the important quantities are the effective nucleon polarizations pp and pn of

the proton and neutron, respectively. Their values from world calculations are pp =

−0.028 ± 0.004 and pn = 0.86 ± 0.02. The dilution factor of the proton(neutron) is

defined as fp(n) = F
p(n)
2 /(2F p

2 + F n
2 ), and the asymmetry is A~p(~n) = 2xg

p(n)
1 /F

p(n)
2 . In

the same fashion, a formula for the GDH integral is developed [33]:

I
3He(Q2) = 2ppI

p(Q2) + pnI
n(Q2). (4.15)

In order to introduce nuclear effects, namely Fermi motion and binding effects, a

convolution approach [33] is employed. The method consists of defining the spin

structure function of 3He as a convolution of the spin structure function of the nu-

cleon and its spectral functions, summed over the constituent nucleons. This last

convolution approach differ from the method of effective nucleon polarizations by at

most 5%. However, the correction to the GDH integral of the neutron from 3He may

be as large as 30%. All the cross sections, asymmetries, and structure functions pre-

sented in this thesis do not include corrections for nuclear effects. However, results

for the GDH integral are presented for both the neutron in 3He (no correction for
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nuclear effects) and the free neutron (corrections for nuclear effects included). The

extraction of the neutron GDH integral from 3He was obtained by multiplying by a

factor InGDH/I
3He
GDH acquired from Ref. [33].

4.4 GDH Integrand

The polarized cross sections measured in this experiment are connected to the transverse-

transverse interference term σ′TT and the longitudinal-transverse interference term σ ′LT

by [138]:

σ↓↑ − σ↑↑ ≡ d2σ↓↑

dΩdE ′
− d2σ↑↑

dΩdE ′
= 2ΓD(1 + εR)(σ′TT + ησ′LT ), (4.16)

σ↓→ − σ↑→ ≡ d2σ↓→

dΩdE ′
− d2σ↑→

dΩdE ′
= 2Γd(1 + εR)(σ′LT − ζσ′TT ), (4.17)

where

Γ =
α

4π2

K

Q2

E ′

E

2

1− ε . (4.18)

The photon depolarization factor D = (1− εE ′/E)/(1 + εR), d = D
√

2ε/(1 + ε), η =

ε
√
Q2/(E−εE ′), ζ = η(1+ε)/2ε, ε−1 = 1+2(1+γ−2) tan2(θ/2), γ = 2Mx/

√
Q2, R =

σL/σT , and K is the photon flux and is convention-dependent. In this experiment, the

convention picked is the so-called Hand convention and is defined as K = ν−Q2/2M .

Substituting D and d in the equations for the differences of polarized cross sections

above yield a new set of linear equations:

σ↓↑ − σ↑↑ = 2Γ(1− εE ′/E)(σ′TT + ησ′LT ), (4.19)

σ↓→ − σ↑→ = 2Γ(1− εE ′/E)(σ′LT − ζσ′TT ). (4.20)

This removes the dependency of R and obviates the need to obtain experimentally

measured values for R = σL/σT . This experiment measured the quantities σ↓↑, σ↑↑,

σ↓→, and σ↑→. All the other factors (Γ, ε, η, and ζ) depend only on the kinemat-

ics. The GDH integrand σ′TT and σ′LT may now be extracted from the set of linear

equations above. For completeness sake, the spin-averaged cross section in the above

formalism is simply:

d2σ

dΩdE ′
= Γ(σT + εσL). (4.21)
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Thus, having measured the polarized cross sections, the interference terms required

by the GDH sum rule are readily extracted. Fig. 4.5 shows σ ′TT as a function of

invariant mass W at the six constant beam energies of this experiment (left plot)

and σ′TT as a function of energy loss ν as a function of six chosen and equally spaced

Q2 values. All values are averaged over both the Electron and Hadron arms. The

dominant feature of σ′TT is the ∆(1232) or P33 resonance. It is by far the single largest

contributor to the GDH integral.

4.5 GDH Sum Rule and Integral

The GDH sum rule links the total photoabsorption cross-section difference to the nu-

cleon anomalous magnetic moment [16]. This relationship is captured in the following

equation:

∫ ∞

ν0

dν

ν
(σ1/2 − σ3/2) = −2π2α

M2
κ2. (4.22)

σ1/2(3/2) is the total photoabsorption cross section where the index represents the

projection of total angular momentum along the quantization axis for the photon-

nucleon pair. Here, ν is the energy loss and ν0 is the threshold of pion production. M

is the mass of the nucleon and κ is the anomalous magnetic moment of the nucleon.

The prediction of the GDH sum rule is restricted to real photons only, that is Q2 = 0.

In this experiment, a beam of electrons interacted with the target nucleons via virtual

photons. Thus it is necessary to extend the GDH sum rule to virtual photons if

a meaningful dialogue between theory and experiment is to be engaged. This is

traditionally done by redefining the GDH integral for finite Q2. Several definitions of

the GDH integral exist in the literature [26, 31]. The one chosen for this experiment

is [139]:

I(Q2) = 2

∫ ∞

ν0

dν

ν
(1− x)σ′TT . (4.23)

x = Q2/2Mν is the Bjorken scaling variable. As defined above, the real photon limit

for the GDH integral is:

I(0) = −2π2α

M2
κ2. (4.24)
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Figure 4.5: σ′TT as a function of invariant mass W at the six beam energies of this

experiment (left) and σ′TT as a function of energy loss ν for six chosen, equally spaced

Q2 values (right). Statistical errors are represented by the error bars on the data

points and systematic errors are represented by the error bands on the horizontal

axes. The open circles represent interpolated points.
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Q2 (GeV2) IGDH (µb) Statistical (µb) Systematic (µb)

0.10 -187.50 5.23 28.43

0.26 -109.92 2.04 13.77

0.42 -53.51 1.21 5.48

0.58 -31.68 0.74 3.72

0.74 -18.27 0.64 2.42

0.90 -10.47 0.46 1.52

Table 4.1: Experimentally measured values for I
3He
GDH(Q2) before nuclear corrections

along with their corresponding statistical and systematic errors; see Ref. [1].

On the other side of the momentum spectrum,

I(Q2)→ 16π2α
Γ1(Q2)

Q2
as Q2 →∞, (4.25)

where Γ1(Q2) =
∫ 1

0
g1(x,Q2)dx. This experiment measured values of the GDH inte-

gral for the neutron from 3He. If, in addition, measurements of the GDH integral for

the proton are obtained, the difference,

Γp1(Q2)− Γn1 (Q2) =
1

6

∣∣∣∣
gA
gV

∣∣∣∣
[
1− αs(Q

2)

π

]
, (4.26)

is the well-known Bjorken sum rule [7] and has been calculated to high accuracy in

the fundamental theory of quantum chromodynamics (QCD). Here, gA/gV is the ratio

of the axial to vector coupling constant in the β decay of the neutron and αs is the

strong coupling constant. Table 4.1 contains values for the GDH integral measured

in this experiment. These values have been evaluated at fixed Q2 by interpolating

between values of constant beam energies. In addition, alongside the experimental

points, theoretical predictions for both the GDH sum rule and integral are plotted in

Fig. 4.6. Note the GDH integral of the model of Ref. [26] does not match the GDH

sum rule at Q2 = 0. This is possibly due to some missing resonances or insufficient

strengths of certain resonances in their model.
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Note that beyond a Q2 of 1 GeV2, the data points are plotted with a semi-log scale.
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4.6 Conclusion and Outlook

This dissertation describes the first experiment to measure g1, g2, σ′TT , and InGDH(Q2)

in the low Q2 range of 0.1 to 0.9 GeV2. The low Q2 evolution of the GDH integral

may be compared with model predictions from different phenomenologies: chiral per-

turbation theory, lattice quantum chromodynamics (when available), and high twist

expansion. Future experiments at Jefferson Lab aim to extend these measurements to

lower Q2 [142] to answer the question whether the GDH integral makes the expected

dramatic turnover at Q2 below 0.1 GeV2 and meets the predicted value for the GDH

sum rule of I(0) = −232.8 µb.

Experiment E94-010 is the first of a series of many successful experiments in

Hall A to use the polarized 3He target. As part of that programme, a polarized
3He target facility has been built at Jefferson Laboratory and a target cell building

facility has been setup at the College of William and Mary under the auspices of T.

Averett. The latter is an ongoing active research effort and target cells with record

ever increasing polarization have been developed. In addition, the accelerator group

has been breaking new grounds by achieving ever higher beam polarization at high

luminosity and reliability. One can only wait with anticipation at the physics results

pouring out of this program in the next few years.
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ADDENDUM

An experiment of this magnitude involves a large collaborative effort and many years

of preparation. I would like to thank the co-spokepersons, Prof. Z.-E. Meziani,

Prof. G. Cates, and Dr. J.-P. Chen, for proposing the experiment and for the dedica-

tion and effort to bring the experiment to fruition and build the required polarized
3He target system specifically needed for this measurement. I would like to acknowl-

edge Jefferson Laboratory Accelerator Division for providing high-quality polarized

beam using the Continuous Electron Accelerator Facility. Thanks also to the entire

Hall A Collaboration and its leader Dr. Kees de Jager for providing the standard

experimental High-Resolution Spectrometers and additional apparatus needed, and

the manpower.

Such a large experiment is, of necessity, a collective endeavor of numerous people,

not the least significant of which is the work of my fellow Ph.D. thesis students,

K. Slifer, A. Deur, S. Jensen, and I. Kominis, and a cadre of postdocs, notably,

Drs. D. Pripstein, S. Choi, and X. Jiang. A complete list of collaborators is presented

at the end of this section, extracted from the first publication of the work described

in this thesis. Space prohibits my mentioning all by name.

