Version

JEFFERSON LAB

Data Acquisttion Group

EVIO Users Guide

JEFFERSON LAB DATA ACQUISITION GROUP

EVIO User’s Guide

Elliott Wolin

Carl Timmer
timmer@jlab.org

16-Jan-2014

timmer@jlab.org

© Thomas Jefferson National Accelerator Facility
12000 Jefferson Ave
Newport News, VA 23606
Phone 757.269.7365 * Fax 757.269.6248

Table of Contents

Lo INEFOAUCTION ...ttt b bbb n et r e n e
1.1. EVIO VEISION L ..ottt
1.2, EVIO VEISIONS 2 & 3.ttt
1.3. BEVIO VEISION 4 ...ttt b ettt et en e
1.3.1. File FOrmat BIOCK SIZ€c.oiviiiiiiiiiieee e
1.3.2. Network Communication FOIMALccooiriiiiriieiree e
1.3.3. Expanded USer INTEITACEcvviiiiiiieirie e
1.3.4. DICHIONAIY ...ttt bbbttt bbbt
1.3.5. PAUUING ...ttt
1.3.6. Data FOMALS.......coiiiiiiiiiieic
1.3.7. RANCOM ACCESS ...ttt r et
1.3.8. PN o] 0T a0 1Yo T [P SSSRN
1.3.9. SPHLLING FIIES ... et e e ae e r e ra e s re e re e e
1.3.10. B LT (o BT U= S
1.3.11. (T o] o1 or TSP

2. BaSICS OF the C LIDIAIYccoiiiiiiiii bbb
2.1. SEAFTING 10 USE EVIO w.vviiiieiiciicie ettt ettt bttt
2.2. REAAING BVENTS ...ttt bbb bbb et b ettt b et st een e
2.3. WIITING BVENTS ...ttt bbbt bbbttt
2.3.1. SPIIEEING FIIES ..
2.3.2. NAMING FIIES ...t
2.4. Controlling 1/O through eVIOCHI()coveieiiiiiee e
2.5. Network Communication FOFMALccovrieiiineiieneese e
2.6. DICLIONAIY ...ttt bbbt e et s bt b e bt b et enb e b sbenbesbe b e ene e
2.7. Data FOIMAELS. ..ot e
2.8. DOCUMENTALION ...ttt bbbt b et e nn s

3. BasiCs Of the CH+ LIDFANY ...cceceicce ettt snesrenneeneas
3.1. BVIOCRNANNEL ...ttt bbbttt

3.2. LYo Y1 ST aF= Ta T =] O 13

3.3 BVIOELCNANNEL ... 13
3.4, EVIOCMSGCRNANNEL ...t 14

EVIO SEFEAM PAISEIooiiiiiiiitiiiiee et sr e 15
4.1. 1 OSSOSO 15
4.2. [T O o TP OP T PPPTUPURRURRTR 16

EVIO DOM Parser and DOM TEEES.......cuiiiiiriiieiirieieie sttt 18
5.1. EVIODOMNOGE ...t bbbt b et 18
5.1.1 GELCRITALIST() +. vttt bbb 19
5.1.2. 0 TNV Z=Tot o] = (S 19
5.2. EVIODOMTIEE ...ttt 19
5.2.1. Manual evioODOMTIEE CONSIFUCTIONcvvrvieeiirrieciisreeeese e 19
5.2.2. Modification Of eXIStING trEES......cuiiiiice e 20

UBITITIES .. R e Rt Rt R s 21
6.1. BVIOZ2XIM L.t 21
6.2. XIMIZ2EVIO ...ttt bbbttt b bbb 22
6.3. Lo o]) TSSOSO PRSP 22

Crtt TULOTTAL ..t bbb bbbt b bbb nb s 23
7.1. SIMPIE BVENT 17O ..ot eb ettt 23
7.2. QUENYING the BVENETIEE... ...ttt ettt 24
7.3. Manipulation Of the BVENT IRcvii e 26
7.4. EXAMPIE PrOgIAMS.oiiiiiiiee ettt et te e s e e s te e s beenbeentessbesteesaeesreeneeas 27
7.5. F X AV g TodcT I (0] o ot USSR 27

LA o T oV B VT) SR 28
8.1. =W Lo [T T USSR 28
8.2. DOCUMENTALIONvcveteeeiect ettt r et nn 28
8.3. BT CS vttt bbb bbbtk bttt nb et be et 29
8.4. EVENE CrEALING ettt bbbt b et b e et b et ne s 29
8.5. WVETEING ottt et b e e b et b ettt et b e 30
8.5.1. Writing t0 file OF DUFEEcoiiii s 30
8.5.2. NAMING FIIES ...t 32
8.5.3. SPIIEEING FIIES .. 33
8.6. REAAING. ..o bbb b bttt e bbbt ne e 33
8.7. SBANCIING ..ttt bbbttt b e b bt n bttt nae b aeeneas 36
8.8. PAFSING .t bbb bbb E et ae bbbt ebe e e e e 37

8.9. I =TS 0] 14T T4 ST 38

8.10. [0t 0] 0 Fo TS 38
9 (101 10] 7= Lot AN L= o PSSP 40
9.1. 21 LY [0t TR 40
9.2. EXAMPIE L. bbbt e 41
9.3. EXAMPIE 2. bbb 42
10, JeVio EVENT-VIEWING GUI ..ottt 43
YA A V/ (oI o1 (=0 0] ¢ 0= 1 OO 44
A1 Old FOrmat, EVIO VEISIONS 13ooiiiieiiiieiiiie ettt et e eta e sttt e s st te s s s satan e s s bt e e s s saaae s s ssbanessraeeas 44
A.2 NEW FOrmat, EVIO VEISION 4eeiiiieiie ettt ettt ettt e s tae s saba e s eb e e s e rba e s s saban e s sbaee s 45
(= T AV @ N T r= W o] g 4 11 | PSR OTO 47
B.1 Bank STruCtUreS & CONTENT.......coicviiiiitiii ettt s e e st e e s s ebbe e s s sbee e s ssraeeeaas 47
B.2 Changes From PreviouS VEISIONSc.civeiieiiiiesieeseeseeseeste e see e stae e steeaeseesneesneennas 48
B.3 COMPOSITE DAA TYPE ..veveeiieecie ettt te e et e et e s ta e te e teestesneesneenneenns 49
{OT AV (@ N B o1 £ To] g F=V VA o] o 117 | SR 52
Cl EVIO VEISIONS 2 & 3 oottt ettt ettt sttt e s ettt e e e et e e s st e e e s aabaeeesbeeaessabanesstaeeeias 52
C.l1 JEVIO PrODIBMS ... e 53
C.1.2 CH+ EVIO PIrODIEMS ... 53
C.2 AV (IR Y= 63 10 OO 53
c.z21 BB AVIONS ...ttt ettt e e e e et r e e et e e st e e ea bt e e a—aaeairaes 55
C.2.2 Differences between CH+ And JAVAocueeeeieeiie ettt ere e 56
[AV (@ 3 ¥ ot o] @ o] =T od £ ST 57
L R AV TS o] g I 1T (0] Y/ S 58

INTRODUCTION

1. Introduction

1.1. Evio Version 1

Version 1 of the CODA EVI10 package, written in C, was in use at Jefferson Lab for over
a decade. It has seen extensive use in Halls A and C, where the raw data is written to
disk in EVIO format, and has seen limited use in the Hall B, where PRIMEX and the
GlueX BCAL test stored their raw data in EVIO format (CLAS stored raw data in
BOS/FPACK format).

