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Q ABSTRACT 

Polarized electrons of energies 19 42, 22 67, and 25 5 GeV were scattered off a 

polarized 'He target at SLAC's End Station A to measure the spin asymmetry of the'neutron 
t 

From this asymmetry, the spin dependent structure hnction g,"(x) was d e t e k n e d  over, a 

range in x from 0 03 to 0 6 with an average @ of 2 (GeVIC)' The value of the integral of 

g,* over x is Jg,"(x)& = -0 036 * 0 009 The results were interpreted in the frame work 

of the Quark Parton Model (QPM) and used to test the Ellis-JaiXe and Bjorken sum rules 

1 

0 

The value of the integral is 2 6 standard deviations fiom the Ellis-JaRe prediction wtule the  

Bjorken sum rule was found to be in agreement with ths datq and proton data fiom SMC and 

E- 143 
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