In the work of this magnitude, the question arises as to the specific contribution

of any one individual, namely myself. At the request of Prof. J.D. Walecka, I would

like to acknowledge a partial list of specific contributions I have made to this project:

1. I participated in the initial construction and installation of the polarized 3He

target and its initial calibration. Some specific contributions I made include:

cabling for target ladder controller, building of the oven by working closely with
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the design team, and assisting with early water polarimetry.

2. I also made very significant contributions of both the commissioning and pro-

duction run for E94-010. This includes taking 55 shifts on the experiment, more

than any other individual collaborator. My primary contribution during data

acquisition was that of Target Operator and Data Acquisition Shift Worker.

3. Contributions to the subsequent analysis included much of the work needed to

obtain the absolute cross section, including extraction scintillator inefficiencies,

nitrogen dilution factors, deadtime analysis, and elastic radiative tail correc-

tions. Normalized cross sections are important for extracting the GDH inte-

grand. In addition, I did a thorough investigation of all the runs to check the

scaler data and cross-check target polarization orientations, as well as eliminat-

ing bad data.

4. Last, but not least important, is my work and love of this thesis which has

taken so many years of my time and from which I have learned so much. In

the process, I have learned to write an important document, and I would like

to thank the members of my thesis committee for their feedback and patience.

These people are College of William and Mary Profs. J.M. Finn, T.D. Averett,

D.S. Armstrong, K.A. Griffioen, Distinguished Prof. J.D. Walecka, and the

external examinator Dr. J.-P. Chen from Jefferson Laboratory.
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Sum rules involving the spin structure of the nucleon
offer an important opportunity to study quantum chro-
modynamics (QCD). At long distance scales or in the
confinement regime, a sum rule of great interest is that

due to Gerasimov, Drell, and Hearn (GDH) [1,2]. The
GDH sum rule relates an integral over the full excitation
spectrum of the spin-dependent total photoabsorp-
tion cross section to the nucleon’s anomalous magnetic
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Figure 5.1: Cover page from initial publication of this work showing the Jefferson

Laboratory E94-010 collaborators and their respective institutions.
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Tables of g1(x), g2(x), and σ′TT

Presented in this chapter are tables of the physics quantities measured in this ex-

periment. Tables 1-6 include values of g1(x) at constant beam energy. Tables 7-12

include values of g2(x) at constant beam energy. Tables 13-18 include values of g1(x)

at constant Q2. Tables 19-24 include values of g2(x) at constant Q2. Tables 25-30

include values of σ′TT vs. W at constant beam energy. Tables 31-36 include values of

σ′TT vs. ν at constant Q2. The last column of each table represents statistical errors

only.

Table A.1: g1(x) at Ebeam = 0.86 GeV

x g1(x) Statistical

1.12 0.14182250E-01 0.26234046E-02

0.35 0.91571636E-01 0.60040797E-02

0.20 0.11382457E-01 0.82934806E-02

0.13 0.10658792E-02 0.81755072E-02

0.09 -0.49901415E-01 0.40711936E-01

0.07 -0.13679247E+00 0.24238409E-01

0.06 -0.22968970E+00 0.33332061E-01

0.04 -0.17004804E+00 0.47813617E-01

0.03 -0.10828505E+00 0.50857317E-01

0.03 -0.33049781E-01 0.59056628E-01

0.02 -0.90949327E-01 0.16542999E+00

0.02 -0.23331431E+00 0.30727485E+00

152



APPENDIX A. TABLES OF G1(X), G2(X), AND σ′TT 153

Table A.2: g1(x) at Ebeam = 1.7 GeV

x g1(x) Statistical

4.51 -0.16306395E-02 0.10699913E-03

1.46 -0.22705919E-02 0.21377730E-02

0.85 0.34619238E-01 0.79466505E-02

0.59 0.41623883E-01 0.72399811E-02

0.44 0.34726663E-02 0.59218481E-02

0.35 -0.16102279E-01 0.77965166E-02

0.29 -0.18617181E-01 0.89896452E-02

0.24 -0.11674576E+00 0.13463100E-01

0.20 -0.13845623E+00 0.22265524E-01

0.17 -0.10323865E-01 0.25535723E-01

0.15 0.19927669E-01 0.16946007E-01

0.13 0.14430597E-01 0.18075427E-01

0.12 -0.42113303E-02 0.16524276E-01

0.10 -0.34073610E-01 0.21528162E-01

0.09 0.51094666E-01 0.28412353E-01

0.08 -0.13106216E-01 0.25847560E-01

0.07 -0.20000676E-02 0.29022532E-01

0.06 -0.63624866E-01 0.39962627E-01

0.06 0.70814778E-04 0.39350338E-01

0.05 -0.12766827E-01 0.77100240E-01

0.05 -0.72170891E-01 0.51351890E-01

0.04 0.57972752E-01 0.44542219E-01

0.04 0.50687820E+00 0.19393364E+00

0.03 0.10037500E+01 0.27364549E+00

0.03 0.14831458E+01 0.21846020E+00

0.02 0.19500046E+01 0.33972446E-01
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Table A.3: g1(x) at Ebeam = 2.6 GeV

x g1(x) Statistical

10.22 0.36296681E-01 0.63235092E-03

3.34 0.35186585E-02 0.10241738E-04

1.96 0.32382572E-03 0.20288014E-03

1.37 -0.13550362E-02 0.11910818E-02

1.05 0.26851977E-03 0.35099837E-02

0.84 0.17225698E-02 0.46784608E-02

0.69 0.20381914E-01 0.39229984E-02

0.59 0.14061023E-01 0.40358393E-02

0.51 -0.94419662E-02 0.55401931E-02

0.44 -0.44636104E-01 0.98728212E-02

0.39 -0.53154502E-01 0.12776713E-01

0.35 -0.82318485E-01 0.13364040E-01

0.31 -0.59743538E-01 0.16884565E-01

0.28 -0.58646314E-01 0.14159492E-01

0.26 -0.42269982E-01 0.12391546E-01

0.23 0.18245949E-02 0.15401202E-01

0.21 0.22452618E-02 0.16328041E-01

0.19 0.15153727E-01 0.15674304E-01

0.18 -0.60126376E-02 0.20183455E-01

0.16 0.10961683E-01 0.20105746E-01

0.15 0.16520057E-01 0.18633366E-01

0.14 0.23036931E+00 0.22658363E-01

0.13 0.55162704E+00 0.21369396E-01

0.12 0.84337813E+00 0.24912560E-01

0.11 0.12172891E+01 0.21434600E-01

0.10 0.15553987E+01 0.23642356E-01

0.09 0.19741496E+01 0.22993388E-01

0.09 0.16165129E+01 0.24930939E-01

0.08 -0.13816418E+00 0.25629917E-01

0.07 -0.16858179E-01 0.28302766E-01
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Table A.3: g1(x) at Ebeam = 2.6 GeV

x g1(x) Statistical

0.07 -0.40372554E-01 0.28958468E-01

0.06 -0.68981551E-01 0.33252705E-01

0.06 -0.90578087E-01 0.33722520E-01

0.05 -0.73108234E-01 0.29512106E-01

0.05 -0.54406628E-01 0.40314399E-01

0.05 -0.15339199E+00 0.54153755E-01

0.04 0.21072589E+00 0.13131882E+00

0.04 -0.18311450E+00 0.50190572E-01

0.03 -0.16698907E+00 0.18729267E+00

Table A.4: g1(x) at Ebeam = 3.4 GeV

x g1(x) Statistical

1.84 -0.26862817E-04 0.54414594E-03

1.48 -0.69356535E-03 0.34488586E-03

1.23 -0.21423807E-03 0.74801873E-03

1.05 0.28862262E-02 0.14576418E-02

0.91 0.58034372E-01 0.22032454E-02

0.80 0.68118731E-02 0.21556602E-02

0.71 0.38112768E-02 0.31887873E-02

0.64 -0.95562711E-02 0.38042590E-02

0.58 -0.23624588E-01 0.48740194E-02

0.53 -0.37551660E-01 0.66223340E-02

0.48 -0.46644263E-01 0.65085799E-02

0.44 -0.23888119E-01 0.62438259E-02

0.41 -0.21869641E-01 0.65440098E-02

0.38 -0.82710752E-03 0.79535833E-02

0.35 0.18345626E-01 0.79408344E-02

0.32 -0.17569920E+00 0.84132487E-02

0.30 -0.57906967E+00 0.92388699E-02
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Table A.4: g1(x) at Ebeam = 3.4 GeV

x g1(x) Statistical

0.28 -0.71906912E+00 0.11570845E-01

0.26 -0.79048979E+00 0.10951820E-01

0.25 -0.73019654E+00 0.11092637E-01

0.23 -0.59086710E+00 0.13427658E-01

0.22 -0.40579370E+00 0.14305437E-01

0.20 -0.20995156E+00 0.14672418E-01

0.19 0.64403981E-01 0.15120492E-01

0.18 -0.12374887E-01 0.17340321E-01

0.17 -0.23902573E-01 0.15521068E-01

0.16 -0.22538722E-01 0.15925694E-01

0.15 -0.41337423E-01 0.21149745E-01

0.14 -0.22313419E+00 0.15706538E+00

0.13 -0.14013819E+00 0.55227943E-01

0.13 -0.82780495E-01 0.31293456E-01

0.12 -0.62498111E-01 0.18735601E-01

0.11 -0.83540969E-01 0.23571163E-01

0.11 -0.18613680E+00 0.59740413E-01

0.10 -0.10718542E+00 0.37500184E-01

0.09 -0.69411345E-01 0.31711966E-01

0.09 -0.80979288E-01 0.23585496E-01

0.08 -0.99490821E-01 0.35758894E-01

0.08 -0.11014149E+00 0.45921136E-01

0.07 -0.11045226E+00 0.45349233E-01

0.07 -0.93336336E-01 0.27916530E-01

0.06 -0.82355820E-01 0.47905438E-01

0.06 -0.61615016E-01 0.40889718E-01

0.06 -0.56889951E-01 0.38737681E-01

0.05 -0.48980452E-01 0.48134804E-01
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Table A.5: g1(x) at Ebeam = 4.2 GeV