1.2. Evio Versions 2& 3

In the past few years, in EVIO versions 2 and 3 (no difference between them), the JLab
DAQ group upgraded and extended the EVIO package to meet some additional needs.
First added were XML conversion and other utilities, support for all 1, 2, 4, and 8-byte
data types, addition of a new TAGSEGMENT bank type, support for gzipped files and
pipes (courtesy of Steve Wood), elimination of obsolete data types, as well as a number
of bug fixes and performance enhancements.

With the advent of object-orientation and C++ the DAQ group achieved a major upgrade
to the EVIO package beyond simple wrapping of existing C code in C++. Since an EVIO
event maps to a directed acyclic graph or tree, a fact which allowed us to write the XML
conversion utilities, we based the object-oriented extension on the XML notion of stream
and Document Object Model (DOM) parsing and DOM trees. Note that banks in an
EVIO event can either be container nodes or leaf nodes, i.e. they can contain either other
banks or data, but not both (unlike XML, where a node can contain both data AND other
nodes).

The object-oriented extension to EVIO described below builds upon the modern C++
standard, and makes liberal use of templates and the Standard Template Library (STL)
(i.e. containers, iterators, algorithms, function objects, function object adaptors, smart
pointers, etc). Fortunately users need only be familiar with a small subset of these, and
examples in the tutorial below show how to do the most common tasks. However,
advanced users of the EVI0 package should be able to take full advantage of the STL.

INTRODUCTION

Note that the object-oriented features build upon the existing C library, and except as
noted the C library continues to work as before. On the Java front, the DAQ group
adopted, extended, and supports Dave Heddle's jevio package.

1.3. Evio Version 4

This brings us to EVI10 version 4 which can be found at http://coda.jlab.org . The
following outlines the major changes that were made.

1.3.1. File Format Block Size

In previous versions, the EVI1O file format had fixed-size blocks generally set to 8192 32-
bit ints (32768 bytes) including a block header. EVIO banks were often split across one
or more blocks. This was largely done for error recovery when using tape storage.

In version 4, since tape storage considerations are now irrelevant, each block contains an
integral number of events. Users can set the nominal block size or events/block. Writing
will not exceed the given limit on events/block, but each block may contain significantly
less events depending on their size. The nominal block size will be exceeded in the case

that a single event larger than that size is written.

1.3.2. Network Communication Format

In order to unify file and network communications, the new file format is used for both.
The C library has evOpenBuffer and evOpenSocket routines to complement the
traditional evOpen and allows reading and writing with buffers and TCP sockets.

1.3.3. Expanded User Interface

The C library contains several new read routines which differ in their memory handling.
Options for the routine evloctl have been expanded. Routines for dictionary handling and
other purposes have been added as well.

1.3.4. Dictionary

An xml format dictionary can be seamlessly included as the first bank of a file/network
format.

1.3.5. Padding

When using 1 and 2 byte data sizes (short, unsigned short, char, and unsigned char) in
previous EVI1O versions, there was some ambiguity. Because EVIO format dictates each
bank, segment, or tagsegment must be an integral number of 32-bit ints in length,

ftp://ftp.jlab.org/pub/coda/evio/2.0

INTRODUCTION

specifying an odd number of shorts or non-multiple of 4 number of chars meant there
were extra, unused shorts or chars that the user had to keep track of externally.

In version 4, with banks and segments (not tagsegments), these unused shorts/chars or
padding are tracked in the header by using the 2 highest bits of the content type. Padding
can be 0 or 2 bytes for shorts and 0-3 bytes for chars. All padding operations are
completely transparent to the user.

1.3.6. Data Formats

There is a new data format called composite data which is used by Hall B. In a nutshell it
consists of a string which describes the format of the data - allowing data of mixed types
to be stored together - and is followed by the data itself.

1.3.7. Random Access

There is a read routine which will read a particular event (say #347) directly instead of
having to read the previous (346) events.

1.3.8. Append Mode

There is now a writing mode which will append data to the end of an existing file or
buffer.

1.3.9. Splitting Files

The C, C++, and Java evio libraries all implement a means to limit the size of an evio file
being written by splitting it into multiple files. There are facilities to make the automatic
naming of these files simple.

1.3.10. Thread Safety
The libraries are now designed to be thread safe.

1.3.11. Graphics
The Java library has a graphical user interface for viewing evio format files.

BASICS OF THE C LIBRARY

2. Basics of the C Library

The EVIO file format is described in Appendix A while bank structures and content type
are described in Appendix B. Appendix C explains the dictionary format.

2.1. Starting to use Evio

The first thing a user must do is to "open™ evio and obtain a handle to be used as an
argument for all other evio functions. There are now 3 possibilities in the 3 open routines:

1) int evOpen(char *filename, char *flags, int *handle)
2) int evOpenBuffer(char *buffer, int bufLen, char *flags, int *handle)
3) int evOpenSocket(int sockFd, char *flags, int *handle)

The first routine is for opening a file. The "flags" argument can "w" for writing, "r" for
reading, "a" for appending, "ra" for random access, or “s” for splitting the file while
writing. The splitting, appending and random access modes are new in this version of
evio and are not backwards compatible. Writing a file will overwrite any existing data,
while appending will add new events to the end of a file. Reading a file will allow access
to each event in the order in which it exists in the file - in other words, it is a sequential
access to the events. The random access mode, on the other hand, does a preliminary scan
of the file and allows reading (not writing) of selected events no matter where they are in
sequence. When writing large amounts of data it is often convenient to split the output
into a number of files. This is supported by specifying the “s” flag. By proper
specification of the filename argument and by using the evloctl() function, these split
files can be automatically named.

The second routine is for opening a buffer. It takes a pointer to a buffer as well as its
length in words (32 bit ints) as the first 2 arguments. The "flags" argument is the same as
for evOpen() as discussed in the previous paragraph with the exception of “s” since
splitting makes no sense for buffers.