x g1(x) Statistical

1.30 0.80808077E-03 0.16237996E-02

1.16 -0.62457827E-03 0.18325783E-02

1.05 0.52421396E-02 0.34310624E-02

0.95 0.19452974E-01 0.38110972E-02

0.87 0.53533177E+01 0.52270875E-02

0.80 -0.95838638E+02 0.40947930E-02

0.73 -0.72953491E+02 0.24826899E-02

0.68 -0.53496925E+02 0.24193737E-02

0.63 -0.43318588E+02 0.33312179E-02

0.59 -0.36649883E+02 0.38725245E-02

0.55 -0.31842117E+02 0.54022931E-02

0.52 -0.28248373E+02 0.56709526E-02

0.48 -0.25304966E+02 0.55362713E-02

0.45 -0.22956518E+02 0.52327006E-02

0.43 -0.20864058E+02 0.53148521E-02

0.40 -0.15755212E+02 0.65190136E-02

0.38 0.76201224E+00 0.72898748E-02

0.36 0.71846750E-02 0.79123322E-02

0.34 0.16173370E-03 0.74368124E-02

0.32 -0.42652260E-02 0.83301868E-02

0.31 -0.73306621E-02 0.10533367E-01

0.29 -0.17781585E-01 0.11892070E-01

0.28 0.81141023E-02 0.11807044E-01

0.26 0.14994864E-01 0.11533692E-01

0.25 -0.11311520E-03 0.14761130E-01

0.24 -0.32201316E-01 0.16177498E-01

0.23 -0.48282448E-01 0.16572295E-01

0.22 -0.31293787E-01 0.15804337E-01

0.21 -0.15409846E-01 0.20686787E-01

0.20 -0.68948515E-01 0.38399711E-01
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Table A.5: g1(x) at Ebeam = 4.2 GeV

x g1(x) Statistical

0.19 0.15892087E-01 0.49721401E-01

0.18 0.53825393E-01 0.64382814E-01

0.17 0.35791159E-01 0.46547893E-01

0.16 -0.31354681E-01 0.20832958E-01

0.16 -0.68346553E-01 0.18339409E-01

0.15 -0.71198612E-01 0.24392886E-01

0.14 -0.10926700E+00 0.50926276E-01

0.14 -0.36866434E-01 0.90590693E-01

0.13 -0.81900870E-02 0.50177231E-01

0.12 -0.63442580E-01 0.25287675E-01

0.12 -0.36305726E-01 0.23834264E-01

0.11 0.68128407E-02 0.30182019E-01

0.11 -0.32328241E-01 0.57840478E-01

0.10 0.23692858E+00 0.14878465E+00

0.10 0.98638915E-01 0.14331158E+00

0.09 -0.13922465E-01 0.17079030E+00

0.09 -0.66735268E-01 0.12662871E+00

0.08 -0.64184606E-01 0.44997573E-01

0.08 -0.13073483E+00 0.46533972E-01

0.07 -0.13420624E+00 0.47769587E-01

Table A.6: g1(x) at Ebeam = 5.1 GeV

x g1(x) Statistical

0.35 -0.10876932E-01 0.38251005E-01

0.33 -0.17921032E-01 0.17171517E-01

0.32 -0.39308652E-01 0.15422063E-01

0.31 -0.25113815E-01 0.15015876E-01

0.29 -0.38317807E-01 0.13653855E-01

0.28 -0.23837000E-01 0.15711963E-01
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Table A.6: g1(x) at Ebeam = 5.1 GeV

x g1(x) Statistical

0.27 -0.32783128E-01 0.24473397E-01

0.26 -0.46943195E-01 0.37591878E-01

0.25 -0.28414562E-01 0.32654881E-01

0.24 -0.72196223E-01 0.34150403E-01

0.23 -0.47591273E-01 0.27213020E-01

0.22 -0.51551163E-01 0.29033868E-01

0.21 -0.42569071E-01 0.28567731E-01

0.20 -0.34861658E-01 0.27691448E-01

0.20 -0.30992478E-01 0.25501471E-01

0.19 -0.35756044E-01 0.23836128E-01

0.18 -0.78248248E-01 0.24240701E-01

0.17 -0.57427771E-01 0.23874903E-01

0.17 -0.72669260E-01 0.27138056E-01

0.16 0.63001132E-02 0.38236555E-01

0.15 -0.71755931E-01 0.40560432E-01

0.15 -0.72652660E-01 0.40890533E-01

0.14 -0.37801217E-01 0.32166842E-01

0.14 -0.27906664E-01 0.29541388E-01

0.13 -0.57806838E-02 0.28385323E-01

0.13 -0.43886282E-01 0.33899467E-01

Table A.7: g2(x) at Ebeam = 0.86 GeV

x g2(x) Statistical

1.12 0.27885041E-02 0.47925930E-03

0.35 -0.65823947E-03 0.26677263E-02

0.20 0.18484594E-01 0.48397072E-02

0.13 0.11621362E-01 0.94528040E-02

0.09 0.25718626E-01 0.62590532E-01

0.07 0.94635196E-01 0.38580269E-01
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Table A.7: g2(x) at Ebeam = 0.86 GeV

x g2(x) Statistical

0.06 0.22264320E+00 0.81016377E-01

0.04 0.33829698E+00 0.13896564E+00

0.03 0.19557568E+00 0.19038598E+00

0.03 0.31593511E+00 0.31553167E+00

0.02 -0.70127529E+00 0.11809517E+01

0.02 -0.13266039E+01 0.27056563E+01

Table A.8: g2(x) at Ebeam = 1.7 GeV

x g2(x) Statistical

4.51 0.13113629E-03 0.67125989E-05

1.46 -0.25170215E-02 0.60995331E-03

0.85 -0.47840908E-01 0.34291146E-02

0.59 -0.88774245E-02 0.39000800E-02

0.44 -0.54638605E-02 0.33809291E-02

0.35 0.22773990E-01 0.53295195E-02

0.29 0.55060979E-01 0.80480902E-02

0.24 0.11348634E+00 0.13998950E-01

0.20 0.19289444E+00 0.22120127E-01

0.17 0.17270193E+00 0.29828928E-01

0.15 0.17572418E+00 0.28791560E-01

0.13 0.96148312E-01 0.34437601E-01

0.12 0.95983885E-01 0.39344389E-01

0.10 0.10395623E+00 0.52595701E-01

0.09 0.89846887E-01 0.57348460E-01

0.08 0.33866489E+00 0.84321029E-01

0.07 0.17358233E+00 0.10964624E+00

0.06 0.10261069E+00 0.13286522E+00

0.06 0.93905151E-01 0.13542095E+00

0.05 0.64683771E+00 0.29728234E+00
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Table A.8: g2(x) at Ebeam = 1.7 GeV

x g2(x) Statistical

0.05 0.83249402E+00 0.29097408E+00

0.04 -0.29760832E+00 0.27344880E+00

0.04 -0.24869750E+01 0.54956543E+00

0.03 -0.49600582E+01 0.71932501E+00

0.03 -0.72450256E+01 0.65940708E+00

0.02 -0.93047047E+01 0.61662209E+00

Table A.9: g2(x) at Ebeam = 2.6 GeV

x g2(x) Statistical

10.22 -0.10347107E-02 0.61112063E-04

3.34 0.35251534E-03 0.18192650E-05

1.96 -0.40775496E-04 0.10988500E-03

1.37 -0.25275792E-02 0.44954079E-03

1.05 -0.21270551E-01 0.15252163E-02

0.84 -0.37918430E-01 0.27365880E-02

0.69 -0.29802185E-01 0.30924613E-02

0.59 -0.46039494E-02 0.36086801E-02

0.51 0.18219635E-01 0.41933530E-02

0.44 0.47052942E-01 0.77798334E-02

0.39 0.58717731E-01 0.11652213E-01

0.35 0.37495442E-01 0.12453332E-01

0.31 0.75240046E-01 0.18154012E-01

0.28 0.10294256E+00 0.19714605E-01

0.26 0.52345145E-01 0.18813258E-01

0.23 0.76889649E-01 0.26884345E-01

0.21 0.70254341E-01 0.30220868E-01

0.19 0.44259496E-01 0.31125495E-01

0.18 0.28168401E-01 0.44181269E-01

0.16 0.73325068E-01 0.52295960E-01
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Table A.9: g2(x) at Ebeam = 2.6 GeV

x g2(x) Statistical

0.15 -0.10655407E+00 0.52053329E-01

0.14 -0.20818665E+01 0.75569667E-01

0.13 -0.47278953E+01 0.85708342E-01

0.12 -0.76890163E+01 0.93827710E-01

0.11 -0.10788750E+02 0.73560975E-01

0.10 -0.13958464E+02 0.90141393E-01

0.09 -0.17440351E+02 0.12539820E+00

0.09 -0.15735399E+02 0.14307803E+00

0.08 0.81296331E+00 0.15095492E+00

0.07 0.24216191E+00 0.18065728E+00

0.07 0.35254613E+00 0.18235725E+00

0.06 -0.19724467E+00 0.31993115E+00

0.06 -0.51721507E+00 0.45744944E+00

0.05 0.38586816E+00 0.34145319E+00

0.05 0.63905513E+00 0.41788423E+00

0.05 -0.48829159E+00 0.53447092E+00

0.04 0.25086136E+01 0.20694494E+01

0.04 -0.81686592E+00 0.63964081E+00

0.03 -0.22445283E+01 0.28045101E+01

Table A.10: g2(x) at Ebeam = 3.4 GeV

x g2(x) Statistical

1.84 0.29848295E-03 0.17503301E-03

1.48 -0.34626466E-03 0.12407143E-03

1.23 -0.42937514E-02 0.33455272E-03

1.05 -0.20335959E-01 0.77853008E-03

0.91 -0.11331205E+00 0.13307380E-02

0.80 -0.26349830E-01 0.15091615E-02

0.71 -0.10966114E-01 0.22690326E-02
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Table A.10: g2(x) at Ebeam = 3.4 GeV

x g2(x) Statistical

0.64 0.20481190E-01 0.27423869E-02

0.58 0.38339611E-01 0.38444058E-02

0.53 0.50096646E-01 0.58071609E-02

0.48 0.50954200E-01 0.65254192E-02

0.44 0.55072680E-01 0.73112561E-02

0.41 0.66082060E-01 0.81934277E-02

0.38 0.64914674E-01 0.10758860E-01

0.35 0.13039641E+00 0.11625396E-01

0.32 -0.17603824E+01 0.12963668E-01

0.30 -0.68226404E+01 0.14430132E-01

0.28 -0.11640256E+02 0.20093977E-01

0.26 -0.16408232E+02 0.20593785E-01

0.25 -0.20772755E+02 0.22581417E-01

0.23 -0.25280010E+02 0.28784575E-01

0.22 -0.29810057E+02 0.31858865E-01

0.20 -0.23608360E+02 0.33077598E-01

0.19 0.12676399E+01 0.36305796E-01

0.18 0.27158186E-01 0.47217242E-01

0.17 0.15589987E+00 0.60150422E-01

0.16 0.94048403E-01 0.64455770E-01

0.15 0.45180198E-01 0.88895760E-01

0.14 0.10360028E+00 0.13962804E+00

0.13 0.11749584E+00 0.18079364E+00

0.13 0.15545757E+00 0.13835025E+00

0.12 0.22148925E+00 0.88642843E-01

0.11 0.45845095E-01 0.11474291E+00

0.11 -0.12874320E+00 0.27480280E+00

0.10 -0.25832298E+00 0.21276821E+00

0.09 -0.17790152E+00 0.19411911E+00

0.09 0.14818901E+00 0.14897765E+00
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Table A.10: g2(x) at Ebeam = 3.4 GeV

x g2(x) Statistical

0.08 0.12458502E+00 0.23466431E+00

0.08 0.17584492E+00 0.32869774E+00

0.07 0.10173831E+00 0.34428817E+00

0.07 -0.87773368E-01 0.22449318E+00

0.06 0.22429270E+00 0.40544233E+00

0.06 0.11109690E+00 0.46351609E+00

0.06 0.22788687E+00 0.48341268E+00

0.05 0.63306129E+00 0.64937007E+00

Table A.11: g2(x) at Ebeam = 4.2 GeV

x g2(x) Statistical

1.84 0.29848295E-03 0.17503301E-03

1.48 -0.34626466E-03 0.12407143E-03

1.23 -0.42937514E-02 0.33455272E-03

1.05 -0.20335959E-01 0.77853008E-03

0.91 -0.11331205E+00 0.13307380E-02

0.80 -0.26349830E-01 0.15091615E-02

0.71 -0.10966114E-01 0.22690326E-02

0.64 0.20481190E-01 0.27423869E-02

0.58 0.38339611E-01 0.38444058E-02

0.53 0.50096646E-01 0.58071609E-02

0.48 0.50954200E-01 0.65254192E-02

0.44 0.55072680E-01 0.73112561E-02

0.41 0.66082060E-01 0.81934277E-02

0.38 0.64914674E-01 0.10758860E-01

0.35 0.13039641E+00 0.11625396E-01

0.32 -0.17603824E+01 0.12963668E-01

0.30 -0.68226404E+01 0.14430132E-01

0.28 -0.11640256E+02 0.20093977E-01
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Table A.11: g2(x) at Ebeam = 4.2 GeV

x g2(x) Statistical

0.26 -0.16408232E+02 0.20593785E-01

0.25 -0.20772755E+02 0.22581417E-01

0.23 -0.25280010E+02 0.28784575E-01

0.22 -0.29810057E+02 0.31858865E-01

0.20 -0.23608360E+02 0.33077598E-01

0.19 0.12676399E+01 0.36305796E-01

0.18 0.27158186E-01 0.47217242E-01

0.17 0.15589987E+00 0.60150422E-01

0.16 0.94048403E-01 0.64455770E-01

0.15 0.45180198E-01 0.88895760E-01

0.14 0.10360028E+00 0.13962804E+00

0.13 0.11749584E+00 0.18079364E+00

0.13 0.15545757E+00 0.13835025E+00

0.12 0.22148925E+00 0.88642843E-01

0.11 0.45845095E-01 0.11474291E+00

0.11 -0.12874320E+00 0.27480280E+00

0.10 -0.25832298E+00 0.21276821E+00

0.09 -0.17790152E+00 0.19411911E+00

0.09 0.14818901E+00 0.14897765E+00

0.08 0.12458502E+00 0.23466431E+00

0.08 0.17584492E+00 0.32869774E+00

0.07 0.10173831E+00 0.34428817E+00

0.07 -0.87773368E-01 0.22449318E+00

0.06 0.22429270E+00 0.40544233E+00

0.06 0.11109690E+00 0.46351609E+00

0.06 0.22788687E+00 0.48341268E+00

0.05 0.63306129E+00 0.64937007E+00
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Table A.12: g2(x) at Ebeam = 5.1 GeV

x g2(x) Statistical

0.35 0.52131038E-01 0.91907576E-01

0.33 -0.57930150E-02 0.41470263E-01

0.32 -0.23541455E-02 0.37955854E-01

0.31 0.16747264E-01 0.36695741E-01

0.29 0.27337383E-01 0.35714973E-01

0.28 0.14536730E-01 0.39873265E-01

0.27 0.19663107E+00 0.72203971E-01

0.26 0.19686541E+00 0.11647356E+00

0.25 -0.70491433E-01 0.10067608E+00

0.24 0.15292150E+00 0.10452728E+00

0.23 -0.13596360E+00 0.12561518E+00

0.22 -0.68554848E-01 0.19777824E+00

0.21 -0.99554108E-02 0.29942465E+00

0.20 0.35385232E-01 0.33802202E+00

0.20 0.59309892E-01 0.30401003E+00

0.19 0.63493766E-01 0.19983892E+00

0.18 0.36037505E-01 0.18797620E+00

0.17 0.32597390E+00 0.20682092E+00

0.17 0.25173798E+00 0.20582953E+00

0.16 0.42220491E+00 0.20934789E+00

0.15 0.43642411E+00 0.19858848E+00

0.15 -0.32202285E-01 0.18603705E+00

0.14 0.21568009E+00 0.17659219E+00

0.14 -0.31669974E+00 0.18677635E+00

0.13 0.41004401E+00 0.21848904E+00

0.13 -0.49650133E-01 0.23953831E+00
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Table A.13: g1(x) at Q2 = 0.10 GeV2

x g1(x) Statistical

0.10 -0.11158335E+00 0.33910330E-01

0.15 0.91623388E-01 0.19273477E-01

0.20 0.87445276E-02 0.14562094E-01

0.25 -0.40141199E-01 0.11834145E-01

0.30 -0.73109843E-01 0.12622668E-01

0.35 -0.88818818E-01 0.89337444E-02

0.40 -0.36289845E-01 0.62139235E-02

0.45 -0.59278817E-02 0.46057347E-02

0.50 -0.21221477E-03 0.44207717E-02

0.55 0.94467849E-02 0.37835811E-02

0.60 0.19764334E-01 0.38501890E-02

0.65 0.29139536E-01 0.41699368E-02

0.70 0.35288587E-01 0.53482326E-02

0.75 0.33862803E-01 0.49535735E-02

0.80 0.31187534E-01 0.49312972E-02

0.85 0.29211586E-01 0.55696662E-02

0.90 0.26823286E-01 0.66894284E-02

0.95 0.22984846E-01 0.61996030E-02

Table A.14: g1(x) at Q2 = 0.26 GeV2

x g1(x) Statistical

0.10 -0.10570808E+00 0.25326915E-01

0.15 0.52386034E+00 0.12479737E-01

0.20 -0.37882370E+00 0.10843997E-01

0.25 0.66024768E+00 0.11966434E-01

0.30 0.50666946E+00 0.93274387E-02

0.35 0.34497440E+00 0.11277024E-01

0.40 0.20483106E+00 0.12257409E-01

0.45 0.46421710E-01 0.96706720E-02
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Table A.14: g1(x) at Q2 = 0.26 GeV2