The third is for opening evio with a TCP socket. The first argument is the socket file
descriptor of a TCP socket which was created elsewhere. The "flags" argument in this
case can only be "w" for writing, "r" for reading since splitting, appending or random
access makes no sense when talking about a stream-oriented medium.

2.2. Reading events
There are now 4 routines able to read an event.

BASICS OF THE C LIBRARY

1) int evRead(int handle, uint32_t *buffer, size_t buflen)
2) int evReadAlloc(int handle, uint32_t **buffer, uint64_t *buflen)
3) int evReadNoCopy(int handle, const uint32_t **buffer, uint64_t *buflen)

4) int evReadRandom(int handle, const uint32_t **pEvent, size_t
eventNumber)

The first is the original read routine which reads an event into a user-given buffer. Its
main problem is that the caller does not generally know the size of the event before
reading it and therefore the supplied buffer may be too small - resulting in an error.

The second reads an event, allocating all the memory necessary to hold it with the caller
responsible for freeing that memory.

The way evio works internally is that a file/buffer/socket is read one block at a time into
an internal buffer. The third routine simply returns a pointer to the next event residing in
the internal buffer - so no memory allocation or copying is done. If the data needs to be
swapped, it is swapped in place. Any other calls to read routines will cause the data to be
overwritten if a new block needs to be read in. Of course, no writing to the returned
pointer is allowed.

Finally, the last read routine works like the 3rd read routine described in the previous
paragraph in which a pointer to an internal buffer is returned to the caller. It is valid only
when evio has been opened in random access mode and allows the caller to read only the
event of interest instead of all previous events as well.

2.3. Writing events

As in previous versions there is only 1 write routine simply because the C library will
only write in the new format, so no changes here:

int evWrite(int handle, const uint32_t *buffer)

However, there is a complication when writing to a buffer that does not occur when
writing to a file or socket. Unlike a file which grows as one writes or a socket that will
take any amount of data, the buffer that the caller provides to contain what is written, is
of fixed size. Thus an error can be returned if the amount of data written exceeds the
buffer size; therefore, it is convenient to keep track of how much has already been
written, before continuing to write more. This can be done through the following new
routine:

int evGetBufferLength(int handle, uint64_t *length)

This routine returns the number of bytes currently written into a buffer when given a
handle provided by calling evOpenBuffer(). After the handle is closed, this no longer
returns anything valid.

2.3.1. Splitting files

When writing significant amounts of data to a single file, that file can get very large — too
large. Historically, run control was able to split the data into multiple files with an
automatic file naming system. For this version of evio, the ability to split files is built in

BASICS OF THE C LIBRARY

as is the naming system. Start by setting the “flags” parameter in the evOpen() call to “s”.
In addition to that, the user may choose the number of bytes at which to start writing to a
new file by a call to evloctl() (see below). If not explicitly set, the split occurs at 1GB. If
a dictionary is defined by calling evWriteDictionary() (see below), then that dictionary is
included in each of the split files. The split files are named according to the automatic
naming system whose details are given in the next section.

2.3.2. Naming files

When splitting files, a base filename is passed to evOpen() and may contain characters of
the form $(env) where “env” is the name of an environmental variable. When a file is
created, all such contructs will be substituted with the actual environmental variable’s
value (or nothing if it doesn’t exist).

Similarly, the base filename may contain constructs of the form %s which will be
substituted with the actual run type’s value (if set with evloctl) or nothing if run type is
null or was not set.

Generated files names are distinguished by a split number which starts with 0 for the first
file and is incrementing by 1 for each additional file. Up to 2, C-style integer format
specifiers (such as %03d, or %x) are allowed in the base filename. If more than 2 are
found, an error is returned. If no "0" precedes any integer between the "%" and the "d" or
"x" of the format specifier, it will be added automatically in order to avoid spaces in the
generated filename. The first specifier will be substituted with the given run number
value (set in evloctl()). The second will be substituted with the split number. If no
specifier for the split number exists, it is tacked onto the end of the file name.

Below is an example of how the file naming and splitting is done. Given the list of values
below

int split = 100000000; // split at 100MB
int runNumber =1;

char *runType = “myExperiment”;

char *directory = “/myDirectory”;

char *baseFilename “my$ (BASE _NAME) %s $x $03d.ext”;

and a BASE_NAME environmental variable of the value “File”, the following happens.
The baseFilename string will have the environmental variable, BASE_NAME,
substituted in the obvious location along with the runType substituted for the %s, the
runNumber substituted for the %x (hex format), and the split number substituted for the
%03d. The first 3 split files will have the names:

myFile myExperiment 1 00l.ext

myFile myExperiment 1 002.ext

myFile myExperiment 1 003.ext

2.4. Controlling I/0 through evloctl()

Some control over evio settings is given to the user with the evloctl() routine, shown
below,

int evloctl (int handle, char *request, void *argp)

10

BASICS OF THE C LIBRARY

It can be used, for example, to set the target block size and the maximum number of
events/block for writes. It can also read various quantities including the total number of
events in a file or buffer opened for reading or writing.

This routine can obtain a pointer to allocated memory containing the most recently read
block header. The size of the memory is 8, 32-bit unsigned integers (words) and the
pointer to the memory is obtained by passing its address in argp. This pointer must be
freed by the caller to avoid a memory leak.

To summarize, the request parameter can be the case independent string value of:
1) "B" for setting target block size in words
2) “W” for setting writing (to file) internal buffer size in words
3) "N" for setting max # of events/block
4) “R” for setting run number (used in file splitting)
5) “T” for setting run type (used in file splitting)
6) “S” for setting file split size in bytes
7) "V" for getting evio version #
8) "H" for getting 8 words of block header info
9) "E" for getting # of events in file/buffer
The argp parameter is a:
1) pointer to 32 bit unsigned int containing block size in 32-bit words if request = B
2) pointer to 32 bit unsigned int containing buffer size in 32-bit words if request = W
3) pointer to 32 bit unsigned int containing max # of events/block if request = N
4) pointer to 32 bit unsigned int containing run # if request = R
5) pointer to character containing run type if request =T
6) pointer to 64 bit unsigned int containing file split size in bytes if request = S
7) pointer to 32 bit int returning the version # if request = V

8) address of pointer to unsigned 32 bit int returning a pointer to 8 uint32_t's of
block header if request = H. (This pointer must be freed by caller since it points to
allocated memory).

9) pointer to unsigned 32 bit int returning the total # of original events in existing
file/buffer when reading or appending if request = E

11

BASICS OF THE C LIBRARY

2.5. Network Communication Format

In order to unify file and network communications, the new file format is used for both.
The C library has evOpenBuffer() and evOpenSocket() routines to complement the
traditional evOpen() and allows reading and writing with buffers and TCP sockets.