x g1(x) Statistical

0.50 -0.12514859E-01 0.51027434E-02

0.55 0.56925188E-02 0.38009030E-02

0.60 0.15419142E-01 0.36185225E-02

0.65 0.19628642E-01 0.29490222E-02

0.70 0.20956535E-01 0.35138694E-02

0.75 0.18645603E-01 0.32254371E-02

0.80 0.13134829E-01 0.35591449E-02

0.85 0.87130368E-02 0.41020927E-02

0.90 0.76945447E-02 0.37823445E-02

0.95 0.67869220E-02 0.34091338E-02

Table A.15: g1(x) at Q2 = 0.42 GeV2

x g1(x) Statistical

0.10 0.13680476E+00 0.12765191E+00

0.15 -0.74600279E-01 0.23415986E-01

0.20 -0.12037601E+00 0.11956813E-01

0.25 -0.65469432E+00 0.86461101E-02

0.30 0.97238129E+00 0.66386112E-02

0.35 0.11716455E+01 0.63631930E-02

0.40 0.13357460E+01 0.76234397E-02

0.45 0.15121013E+01 0.73071662E-02

0.50 0.17252523E+01 0.64880042E-02

0.55 0.20518212E+01 0.38151927E-02

0.60 0.23197465E+01 0.31982264E-02

0.65 0.23596463E+01 0.30912017E-02

0.70 0.12295235E+01 0.25412766E-02

0.75 -0.97585849E-01 0.30892177E-02

0.80 -0.29237071E+00 0.28113280E-02

0.85 -0.19934699E+00 0.37345823E-02
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Table A.15: g1(x) at Q2 = 0.42 GeV2

x g1(x) Statistical

0.90 0.12203064E-01 0.36789952E-02

0.95 0.16542977E-01 0.30200544E-02

Table A.16: g1(x) at Q2 = 0.58 GeV2

x g1(x) Statistical

0.20 -0.86336493E-01 0.47594175E-01

0.25 -0.19080795E-01 0.33664674E-01

0.30 0.26197352E-02 0.14296498E-01

0.35 0.14267374E+01 0.35996050E-01

0.40 0.17098308E+01 0.17387846E-01

0.45 -0.28271429E+02 0.91032395E-02

0.50 -0.29098772E+02 0.57925927E-02

0.55 -0.30869200E+02 0.52279127E-02

0.60 -0.33662571E+02 0.36466890E-02

0.65 -0.37869530E+02 0.34515772E-02

0.70 -0.45245285E+02 0.29849573E-02

0.75 -0.54063557E+02 0.28785029E-02

0.80 -0.48988483E+02 0.34480547E-02

0.85 -0.37596872E+01 0.35678432E-02

0.90 0.80572739E+01 0.31267202E-02

0.95 -0.67427512E-02 0.35038802E-02

Table A.17: g1(x) at Q2 = 0.74 GeV2

x g1(x) Statistical

0.05 0.63121833E-01 0.41306160E-01

0.10 -0.77485493E-02 0.45814771E-01

0.15 -0.21547560E+00 0.22742502E-01
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Table A.17: g1(x) at Q2 = 0.74 GeV2

x g1(x) Statistical

0.20 -0.53406775E-01 0.25159264E-01

0.25 -0.77850656E-02 0.99901194E-02

0.30 0.10345538E-01 0.67646303E-02

0.35 0.18542362E-01 0.79092160E-02

0.40 0.52164655E-01 0.65356041E-02

0.45 0.80583312E-01 0.57434482E-02

0.50 0.10205472E+00 0.62014181E-02

0.55 0.10617282E+00 0.63711382E-02

0.60 0.97173735E-01 0.57250606E-02

0.65 0.87161496E-01 0.51632957E-02

0.70 0.77240378E-01 0.47535789E-02

0.75 0.67876227E-01 0.44901352E-02

0.80 0.59203159E-01 0.43141469E-02

0.85 0.51386595E-01 0.42469059E-02

0.90 0.44400983E-01 0.42559928E-02

0.95 0.38186539E-01 0.43122913E-02

Table A.18: g1(x) at Q2 = 0.90 GeV2

x g1(x) Statistical

0.05 -0.14199643E+00 0.60775027E-01

0.10 0.29183605E+00 0.23046233E-01

0.15 -0.23845188E-01 0.15655419E-01

0.20 -0.34096723E-02 0.13631987E-01

0.25 -0.13730502E+00 0.17146252E-01

0.30 -0.55133384E-01 0.81176423E-02

0.35 -0.79683028E-02 0.63012172E-02

0.40 -0.94402311E-02 0.64572166E-02

0.45 0.21825559E-02 0.52648708E-02

0.50 0.16462233E-01 0.51988554E-02
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Table A.18: g1(x) at Q2 = 0.90 GeV2

x g1(x) Statistical

0.55 0.30430946E-01 0.53742323E-02

0.60 0.41934077E-01 0.71663549E-02

0.65 0.43159720E-01 0.64593698E-02

0.70 0.42208087E-01 0.59206695E-02

0.75 0.40133584E-01 0.60364809E-02

0.80 0.37483141E-01 0.68156514E-02

0.85 0.34600057E-01 0.79451595E-02

0.90 0.30443974E-01 0.74470900E-02

0.95 0.26665734E-01 0.67661600E-02

Table A.19: g2(x) at Q2 = 0.10 GeV2

x g2(x) Statistical

0.10 0.12194709E+00 0.13832770E+00

0.15 -0.31062260E+01 0.61504032E-01

0.20 0.99042714E-01 0.27027769E-01

0.25 0.10783166E+00 0.17068695E-01

0.30 0.82483746E-01 0.12050298E-01

0.35 0.89692600E-01 0.79599964E-02

0.40 0.49045198E-01 0.49481601E-02

0.45 0.22050608E-01 0.33259396E-02

0.50 0.56787180E-02 0.29660200E-02

0.55 -0.87576769E-02 0.23893828E-02

0.60 -0.16801247E-01 0.22787480E-02

0.65 -0.19467810E-01 0.25289252E-02

0.70 -0.21609116E-01 0.30398797E-02

0.75 -0.31646512E-01 0.26643896E-02

0.80 -0.40825237E-01 0.26116108E-02

0.85 -0.48648432E-01 0.29014924E-02

0.90 -0.53878304E-01 0.33300612E-02
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Table A.19: g2(x) at Q2 = 0.10 GeV2

x g2(x) Statistical

0.95 -0.47613263E-01 0.29236584E-02

Table A.20: g2(x) at Q2 = 0.26 GeV2

x g2(x) Statistical

0.10 0.16111828E-02 0.14529759E+00

0.15 -0.37826653E+01 0.50831605E-01

0.20 -0.95934515E+01 0.26241340E-01

0.25 0.33655887E+01 0.20694267E-01

0.30 0.22607601E+01 0.12930835E-01

0.35 0.13544909E+01 0.11195152E-01

0.40 0.74159914E+00 0.11143207E-01

0.45 0.25076681E+00 0.75538391E-02

0.50 0.20902367E-01 0.38793965E-02

0.55 0.38774167E-02 0.29397334E-02

0.60 -0.93250489E-02 0.30979468E-02

0.65 -0.21647885E-01 0.23475040E-02

0.70 -0.29490806E-01 0.26431421E-02

0.75 -0.32160521E-01 0.21674030E-02

0.80 -0.36253773E-01 0.21135961E-02

0.85 -0.38868431E-01 0.22891257E-02

0.90 -0.40171839E-01 0.20224652E-02

0.95 -0.37741497E-01 0.17327776E-02

Table A.21: g2(x) at Q2 = 0.42 GeV2

x g2(x) Statistical

0.10 -0.13044302E+00 0.51859683E+00

0.15 0.14145450E+00 0.89858763E-01
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Table A.21: g2(x) at Q2 = 0.42 GeV2

x g2(x) Statistical

0.20 -0.17344654E+02 0.27359808E-01

0.25 -0.11961409E+02 0.16797574E-01

0.30 0.46070409E+01 0.10490685E-01

0.35 0.45887179E+01 0.83883340E-02

0.40 0.43412995E+01 0.75572166E-02

0.45 0.41858869E+01 0.65618176E-02

0.50 0.41406817E+01 0.50992812E-02

0.55 0.43159342E+01 0.28813274E-02

0.60 0.43877325E+01 0.24303959E-02

0.65 0.40861335E+01 0.26875539E-02

0.70 0.19300663E+01 0.21031226E-02

0.75 -0.22757466E+00 0.24280045E-02

0.80 -0.49474898E+00 0.19682252E-02

0.85 -0.34057862E+00 0.23155320E-02

0.90 -0.48821401E-01 0.21489353E-02

0.95 -0.31104621E-01 0.16467809E-02

Table A.22: g2(x) at Q2 = 0.58 GeV2

x g2(x) Statistical

0.20 -0.57851095E-01 0.30260411E+00

0.25 0.99303648E-01 0.10016484E+00

0.30 -0.31412456E-01 0.34675408E-01

0.35 0.44941292E+02 0.76308027E-01

0.40 0.17895435E+02 0.30597277E-01

0.45 -0.12956802E+03 0.13536014E-01

0.50 -0.11001259E+03 0.74252598E-02

0.55 -0.99715714E+02 0.54675457E-02

0.60 -0.95487503E+02 0.35912110E-02

0.65 -0.96324020E+02 0.30817136E-02
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Table A.22: g2(x) at Q2 = 0.58 GeV2

x g2(x) Statistical

0.70 -0.10476864E+03 0.24369508E-02

0.75 -0.11589037E+03 0.23065964E-02

0.80 -0.98393379E+02 0.28031957E-02

0.85 -0.65585346E+01 0.27594806E-02

0.90 0.14679336E+02 0.22682690E-02

0.95 -0.21313158E+00 0.24980090E-02

Table A.23: g2(x) at Q2 = 0.74 GeV2

x g2(x) Statistical

0.05 -0.13976388E+00 0.20013879E+00

0.10 0.75830728E-01 0.13706098E+00

0.15 0.17025550E+00 0.33826094E-01

0.20 0.37782088E-01 0.28502582E-01

0.25 0.12376348E-01 0.90431813E-02

0.30 0.93531236E-02 0.47495365E-02

0.35 0.11848436E-01 0.38457653E-02

0.40 0.65943873E-02 0.29525224E-02

0.45 0.79393742E-03 0.26272102E-02

0.50 -0.45842249E-02 0.27438232E-02

0.55 -0.58788061E-02 0.25815379E-02

0.60 -0.46865167E-02 0.21555198E-02

0.65 -0.34723934E-02 0.18461179E-02

0.70 -0.23865860E-02 0.16425387E-02

0.75 -0.12635161E-02 0.15110556E-02

0.80 0.21950458E-03 0.14135010E-02

0.85 0.13833352E-02 0.13489298E-02

0.90 0.22817883E-02 0.13027670E-02

0.95 0.29650258E-02 0.12658676E-02
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Table A.24: g2(x) at Q2 = 0.90 GeV2

x g2(x) Statistical

0.05 0.18815590E+00 0.50781012E+00

0.10 -0.73557359E+00 0.88587388E-01

0.15 0.88600405E-01 0.32265611E-01

0.20 0.15494074E+00 0.19301601E-01

0.25 0.15451050E+00 0.15492702E-01

0.30 0.68237647E-01 0.72828676E-02

0.35 0.30764911E-01 0.47556204E-02

0.40 0.11073907E-01 0.40764292E-02

0.45 -0.39705583E-02 0.30529476E-02

0.50 -0.92766648E-02 0.28173872E-02

0.55 -0.10068273E-01 0.30287791E-02

0.60 -0.10345665E-01 0.38474146E-02

0.65 -0.21109315E-01 0.32337641E-02

0.70 -0.30541271E-01 0.28591915E-02

0.75 -0.38111959E-01 0.28577512E-02

0.80 -0.43877102E-01 0.31086362E-02

0.85 -0.47907863E-01 0.34308776E-02

0.90 -0.42536244E-01 0.30367081E-02

0.95 -0.36688864E-01 0.26140495E-02



APPENDIX A. TABLES OF G1(X), G2(X), AND σ′TT 176

Table A.25: σ′TT vs. W at Ebeam = 0.86 GeV

W (MeV) σ′TT (µb) Statistical

935.30 0.00000000E+00 0.00000000E+00

985.77 0.23872638E+03 0.58040337E+02

1033.79 -0.51506783E+02 0.19571472E+02

1079.66 -0.12003312E+02 0.11697751E+02

1123.67 -0.41153759E+02 0.35602165E+02

1166.02 -0.85515076E+02 0.13989582E+02

1206.88 -0.11695153E+03 0.15533202E+02

1246.40 -0.81075706E+02 0.17916586E+02

1284.71 -0.40148804E+02 0.16091085E+02

1321.91 -0.17325794E+02 0.16250257E+02

1358.09 -0.86456604E+01 0.39949593E+02

1393.33 -0.34033348E+02 0.65946007E+02

Table A.26: σ′TT vs. W at Ebeam = 1.7 GeV

W (MeV) σ′TT (µb) Statistical

846.01 0.00000000E+00 0.00000000E+00

903.22 0.00000000E+00 0.00000000E+00

957.01 0.40638672E+04 0.27370477E+03

1007.94 0.16117961E+03 0.41239220E+02

1056.42 0.22450829E+02 0.12935129E+02

1102.77 -0.46995949E+02 0.98287964E+01

1147.25 -0.56235802E+02 0.80386019E+01

1190.06 -0.10546619E+03 0.87497435E+01

1231.39 -0.10960032E+03 0.10481890E+02

1271.38 -0.39343872E+02 0.99150219E+01

1310.14 -0.20133341E+02 0.59196520E+01

1347.80 -0.64882026E+01 0.53764439E+01

1384.42 -0.81688213E+01 0.43842978E+01

1420.11 -0.12585336E+02 0.49459610E+01
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Table A.26: σ′TT vs. W at Ebeam = 1.7 GeV

W (MeV) σ′TT (µb) Statistical

1454.92 0.54177108E+01 0.56496258E+01

1488.91 -0.13339189E+02 0.48546782E+01

1522.15 -0.47516394E+01 0.49905319E+01

1554.67 -0.11339153E+02 0.62061977E+01

1586.53 -0.14793873E+01 0.56571012E+01

1617.76 -0.97990427E+01 0.10354173E+02

1648.40 -0.17177513E+02 0.65067768E+01

1678.48 0.91022625E+01 0.52986503E+01

1708.03 0.71789955E+02 0.21749601E+02

1737.08 0.13083112E+03 0.29167950E+02

1765.65 0.17838147E+03 0.22186171E+02

1793.77 0.21737479E+03 0.31750927E+01

Table A.27: σ′TT vs. W at Ebeam = 2.6 GeV

W (MeV) σ′TT (µb) Statistical

669.02 0.00000000E+00 0.00000000E+00

742.16 0.00000000E+00 0.00000000E+00

808.71 0.00000000E+00 0.00000000E+00

870.19 0.00000000E+00 0.00000000E+00

927.60 0.00000000E+00 0.00000000E+00

981.66 0.58845844E+03 0.42722424E+02

1032.89 0.16803969E+03 0.14988063E+02

1081.70 0.21362612E+02 0.84011898E+01

1128.40 -0.28664665E+02 0.60918913E+01

1173.25 -0.57396259E+02 0.75078468E+01

1216.44 -0.50613792E+02 0.76114731E+01

1258.15 -0.39880058E+02 0.61663799E+01

1298.52 -0.36283302E+02 0.65777822E+01

1337.67 -0.34385960E+02 0.49771271E+01
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Table A.27: σ′TT vs. W at Ebeam = 2.6 GeV

W (MeV) σ′TT (µb) Statistical

1375.71 -0.17039873E+02 0.37420244E+01

1412.72 -0.83510008E+01 0.41390100E+01

1448.79 -0.58426433E+01 0.38519399E+01

1483.98 -0.56841964E+00 0.33018134E+01

1518.36 -0.25546432E+01 0.38618681E+01

1551.98 -0.18014046E+01 0.35818310E+01

1584.88 0.63375568E+01 0.30369565E+01

1617.11 0.95541229E+02 0.34748108E+01

1648.72 0.19172987E+03 0.31008217E+01

1679.73 0.26702914E+03 0.32705314E+01

1710.17 0.33400858E+03 0.25785139E+01

1740.09 0.38192947E+03 0.26843841E+01

1769.50 0.42971164E+03 0.25357070E+01

1798.42 0.33322974E+03 0.25845962E+01

1826.89 -0.20523111E+02 0.25033047E+01

1854.93 -0.34975870E+01 0.26249590E+01

1882.54 -0.59243984E+01 0.25464399E+01

1909.76 -0.43723145E+01 0.28281002E+01

1936.59 -0.43302326E+01 0.27573090E+01

1963.06 -0.72732735E+01 0.22794085E+01

1989.17 -0.64762383E+01 0.29798372E+01

2014.95 -0.91607323E+01 0.38520107E+01

2040.40 0.70946126E+01 0.88742371E+01

2065.54 -0.10084033E+02 0.33070204E+01

2090.37 -0.59392753E+01 0.11871027E+02

Table A.28: σ′TT vs. W at Ebeam = 3.4 GeV

W (MeV) σ′TT (µb) Statistical

725.29 0.00000000E+00 0.00000000E+00
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Table A.28: σ′TT vs. W at Ebeam = 3.4 GeV

W (MeV) σ′TT (µb) Statistical

795.09 0.00000000E+00 0.00000000E+00

859.24 0.00000000E+00 0.00000000E+00

918.92 0.00000000E+00 0.00000000E+00

974.96 0.16423141E+04 0.18086731E+02

1027.95 0.11481177E+03 0.64880748E+01

1078.33 0.25211567E+02 0.51368699E+01

1126.47 -0.30182846E+02 0.39203565E+01

1172.63 -0.40859558E+02 0.36994786E+01

1217.04 -0.41318871E+02 0.39545796E+01

1259.88 -0.34874180E+02 0.32229073E+01

1301.32 -0.22792971E+02 0.26629767E+01

1341.48 -0.20222073E+02 0.23579597E+01

1380.47 -0.11609659E+02 0.24799991E+01

1418.38 -0.14610475E+02 0.21773667E+01

1455.31 0.16673625E+03 0.20347669E+01

1491.33 0.53138525E+03 0.19729800E+01

1526.50 0.77244006E+03 0.22643285E+01

1560.87 0.92287390E+03 0.19633154E+01

1594.51 0.10029381E+04 0.18332040E+01

1627.44 0.10580249E+04 0.20444658E+01

1659.73 0.10878901E+04 0.20132287E+01

1691.40 0.74621735E+03 0.19114623E+01

1722.48 -0.28635044E+02 0.18479316E+01

1753.02 -0.19229591E+01 0.20126452E+01

1783.03 -0.56074438E+01 0.17863615E+01

1812.55 -0.38219185E+01 0.17206304E+01

1841.59 -0.44121585E+01 0.21510484E+01

1870.18 -0.20560553E+02 0.14024057E+02

1898.34 -0.12980453E+02 0.48807950E+01

1926.09 -0.82439232E+01 0.26929195E+01
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Table A.28: σ′TT vs. W at Ebeam = 3.4 GeV