2.6. Dictionary

An xml format dictionary can be seamlessly included as the first event when writing
events to a file, buffer, or network. Refer to Appendix C for details on the format of a
dictionary. To write a dictionary, simply call the following routine

int evWriteDictionary(int handle, char *xmlDictionary)

before writing any events and it will be seemlessly included as the first event in the first
block. If events have already been written, an error will be returned. When reading
events, simply call the following routine to get the dictionary, as a string, if it was
defined:

int evGetDictionary(int handle, char **dictionary, int *len)
Note that if a file is being split, each file contains the dictionary.

2.7. Data Formats

There is a new data format called composite data which is used by Hall B. In a nutshell, it
consists of an evio format string which describes the format of the data - allowing data of
mixed types to be stored together - and is followed by the data itself.

2.8. Documentation

Besides the document you are now reading, there are doxygen docs which are essentially
javadoc web pages for C/C++ code. To those unfamiliar with doxygen, programmers
include specially formatted comments in the code itself which is extracted by the
doxygen program and formed into web pages for view with a web browser. The user
must generate these web pages by going to the top level of the evio distribution and
typing "scons doc”. Then simply view the doc/doxygen/C[or CC]/html/index.html file in
a browser.

12

BASICS OF THE C++ LIBRARY

3. Basics of the C++ Library

Important: all symbols in the EVIO C++ library reside in the “evio” namespace.

3.1. evioChannel

The foundation for I/O in the C++ object-oriented version of EVIO is the notion of an
EVIO channel, an abstract or pure virtual class that includes the methods open(), read(),
write(), and close(). Real or concrete channels extend the evioChannel class and use their
constructors to supply information needed to access the underlying EVIO data stream.

There are three flavors of the write() method implementing output 1) from the internal
evioChannel buffer, 2) from a user-supplied buffer, and 3) from the internal buffer in
another evioChannel object. Additional methods include getBuffer() and getBufSize().

3.2. evioFileChannel

The evioFileChannel class is a subclass of evioChannel that implements 1/0 to and from
files or file-like entities (e.g. pipes). The constructor accepts a file name, an optional
mode string (default is “r””), and an optional internal buffer size (default is 8192
longwords). The internal buffer is allocated automatically. The ioctl() method can be
used to set the EVIO file block size in write mode (default is 8192 longwords), and must
be called immediately after the open() method (ioctl is ignored for read mode).

This class is little more than an object-oriented wrapper around the original C function
library. See the C++ tutorial for an example of how to use evioFileChannel, the C
Library APl in Appendix A for additional information, or the Doxygen docs for full API
information.

3.3. evioEtChannel

The evioEtChannel class has not been written yet (Jan 2007...ejw). Its purpose is to
read/write EVIO events to and from ET systems.

13

BASICS OF THE C++ LIBRARY

3.4. evioCMSGChannel

The evioCMSGChannel class has not been written yet (Jan 2007...ejw). Its purpose is to
read/write EVIO events to and from the cMsg system

14

EVIO STREAM PARSER

4. EVIO Stream Parser

Stream parsing an EVIO event involves making a single pass through the event and
dispatching to user-supplied callbacks as each new bank is reached. Two versions are
supplied, a C version and a C++ version.

In the C version the user supplies two callbacks to evio_stream_parse() along with a
pointer to the event buffer. evio_stream_parse() works its way through all the banks in
the event in order, calling the callbacks as each new node or bank is reached. One
callback is called when container banks (ones containing other banks, not data) are
reached, the other when leaf or data banks are reached.

In the C++ version the evioStreamParser constructor is given an evioChannel object
containing an event (e.g. an evioFileChannel object which obtained an event via its read()
method) and a user-written callback handler object. The latter implements two methods:
containerNodeHandler() and leafNodeHandler(). containerNodeHandler() is called when
a container node or bank is reached, and leafNodeHandler() is called when a leaf or data
node is reached.

In general, stream parsing may be useful for a quick pass through the data, but in C++
DOM parsing and DOM trees (see the next section) are the preferred ways to deal with
EVIO events in all but the simplest cases.

41. inC

To use evio_stream_parser():

#include “evio.h”

int handle;
unsigned int buffer[10000];
int buflen=10000;

/* open file */

N7

status = evOpen (myFilename, r”, &handle) ;

/* read events */
while (evRead (handle, buffer, buflen)==S SUCCESS) ({

15

EVIO DOM PARSER AND DOM TREES

/* parse event and dispatch to callbacks */
evio stream parser (buffer, node handler, leaf handler);

}

/* close file */
evclose (handle) ;

where the node_handler callback is of type NH_TYPE, and the leaf_handler callback is
of type LH_TYPE (either can be NULL):

typedef void (*NH TYPE) (int length, int ftype, int tag, int type,
int num, int depth);

typedef void (*LH TYPE) (void *data,
int length, int ftype, int tag, int type,
int num, int depth);

where length is the length of the contents of the bank, ftype is the type of bank (BANK,
SEGMENT, or TAGSEGMENT) , tag is the bank tag, type defines the content type of the
bank, num is defined only for the BANK type (set to 0 for SEGMENT and
TAGSEGMENT), depth is the level of the bank in the tree, and data is a pointer to the
array of data contained by the leaf bank (must be cast to appropriate type before
accessing data).

42. In C++

To use the evioStreamParser:

#include <evioUtil.hxx>

using namespace evio;

using namespace std;

int main(int argc, char **argv) {
try |

// create evio file channel object for reading, argv([l] is filename

N7

evioFileChannel chan(argv([1l], “r”);

// open the file
chan.open() ;

// create parser and node handler objects
evioStreamParser parser;
myHandler handler;

// read events and parse channel internal buffer
while (chan.read()) {

16

EVIO DOM PARSER AND DOM TREES

parser.parse (chan.getBuffer (), handler, (void*)NULL) ;

// eof reached...close file
chan.close () ;

} catch (evioException e) {
cerr << endl << e.toString() << endl << endl;

exit (EXIT FAILURE) ;

// done
exit (EXIT SUCCESS) ;

where:

class myHandler : public evioStreamParserHandler ({

void *containerNodeHandler (int length, unsigned short tag,

int contentType, unsigned char num, int depth, void *userArg) {

return (NULL) ;

void leafNodeHandler (int length, unsigned short tag, int contentType,

unsigned char num, int depth, const void *data, void *userArg) {

b

17

EVIO DOM PARSER AND DOM TREES

5. EVIO DOM Parser and DOM Trees

In analogy with XML DOM parsing, the EVIO DOM parser constructs an in-memory
object-oriented representation of an EVIO event. This in-memory representation is
stored as an instance of the evioDOMTree class. The evioDOMTree constructor can
automatically construct the tree based on an event contained in an evioChannel object
(e.g. an instance of evioFileChannel). Manual construction and modification of trees is
also possible.