W (MeV) σ′TT (µb) Statistical

1953.45 -0.68931818E+01 0.15421171E+01

1980.43 -0.65441875E+01 0.18537123E+01

2007.04 -0.12286748E+02 0.44809809E+01

2033.31 -0.56621461E+01 0.27235620E+01

2059.24 -0.35772011E+01 0.22172558E+01

2084.85 -0.60161457E+01 0.15869985E+01

2110.15 -0.68256893E+01 0.23201444E+01

2135.15 -0.74445133E+01 0.28795536E+01

2159.86 -0.69192796E+01 0.27498357E+01

2184.29 -0.50861406E+01 0.16387496E+01

2208.45 -0.52798953E+01 0.27254982E+01

2232.34 -0.36576624E+01 0.22489214E+01

2255.99 -0.35621371E+01 0.20636330E+01

2279.39 -0.38600247E+01 0.24866321E+01

Table A.29: σ′TT vs. W at Ebeam = 4.2 GeV

W (MeV) σ′TT (µb) Statistical

781.89 0.00000000E+00 0.00000000E+00

848.88 0.00000000E+00 0.00000000E+00

910.95 0.00000000E+00 0.00000000E+00

969.06 0.33305702E+02 0.30901402E+02

1023.88 -0.30003561E+05 0.13140122E+02

1075.90 0.25850167E+06 0.62946572E+01

1125.53 0.12826684E+06 0.25537138E+01

1173.05 0.68435883E+05 0.18545702E+01

1218.73 0.42741395E+05 0.20131516E+01

1262.75 0.29155834E+05 0.18945949E+01

1305.29 0.21110795E+05 0.21555500E+01

1346.49 0.16033922E+05 0.19566722E+01
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Table A.29: σ′TT vs. W at Ebeam = 4.2 GeV

W (MeV) σ′TT (µb) Statistical

1386.46 0.12582608E+05 0.17186161E+01

1425.31 0.10180604E+05 0.14431522E+01

1463.13 0.83677607E+04 0.13112220E+01

1500.00 0.56980332E+04 0.14445028E+01

1535.98 -0.19754628E+03 0.14573374E+01

1571.14 -0.24642427E+01 0.14214426E+01

1605.53 -0.39629109E+01 0.12263510E+01

1639.20 -0.10454947E+01 0.12600607E+01

1672.19 -0.22424088E+01 0.14865228E+01

1704.54 -0.15933988E+01 0.15961498E+01

1736.29 0.40521827E+00 0.14933943E+01

1767.47 -0.25750408E+00 0.13623844E+01

1798.10 0.29280770E+00 0.16400646E+01

1828.23 -0.31437540E+01 0.16900610E+01

1857.87 -0.33141983E+01 0.16232817E+01

1887.04 -0.39910483E+01 0.14678764E+01

1915.76 -0.29133797E+01 0.18222896E+01

1944.07 -0.65906911E+01 0.32124660E+01

1971.96 0.29129739E+01 0.40505409E+01

1999.47 0.58340383E+01 0.50280604E+01

2026.60 0.25919595E+01 0.34879522E+01

2053.38 -0.46365991E+01 0.15199368E+01

2079.81 -0.57374058E+01 0.12798226E+01

2105.91 -0.45197983E+01 0.16373482E+01

2131.69 -0.42621431E+01 0.33028479E+01

2157.16 -0.11484808E+01 0.55676789E+01

2182.33 -0.54382908E+00 0.30194767E+01

2207.22 -0.44589071E+01 0.14911675E+01

2231.83 -0.32495971E+01 0.13601984E+01

2256.17 0.17455764E+00 0.16622009E+01
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Table A.29: σ′TT vs. W at Ebeam = 4.2 GeV

W (MeV) σ′TT (µb) Statistical

2280.25 -0.82317406E+00 0.31232882E+01

2304.08 0.12863067E+02 0.77130637E+01

2327.67 0.52200379E+01 0.72459517E+01

2351.02 -0.68557596E+00 0.84128628E+01

2374.14 -0.32480986E+01 0.60836191E+01

2397.03 -0.29474616E+01 0.21072907E+01

2419.71 -0.57322569E+01 0.21256075E+01

2442.18 -0.57593422E+01 0.21294460E+01

Table A.30: σ′TT vs. W at Ebeam = 5.1 GeV

W (MeV) σ′TT (µb) Statistical

1765.07 -0.29578459E+01 0.47500529E+01

1796.58 -0.15268990E+01 0.19875954E+01

1827.54 -0.35153534E+01 0.16763963E+01

1857.99 -0.26131589E+01 0.15307620E+01

1887.95 -0.38210886E+01 0.13279629E+01

1917.44 -0.22077000E+01 0.14373534E+01

1946.48 -0.61478081E+01 0.21728075E+01

1975.10 -0.67587619E+01 0.31911206E+01

2003.31 -0.97094178E+00 0.26340632E+01

2031.13 -0.70761366E+01 0.26248944E+01

2058.57 -0.14885625E+01 0.21282835E+01

2085.65 -0.25550830E+01 0.23797996E+01

2112.38 -0.25611489E+01 0.26111257E+01

2138.78 -0.24483323E+01 0.25379467E+01

2164.85 -0.23355691E+01 0.21450121E+01

2190.62 -0.25456409E+01 0.16540686E+01

2216.09 -0.46114674E+01 0.15689034E+01

2241.26 -0.52678785E+01 0.15079292E+01
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Table A.30: σ′TT vs. W at Ebeam = 5.1 GeV

W (MeV) σ′TT (µb) Statistical

2266.16 -0.53606730E+01 0.15992177E+01

2290.79 -0.20403736E+01 0.20963972E+01

2315.15 -0.58384333E+01 0.21389573E+01

2339.26 -0.33935263E+01 0.20863252E+01

2363.13 -0.27438452E+01 0.16048216E+01

2386.76 -0.22350153E-01 0.14392922E+01

2410.15 -0.17873483E+01 0.13541114E+01

2433.32 -0.17810215E+01 0.15661767E+01

Table A.31: σ′TT vs. ν at Q2 = 0.10 GeV2

ν (MeV) σ′TT (µb) Statistical

25.00 0.00000000E+00 0.00000000E+00

75.00 0.23872638E+03 0.58040337E+02

125.00 -0.51506783E+02 0.19571472E+02

175.00 -0.12003312E+02 0.11697751E+02

225.00 -0.41153759E+02 0.35602165E+02

275.00 -0.85515076E+02 0.13989582E+02

325.00 -0.11695153E+03 0.15533202E+02

375.00 -0.81075706E+02 0.17916586E+02

425.00 -0.40148804E+02 0.16091085E+02

475.00 -0.17325794E+02 0.16250257E+02

525.00 -0.86456604E+01 0.39949593E+02

575.00 -0.34033348E+02 0.65946007E+02

Table A.32: σ′TT vs. ν at Q2 = 0.26 GeV2

ν (MeV) σ′TT (µb) Statistical

25.00 0.00000000E+00 0.00000000E+00
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Table A.32: σ′TT vs. ν at Q2 = 0.26 GeV2

ν (MeV) σ′TT (µb) Statistical

75.00 0.00000000E+00 0.00000000E+00

125.00 0.40638672E+04 0.27370477E+03

175.00 0.16117961E+03 0.41239220E+02

225.00 0.22450829E+02 0.12935129E+02

275.00 -0.46995949E+02 0.98287964E+01

325.00 -0.56235802E+02 0.80386019E+01

375.00 -0.10546619E+03 0.87497435E+01

425.00 -0.10960032E+03 0.10481890E+02

475.00 -0.39343872E+02 0.99150219E+01

525.00 -0.20133341E+02 0.59196520E+01

575.00 -0.64882026E+01 0.53764439E+01

625.00 -0.81688213E+01 0.43842978E+01

675.00 -0.12585336E+02 0.49459610E+01

725.00 0.54177108E+01 0.56496258E+01

775.00 -0.13339189E+02 0.48546782E+01

825.00 -0.47516394E+01 0.49905319E+01

875.00 -0.11339153E+02 0.62061977E+01

925.00 -0.14793873E+01 0.56571012E+01

975.00 -0.97990427E+01 0.10354173E+02

1025.00 -0.17177513E+02 0.65067768E+01

1075.00 0.91022625E+01 0.52986503E+01

1125.00 0.71789955E+02 0.21749601E+02

1175.00 0.13083112E+03 0.29167950E+02

1225.00 0.17838147E+03 0.22186171E+02

1275.00 0.21737479E+03 0.31750927E+01

Table A.33: σ′TT vs. ν at Q2 = 0.42 GeV2

ν (MeV) σ′TT (µb) Statistical

25.00 0.00000000E+00 0.00000000E+00
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Table A.33: σ′TT vs. ν at Q2 = 0.42 GeV2