The tree itself consists of a hierarchy of nodes of two types, container nodes and leaf
nodes. Container nodes hold lists of other nodes; leaf nodes contain vectors of data. Both
node types inherit from the abstract base class evioDOMNode. The top node in the tree
is called the root node. Note that the API is defined entirely by the evioDOMNode class,
and that user code never calls its sub-classes directly.

5.1. evioDOMNode

This is the abstract base class for the two concrete node types described above, and the
only class that users deal with directly. The evioDOMNode class contains a parent
pointer, parent tree pointer, tag, num, and content type. The latter three correspond to the
fields in EVIO bank headers in EVIO files. Legal content types are listed in Appendix C.

Nodes are created via static factory methods :

evioDOMNodeP evioDOMNode: :createEvioDOMNode ()

where evioDOMNodeP is a node pointer and all objects are created on the heap. Other
methods include toString(), which returns an XML fragment representing the node; bool
isContainer() and isLeaf(), and a few others described below. operator==and operator!=
are defined to compare tags if the argument is an integer, or tag and num if the argument
is a tagNum pair (see API docs).

18

EVIO DOM PARSER AND DOM TREES

5.1.1. getChildList()

getChildList() returns a pointer to the child list of an evioDOMNode that actually is a
container node. NULL is returned if the node is a leaf node. See the tutorial for more
details.

5.1.2. geVector<T>()

getVector<T>() returns a pointer to the data vector contained in a leaf node of type T,
where T is one of the many supported data types (int, unsigned int, double, etc). NULL
is returned if the node is a container node, or if it is a leaf node containing a different
type. See the tutorial for more details.

5.2. evioDOMTree

This class represents the EVIO DOM tree or event in memory. It contains a pointer to
the evioDOMNOode that forms the root of the tree (type is always BANK), and the name
of the tree (default is “evio™). It can construct a tree from an event contained in an
evioChannel object (see the tutorial). Manual construction of a tree is discussed below.

Methods include toString(), which returns an XML string representing the entire contents
of the tree, and getNodeL.ist(Predicate P), which returns a (pointer to a) list of pointers to
all nodes in the tree satisfying the predicate P. See the C++ tutorial or the API docs for
details.

5.2.1. Manual evioDOMTree construction

Manual construction of an evioDOMTree might typically happen in a Monte Carlo
program that outputs simulated data. A root node must first be created, then it can be
filled with either data if it is a leaf node, or pointers to other evioDOMNOode objects if it
is a container node. This process can be repeated recursively until a complete tree is
formed. Then e.g. the tree can be written to a file via use of the write() method of an
evioFileChannel object.

evioDOMTree constructors exist that can automatically create the root node.
Alternatively, you can create the root node yourself and supply it to the tree constructor
directly.

Nodes are created via the static factory methods evioDOMNode::createEvioDOMNode(),
and can be added to the root node (assuming it is a container) or other container nodes in

19

EVIO DOM PARSER AND DOM TREES

a variety of ways. See the tutorial for examples of how to create nodes, add nodes to the
child lists of container nodes, and add data to leaf nodes.

5.2.2. Modification of existing trees

Modification of an existing tree might typically happen in a reconstruction program that
first constructs an evioDOMTree from data read in by an evioFileChannel object, and
then adds additional reconstructed data to the tree before writing it out again. The
program might create one or more sub-trees containing the new data, then add the
subtrees to the child lists of container nodes in the original tree. Further, sub-trees of the
existing tree might be deleted by removing them from the child lists of container nodes,
or moved from one container node to another.

These operations are easily carried out via the evioDOMNode methods cut(),
cutAndDelete(), and move(). See the tutorial for details.

20

UTILITIES

6. Utilities

The utilities described below can be used to convert from binary EVIO to ASCIlI XML
format and back, and to selectively copy EVIO events from one binary file to another.
Below the term “event tag” refers to the tag of the outermost bank in an event, which is
always of type BANK (two-word header, includes num).

6.1. evio2xml

evio2xml is a flexible utility that reads a binary EVIO file and dumps selected events in
XML format to stdout or to a file:

S evio2xml -h

evioZ2xml [-max max event] [-pause] [-skip skip event]
[-dict dictfilename] [-dumpDict]
[-xtod] [-max depth max depth] [-no_data] [-no_ dump]
[-indent indent size] [-maxbuf maxbuf]
[-verbose] [-debug]
[-bankTag bankTag] [-noBankTag bankTag]
[-bankName bankName] [-noBankName bankName]
filename

where most options customize the look and feel of the XML output, and defaults should
be satisfactory. —max specifies the maximum number of events to dump, —pause causes
evio2xml to pause between events, -skip causes it to skip events before starting to dump
them. By default the bank tags are printed as numbers. The user can specify ASCII
strings to be used instead in a tag dictionary (via —dict). Contact the DAQ group to get an
example dictionary file.

21

UTILITIES

6.2. xml2evio

xml2evio converts an EVIO XML file to a binary EVIO file:

S xml2evio -h

xml2evio [-xml xmlfilename] [-max max event] [-skip nskip]
[-evio eviofilename] [-dict dictfilename]
[-m main tag] [-e event tag]

where —xml specifies the input file name, —max specifies the maximum number of events
to convert, -skip causes xml2evio to skip events before converting, -evio specifies the
output file name, -dict is as described above for evio2xml, and —m and —e handle custom
XML main and event tags.

6.3. eviocopy

eviocopy copies selected events from a binary EVIO file to another binary EVIO file.
$ eviocopy -h

eviocopy [-max max event] [-skip skip event]
[-ev evtag] [-noev evtag] [-debug]
input filename output filename

where —max specifies the maximum number of events to copy, -skip cause eviocopy to
skip events, -ev causes eviocopy to only copy events with the specified event tag, and
-noev inhibits copying of events with the specified tag. —ev and —noev can be specified
multiple times on the command line.

22

C++ TUTORIAL

7. C++ Tutorial

Below are examples showing: how to read an event from a file into an evioDOMTreg;
how to query the tree to get lists of node pointers that satisfy various criteria and how to
work with the lists; and how to modify the tree. Some advanced topics follow.

7.1. Simple event I/O

Below is a simple example that uses an evioFileChannel object to open and read an EVIO
file, then create an evioDOMTree from the event in the evioFileChannel object, then
dump the event to stdout:

#include <evioUtil.hxx>

using namespace evio;

using namespace std;

int main(int argc, char **argv) {
try {

// create evio file channel object for reading, argv[l] is filename

N7

evioFileChannel chan(argv[1l], r”);

// open the file
chan.open () ;

// loop over events
while (chan.read()) {

// create tree from contents of file channel object
evioDOMTree tree (chan);

// print tree
cout << tree.toString() << endl;

}

// eof reached...close file
chan.close();

} catch (evioException e) {

23

C++ TUTORIAL

cerr << endl << e.toString() << endl << endl;
exit(EXIT_FAILURE);

}

// done

exit (EXIT SUCCESS);
}

The tree can be written to a file via the write() method of the evioChannel class.

7.2. Querying the event tree

There are many ways to query an evioDOMTree to get lists of subsets of nodes in the
tree. To get an STL list of pointers to all nodes in the tree:

evioDOMNodeListP pList = tree.getNodelList () ;

(Note to experts: evioDOMNodeL.istP is actually auto_ptr< list<evioDOMNodeP> >,
where evioDOMNodeP is evioDOMNode*)

Here no predicate is given to getNodeL.ist() so all pointers are returned. To get a list of
pointers to just container nodes:

evioDOMNodeListP pContainerlList = tree.getNodelList (isContainer());

where isContainer() is a function object provided with the EVIO package (see Appendix
D for a list of all supplied function objects). Similarly, to get a list of just leaf nodes:

evioDOMNodeListP pLeaflist = tree.getNodelList (isLeaf()):

To get a list of pointers to nodes satisfying arbitrary user criteria:

evioDOMNodeListP pMyList = tree.getNodelist (myChooser) ;

where myChooser() is a simple C function instead of a function object. An example that
specifies particular tag/num combinations is:

bool myChooser (const evioDOMNodeP node) {
return (
((node->tag==3) && (node->num==0)) ||
((node->tag==2) && (node->num==1))
)
}

To print all the nodes in the list (there are many ways to do this):

for each(pList->begin(), pList->end(), toCout()):;

24

C++ TUTORIAL

for_each() is one of a large number of STL algorithms. It accepts an STL iterator range
(pList->begin(), pList->end()) and applies the function object in its third argument to
each object in the iterator range in turn. Here toCout() is another of the many function
objects supplied by the EVIO package. toCout() invokes the toString() method of the
objects pointed to by the iterator, then streams the result to cout.

To print just leaf nodes, this time using iterators:

evioDOMNodeList::iterator iter;
for (iter=pleaflist->begin(); iter!=plLeaflist->end(); iter++) {
cout << endl << (*iter)->toString() << endl;

}
Note that (*iter) is an evioDOMNodeP, i.e. a pointer to an evioDOMNode object.

To count the number of leaf nodes with tags between 0 and 20 (this is an inefficient
algorithm shown for illustration only):

for (int tag=0; tag<=20; tag++) {
cout << "There are "
<< count if (pLeaflList->begin(), pLeaflList->end(), tagEquals(tag))
<< " leaf nodes with tag " << tag << endl;
}

count_if() is another STL algorithm that counts all objects within the iterator range for
which the predicate in the third argument is true. tagEquals() is another EVIO function
object that returns true if the tag of the object pointed to by the iterator is equal to the
argument given to the tagEquals() constructor, in this case the loop index “tag”.

To search the full list and print the data from all leaf nodes containing floats (i.e.
vector<float>) using the evioDOMNode member function getVector():

evioDOMNodeList::iterator iter;
for (iter=pList->begin(); iter!=plList->end(); iter++) {

vector<float> *v = (*iter)->getVector<float>();
if (v!=NULL) {
cout << endl << endl << “Float node data:" << endl;
for (int i=0; i<v->size(); 1i++) cout << (*v) [1i] << endl;

}

Note that getVector<T>() returns NULL if the node is not a leaf node containing (in this
case) floats. You can tell what type of data is contained in a node via the
getContentType() member function. See Appendix C for a list of legal content types.

To search the full list and access the child lists of container nodes using getChildList():

evioDOMNodeList::iterator iter;
for (iter=pList->begin(); iter!=plist->end(); iter++) {

25

C++ TUTORIAL

evioDOMNodeList *pChildList = (*iter)->getChildList();
cout << “Node has “ << pChildList->size() << ™ children” << endl;

if (pChildList->size()>0) {
evioDOMNodeList::const iterator clter;
for (cIter=pChildList->begin(); cIter!=pChildList->end(); cIter++) {
cout << "child has tag: " << (*cIter)->tag << endl;
}

7.3. Manipulation of the event tree

To add a new leaf node containing integers to the root node (must be container) of a tree:

unsigned short tag;
unsigned char num;
vector<int> myIntVec(100,1);

tree.addBank (tag=5, num=10, myIntVec) ;

or:
tree << evioDOMNode: :createEvioDOMNode (tag=5, num=10, myIntVec) ;

or:
tree.root->addNode (evioDOMNode: : createEvioDOMNode (tag=5, num=10, myIntVec)) ;

If cnlis a container node somewhere in the tree hierarchy you can add a new node In2 to
cnl (here In2 is a leaf node containing ints) via:

evioDOMNodeP 1n2 = evioDOMNOde: :createEvioDOMNode (tag=2, num=8, myIntVec);

cnl->addNode (1n2) ;

or:
*cnl << 1n2;

To append more data to In2:

vector<int> myIntVec2 (100, 2)
In2->append (myIntVec2) ;

or:
*1n2 << myIntVec2;

To replace the data in In2 with new data:

In2->replace (myIntVec2) ;

To move In2 from cnl to another container node cn3:
1n2->move (cn3) ;

To cut cnl out of the tree:

26

C++ TUTORIAL

cnl->cut () ; // just cut it out

or.
cnl->cutAndDelete () ; // also delete cnl and all of its contents

7.4. Example programs

A number of annotated example programs exist in the examples directory in the EVIO
distribution. These demonstrate how to read and write files; query and manipulate event
trees; create, manipulate, modify, and delete banks; etc.

7.5. Advanced topics

The following examples cover some more advanced features and topics that can be
ignored by most users:

evioDOMNodeL.istP is a smart pointer (auto_ptr<>) that is used to ensure the memory
used by the lists returned by getNodeL.ist() is released when the lists go out of scope.
While in most respects smart pointers act like normal pointers, they have some unusual
assignment semantics. If one smart pointer is set equal to another, ownership of the
contents is transferred, and the original loses ownership, e.g:

evioDOMNodeListP pl(...); // pl points to something
evioDOMNodeLIstP p2(); // p2 empty
p2=pl; // p2 points to something, pl is now empty!!!

Further, smart pointers must not be stored in STL containers. See the STL
documentation for more information on smart pointers and auto_ptr.

Note that if a standard shared pointer ever appears auto_ptr<> will be replaced. We
decided not to use the Boost shared pointer as Boost is not part of the standard Linux
distribution. We are considering incorporating a third-party shared pointer into the EVIO
library if nothing else appears. Contact EJW for more information.

27

JAVA EVIO (JEVIO)

8. Java Evio (Jevio)

The current Java EVIO package (org.jlab.coda.jevio) was originally written by Dr. Dave Heddle
of CNU and was graciously given to the JLAB DAQ group for maintenance and continued
development. Since it was created independently of the C++ implementation, it differs in its
interface but contains much of the same functionality.