ν (MeV) σ′TT (µb) Statistical

75.00 0.00000000E+00 0.00000000E+00

125.00 0.00000000E+00 0.00000000E+00

175.00 0.00000000E+00 0.00000000E+00

225.00 0.00000000E+00 0.00000000E+00

275.00 0.58845844E+03 0.42722424E+02

325.00 0.16803969E+03 0.14988063E+02

375.00 0.21362612E+02 0.84011898E+01

425.00 -0.28664665E+02 0.60918913E+01

475.00 -0.57396259E+02 0.75078468E+01

525.00 -0.50613792E+02 0.76114731E+01

575.00 -0.39880058E+02 0.61663799E+01

625.00 -0.36283302E+02 0.65777822E+01

675.00 -0.34385960E+02 0.49771271E+01

725.00 -0.17039873E+02 0.37420244E+01

775.00 -0.83510008E+01 0.41390100E+01

825.00 -0.58426433E+01 0.38519399E+01

875.00 -0.56841964E+00 0.33018134E+01

925.00 -0.25546432E+01 0.38618681E+01

975.00 -0.18014046E+01 0.35818310E+01

1025.00 0.63375568E+01 0.30369565E+01

1075.00 0.95541229E+02 0.34748108E+01

1125.00 0.19172987E+03 0.31008217E+01

1175.00 0.26702914E+03 0.32705314E+01

1225.00 0.33400858E+03 0.25785139E+01

1275.00 0.38192947E+03 0.26843841E+01

1325.00 0.42971164E+03 0.25357070E+01

1375.00 0.33322974E+03 0.25845962E+01

1425.00 -0.20523111E+02 0.25033047E+01

1475.00 -0.34975870E+01 0.26249590E+01

1525.00 -0.59243984E+01 0.25464399E+01
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Table A.33: σ′TT vs. ν at Q2 = 0.42 GeV2

ν (MeV) σ′TT (µb) Statistical

1575.00 -0.43723145E+01 0.28281002E+01

1625.00 -0.43302326E+01 0.27573090E+01

1675.00 -0.72732735E+01 0.22794085E+01

1725.00 -0.64762383E+01 0.29798372E+01

1775.00 -0.91607323E+01 0.38520107E+01

1825.00 0.70946126E+01 0.88742371E+01

1875.00 -0.10084033E+02 0.33070204E+01

1925.00 -0.59392753E+01 0.11871027E+02

Table A.34: σ′TT vs. ν at Q2 = 0.58 GeV2

ν (MeV) σ′TT (µb) Statistical

225.00 0.00000000E+00 0.00000000E+00

275.00 0.00000000E+00 0.00000000E+00

325.00 0.00000000E+00 0.00000000E+00

375.00 0.00000000E+00 0.00000000E+00

425.00 0.16423141E+04 0.18086731E+02

475.00 0.11481177E+03 0.64880748E+01

525.00 0.25211567E+02 0.51368699E+01

575.00 -0.30182846E+02 0.39203565E+01

625.00 -0.40859558E+02 0.36994786E+01

675.00 -0.41318871E+02 0.39545796E+01

725.00 -0.34874180E+02 0.32229073E+01

775.00 -0.22792971E+02 0.26629767E+01

825.00 -0.20222073E+02 0.23579597E+01

875.00 -0.11609659E+02 0.24799991E+01

925.00 -0.14610475E+02 0.21773667E+01

975.00 0.16673625E+03 0.20347669E+01

1025.00 0.53138525E+03 0.19729800E+01

1075.00 0.77244006E+03 0.22643285E+01
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Table A.34: σ′TT vs. ν at Q2 = 0.58 GeV2

ν (MeV) σ′TT (µb) Statistical

1125.00 0.92287390E+03 0.19633154E+01

1175.00 0.10029381E+04 0.18332040E+01

1225.00 0.10580249E+04 0.20444658E+01

1275.00 0.10878901E+04 0.20132287E+01

1325.00 0.74621735E+03 0.19114623E+01

1375.00 -0.28635044E+02 0.18479316E+01

1425.00 -0.19229591E+01 0.20126452E+01

1475.00 -0.56074438E+01 0.17863615E+01

1525.00 -0.38219185E+01 0.17206304E+01

1575.00 -0.44121585E+01 0.21510484E+01

1625.00 -0.20560553E+02 0.14024057E+02

1675.00 -0.12980453E+02 0.48807950E+01

1725.00 -0.82439232E+01 0.26929195E+01

1775.00 -0.68931818E+01 0.15421171E+01

1825.00 -0.65441875E+01 0.18537123E+01

1875.00 -0.12286748E+02 0.44809809E+01

1925.00 -0.56621461E+01 0.27235620E+01

1975.00 -0.35772011E+01 0.22172558E+01

2025.00 -0.60161457E+01 0.15869985E+01

2075.00 -0.68256893E+01 0.23201444E+01

2125.00 -0.74445133E+01 0.28795536E+01

2175.00 -0.69192796E+01 0.27498357E+01

2225.00 -0.50861406E+01 0.16387496E+01

2275.00 -0.52798953E+01 0.27254982E+01

2325.00 -0.36576624E+01 0.22489214E+01

2375.00 -0.35621371E+01 0.20636330E+01

2425.00 -0.38600247E+01 0.24866321E+01
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Table A.35: σ′TT vs. ν at Q2 = 0.74 GeV2

ν (MeV) σ′TT (µb) Statistical

475.00 0.00000000E+00 0.00000000E+00

525.00 0.00000000E+00 0.00000000E+00

575.00 0.00000000E+00 0.00000000E+00

625.00 0.33305702E+02 0.30901402E+02

675.00 -0.30003561E+05 0.13140122E+02

725.00 0.25850167E+06 0.62946572E+01

775.00 0.12826684E+06 0.25537138E+01

825.00 0.68435883E+05 0.18545702E+01

875.00 0.42741395E+05 0.20131516E+01

925.00 0.29155834E+05 0.18945949E+01

975.00 0.21110795E+05 0.21555500E+01

1025.00 0.16033922E+05 0.19566722E+01

1075.00 0.12582608E+05 0.17186161E+01

1125.00 0.10180604E+05 0.14431522E+01

1175.00 0.83677607E+04 0.13112220E+01

1225.00 0.56980332E+04 0.14445028E+01

1275.00 -0.19754628E+03 0.14573374E+01

1325.00 -0.24642427E+01 0.14214426E+01

1375.00 -0.39629109E+01 0.12263510E+01

1425.00 -0.10454947E+01 0.12600607E+01

1475.00 -0.22424088E+01 0.14865228E+01

1525.00 -0.15933988E+01 0.15961498E+01

1575.00 0.40521827E+00 0.14933943E+01

1625.00 -0.25750408E+00 0.13623844E+01

1675.00 0.29280770E+00 0.16400646E+01

1725.00 -0.31437540E+01 0.16900610E+01

1775.00 -0.33141983E+01 0.16232817E+01

1825.00 -0.39910483E+01 0.14678764E+01

1875.00 -0.29133797E+01 0.18222896E+01

1925.00 -0.65906911E+01 0.32124660E+01
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Table A.35: σ′TT vs. ν at Q2 = 0.74 GeV2

ν (MeV) σ′TT (µb) Statistical

1975.00 0.29129739E+01 0.40505409E+01

2025.00 0.58340383E+01 0.50280604E+01

2075.00 0.25919595E+01 0.34879522E+01

2125.00 -0.46365991E+01 0.15199368E+01

2175.00 -0.57374058E+01 0.12798226E+01

2225.00 -0.45197983E+01 0.16373482E+01

2275.00 -0.42621431E+01 0.33028479E+01

2325.00 -0.11484808E+01 0.55676789E+01

2375.00 -0.54382908E+00 0.30194767E+01

2425.00 -0.44589071E+01 0.14911675E+01

2475.00 -0.32495971E+01 0.13601984E+01

2525.00 0.17455764E+00 0.16622009E+01

2575.00 -0.82317406E+00 0.31232882E+01

2625.00 0.12863067E+02 0.77130637E+01

2675.00 0.52200379E+01 0.72459517E+01

2725.00 -0.68557596E+00 0.84128628E+01

2775.00 -0.32480986E+01 0.60836191E+01

2825.00 -0.29474616E+01 0.21072907E+01

2875.00 -0.57322569E+01 0.21256075E+01

2925.00 -0.57593422E+01 0.21294460E+01

Table A.36: σ′TT vs. ν at Q2 = 0.90 GeV2

ν (MeV) σ′TT (µb) Statistical

1825.00 -0.29578459E+01 0.47500529E+01

1875.00 -0.15268990E+01 0.19875954E+01

1925.00 -0.35153534E+01 0.16763963E+01

1975.00 -0.26131589E+01 0.15307620E+01

2025.00 -0.38210886E+01 0.13279629E+01

2075.00 -0.22077000E+01 0.14373534E+01
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Table A.36: σ′TT vs. ν at Q2 = 0.90 GeV2

ν (MeV) σ′TT (µb) Statistical

2125.00 -0.61478081E+01 0.21728075E+01

2175.00 -0.67587619E+01 0.31911206E+01

2225.00 -0.97094178E+00 0.26340632E+01

2275.00 -0.70761366E+01 0.26248944E+01

2325.00 -0.14885625E+01 0.21282835E+01

2375.00 -0.25550830E+01 0.23797996E+01

2425.00 -0.25611489E+01 0.26111257E+01

2475.00 -0.24483323E+01 0.25379467E+01

2525.00 -0.23355691E+01 0.21450121E+01

2575.00 -0.25456409E+01 0.16540686E+01

2625.00 -0.46114674E+01 0.15689034E+01

2675.00 -0.52678785E+01 0.15079292E+01

2725.00 -0.53606730E+01 0.15992177E+01

2775.00 -0.20403736E+01 0.20963972E+01

2825.00 -0.58384333E+01 0.21389573E+01

2875.00 -0.33935263E+01 0.20863252E+01

2925.00 -0.27438452E+01 0.16048216E+01

2975.00 -0.22350153E-01 0.14392922E+01

3025.00 -0.17873483E+01 0.13541114E+01

3075.00 -0.17810215E+01 0.15661767E+01
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