8.1. Building

The java evio uses ant to compile. To get a listing of all the options available to the ant
command, run ant help in the evio top level directory to get this output:

help:
[echo] Usage: ant [ant options] <targetl> [target2 | target3 | ...]

[echo] targets:

[echo] help - print out usage

[echo] env - print out build file variables' values
[echo] compile - compile java files

[echo] clean - remove class files

[echo] cleanall - remove all generated files

[echo] jar - compile and create jar file

[echo] install - create jar file and install into 'prefix'
[echo] if given on command line by -Dprefix=dir',
[echo] else install into CODA if defined

[echo] uninstall - remove jar file previously installed into 'prefix'
[echo] if given on command line by -Dprefix=dir',
[echo] else installed into CODA if defined

[echo] all - clean, compile and create jar file

[echo] Jjavadoc - create javadoc documentation

[echo] developdoc - create javadoc documentation for developer
[echo] undoc - remove all javadoc documentation

[echo] prepare - create necessary directories

Although this is fairly self-explanatory, executing ant is the same as ant compile. That will
compile all the java. All compiled code is placed in the generated ./build directory. If the user
wants a jar file, execute ant jar to place the resulting file in the ./build/lib directory.

8.2. Documentation

In addition to the documentation in this file, there is javadoc which can be generated from the
full source distribution of evio. While not as detailed in explanation as this chapter, it will be
much more complete with each publicly accessible class and method being listed. Javadoc can be

28

JAVA EVIO (JEVIO)

generated by going into the top level evio directory and executing the command ant javadoc. If
more detail is desired, classes and methods which are not public can be seen by creating the
javadoc by executing the command ant developdoc. This is more suitable for a developer. The
resulting javadoc is placed in the ./doc/javadoc directory. Look in that directory at the file named
index.html in a browser.

8.3. Basics

There are some things necessary to know before reading and writing evio format files. However,
this is not intended to be a full evio tutorial. First, let's look at the classes which form the basis of
evio data and do some basic manipulations.

Evio's container structures are banks, segments, and tagsegments. These entities are implemented
with 4 different classes. At the very top level is the EvioEvent which is just a special case
(subclass) of an EvioBank with dictionary and other extra data included. Banks, of course, have
2 words (8 bytes) of header followed by data. The EvioSegment and EvioTagSegment classes
represent segments and tagsegments respectively, each have 1 word of header, no num value and
differing amounts of tag and type data.

To get information contained in a header, call getHeader() with event, bank, seg, or tagseg
objects. Using the returned BaseStructureHeader object, there are methods available to get &
set values for content type, tag, num, length, and padding.

Events of any complexity (containing container structures) are created using the EventBuilder
class. The writing of events is done through EventWriter objects, and the reading of events
through EvioReader. There is also a graphical viewer of events available in EventTreeFrame.

In previous versions of evio, only files could be written and read. Currently, however, evio data
can be handled by buffers as well.

The next 2 sections have examples which work together. The reading example will read what the
writing example produces.

8.4. Event Creating

There are 2 ways to create an evio event. Start with the simplest first -- use the EventBuilder
class to do it. This takes care of all the little details and requires only the initial calling of the
constructor and subsequent calling of the addChild() method to create an evio event. The builder
will check all arguments, the byte order of added data, type mismatches between parent & child,
and will set all evio header lengths automatically. The following code uses the EventBuilder to
create an event (bank) of banks with 1 child which is a bank of segments. The bank of segments
also has 1 child which is a segment of shorts.

// Use the EventBuilder class to create event of banks, tag=1l, num=1
EventBuilder builder = new EventBuilder (1, DataType.BANK, 1);
EvioEvent event = builder.getEvent();

29

JAVA EVIO (JEVIO)

// bank of segments
EvioBank bankSegs = new EvioBank (2, DataType.SEGMENT, 2);
builder.addChild (event, bankSegs);

// segment of 3 shorts

EvioSegment segShorts = new EvioSegment (3, DataType.SHORT16) ;
short[] sdata = new short[] {1,2,3};
segShorts.setShortData (sdata) ;

builder.addChild (bankSegs, segShorts);

// To remove a structure
builder.remove (segShorts) ;

The second means is to call the insert() method of the event or its children. This method requires
the event to call setAllHeaderLengths() at the end to make sure all the evio headers in the event
have the proper lengths set. The following code does exactly what the previous example does but
does not check for the issues mentioned above:

// Use event constructor and insert() calls
EvioEvent event = new EvioEvent (l, DataType.BANK, 1);

// bank of segments
EvioBank bankSegs = new EvioBank (2, DataType.SEGMENT, 2);
event.insert (bankSegs) ;

// segment of 3 shorts

EvioSegment segShorts = new EvioSegment (3, DataType.SHORT16) ;
short[] sdata = new short[] {1,2,3};
segShorts.setShortData (sdata) ;

bankSegs.insert (segShorts) ;

// To remove a structure
bankSegs.remove (segShorts) ;

// Make sure all evio headers have correct lengths
event.setAllHeaderLengths () ;

8.5. Writing

8.5.1. Writing to file or buffer

Start writing an evio format file or buffer with an EventWriter object. Simply pick among the
various constructors for your medium of choice. There are optional parameters including
allowing the user to chose whether to append to or overwrite any previously existing data. The
user can also set the block size and number of events per block as well as specify a dictionary
and data byte order among other things. Refer to the javadoc for all of the possibilities.

Below is some example code with comments showing how the writing is done. It shows how to
write to both files and buffers as well as how to define a dictionary and how to create evio data.
If the reader is unfamiliar with Java's ByteBuffer class, take some time to read up on it when
using buffers. 1t will allow you to do many things.

// For WRITING a file or buffer
public static void main(String args[]) {

30

JAVA EVIO (JEVIO)

// Define xml dictionary

String xmlDictionary =
"<xmlDict>\n" +
" <bank name=\"bank of banks\" tag=\"1\"
" <bank name=\"bank of segments\" tag=\"2\"
" <leaf name=\"segment of shorts\" tag=\"3\"
" </bank>\n" +
" <bank name=\"bank of banks\" tag=\"4\"
" <leaf name=\"bank of chars\" tag=\"5\"
" </bank>\n" +
" </bank>\n" +
" <dictEntry name=\"last bank\" tag=\"33\"
"</xmlDict>";

// Data to write

byte[] byteDatal = new byte[] {1,2,3,4,5};
int[] intDatal = new int[] {4,5,6};
int[] intData2 = new int[] {7,8,9};

short[] shortData = new short[] {11,22,33};

// Do we append or overwrite?
boolean append = false;

// Do we write to file or buffer?
boolean toFile = true;

ByteBuffer myBuf = null;

try |
EventWriter writer;

if (toFile) {
// Create an event writer to write out the test
// along with a dictionary
String fileName = "./myData";
File file = new File(fileName);

num=\"1\">\n" +
num=\"2\">\n" +
/>\n" +
num=\"4\">\n" +
num:\"5\"/>\n"

num=\"66\"/>\n"

events to file

writer = new EventWriter (file, xmlDictionary, append);

}

else {
// Or create an event writer to write to buffer
myBuf = ByteBuffer.allocate(10000);
myBuf.order (ByteOrder .LITTLE ENDIAN) ;

writer = new EventWriter (myBuf, xmlDictionary, append);

// event - bank of banks

EventBuilder builder = new EventBuilder (1, DataType.BANK, 1);

EvioEvent event = builder.getEvent();

// bank of segments

EvioBank bankSegs = new EvioBank (2, DataType.SEGMENT, 2);

builder.addChild (event, bankSegs);

// segment of 3 shorts

EvioSegment segShorts = new EvioSegment (3, DataType.SHORT16) ;

segShorts.setShortData (shortData) ;
builder.addChild (bankSegs, segShorts);

// another bank of banks
EvioBank bankBanks = new EvioBank (4, DataType.BANK,
builder.addChild(event, bankBanks);

4);

+

+

31

JAVA EVIO (JEVIO)

// bank of chars

EvioBank charBank = new EvioBank (5, DataType.CHAR8, 5);
charBank.setByteData (byteDatal) ;

builder.addChild (bankBanks, charBank);

// Write event to file
writer.writeEvent (event) ;

// How much room do I have left in the buffer now?
if (!toFile) {

System.out.println ("I have " + myBuf.remaining() + " bytes left");
}

// event - bank of ints
EvioEvent lastEvent = new EvioEvent (33, DataType.INT32, 66);

// Tell jevio what the data's endianness is.

// This will not swap anything now but will

// enable it to be written out properly.

// NOT necessary to call if data is big endian.
// Call this BEFORE dealing with data!
lastEvent.setByteOrder (ByteOrder.LITTLE ENDIAN) ;

// Overwrite all previous data with "setIntData"
lastEvent.setIntData (intDatal) ;

// RAppend data to end with "appendIntData"
lastEvent.appendIntData (intDataZ2) ;

// Write last event to file or buffer
writer.writeEvent (lastEvent) ;

// All done writing
writer.close();

}
catch (IOException e) {
e.printStackTrace () ;

}
catch (EvioException e) {
e.printStackTrace() ;

}

8.5.2. Naming files
The filename passed to any of the constructors may contain characters of the form $(env) where
“env” is the name of an environmental variable. When the file is created, all such constructs will
be substituted with the actual environmental variable’s value (or nothing if it doesn’t exist).

Similarly, the filename may contain constructs of the form %s which will be substituted with the
actual run type’s value (if passed in as a parameter to the constructor).

The filename may also contain the run number value (if passed in as a parameter to the

constructor) and the split number (if splitting). This is done by allowing up to 2, C-style integer
format specifiers (such as %03d, or %x) in the filename. If more than 2 are found, an exception
will be thrown. If no "0" precedes any integer between the "%" and the "d" or "x" of the format
specifier, it will be added automatically in order to avoid spaces in the generated filename. The

32

JAVA EVIO (JEVIO)

first occurrence will be substituted with the given run number value. If the file is being split, the
second will be substituted with the split number. If 2 specifiers exist and the file is not being
split, no substitutions are made.

8.5.3. Splitting files

When writing significant amounts of data to a single file, that file can get very large — too large.
Historically, run control was able to split the data into multiple files with an automatic file
naming system. For this version of evio, the ability to split files is built in as is the naming
system. Simply pick the constructor designed for file splitting with parameters allowing the user
to choose the number of bytes at which to start writing to a new file and the name of the files to
use. The constructor of both the EventWriter and EvioCompactEventWriter (more on this in the
next chapter) classes have input parameters for a base filename, run type, run number, and split
size.

A description of the general file naming system is in the section above, but when splitting into
multiple files (split size > 0), the user should also be aware that the generated files names are
distinguished by a split number. If the base filename contains C-style int format specifiers, then
the first occurrence will be substituted with the given run number value. The second will be
substituted with the split number. If no specifier for the split number exists, it is tacked onto the
end of the file name.

Below is example code with comments showing how the file naming and splitting is done.

100000000; // split at 100MB

1;

“‘myExperiment”;

“/myDirectory”;

“my$ (BASE_NAME) %s $x $%$03d.ext”;

new EventWriter (baseFilename, directory,
runType, runNumber, split,
64000, 1000, 300000,
byteOrder, dictionary,
bitInfo, overWriteOK, append);

int split

int runNumber
String runType
String directory
String baseFilename
EventWriter writer

The baseFilename string will have the environmental variable, BASE_NAME, substituted in the
obvious location along with the runType substituted for the %s, the runNumber substituted for
the %x (hex format), and the split number substituted for the %03d. If BASE_NAME has the
value “File”, then the first 3 split files will have the names:

myFile myExperiment 1 001l.ext

myFile myExperiment 1 002.ext
myFile myExperiment 1 003.ext

8.6. Reading

Start reading an evio format file or buffer with an EvioReader object. Simply pick among the
various constructors for your medium of choice. There is an optional parameter allowing the user
to make sure the incoming block numbers are sequential. (Find out about block numbers by

33

JAVA EVIO (JEVIO)

reading through Appendix A which describes the evio file format). There is also an optional
parameter for choosing between sequential and random-access methods for reading a file.

Looking "under the hood" for a moment, the preferred, random-access (and default) method of
reading a file is to use a memory-mapped ByteBuffer to be able to address each byte. It is much
faster than using streams to read a file sequentially. However, using a memory-mapped file is not
always possible. There is a fundamental limitation built into the Java JVM which only allows
indexes of arrays to be ints (and not longs). Since ints are signed 32 bit entities, and since a
ByteBuffer object is backed by an array in which each byte is addressable, the result is that only
files less than or equal to 2* - 1 (2.147G) bytes in size can be mapped. Files larger than that are
read sequentially using streams. This version of jevio is the first to be able to read and write large
files. The option exists to also read smaller files in a sequential manner but that would only slow
things down. One possibly confusing part of the jevio interface is that methods that are random-
access in nature are implemented using sequential reads for large files. Thus, jevio allows for a
random-access style of approach even when the underlying reading mechanism is sequential. To
implement this, all files and buffers are initially scanned to find the positions of each event. Note
that this may take significant time for large files.

On this matter of random-access vs. sequentially oriented method calls, these are the 2
independent means of retrieving events from a file/buffer. The following are the random-access
methods of the EvioReader class:

getEvent (int 1i)

parseEvent (int 1)
gotoEventNumber (int 1)

and the sequential methods:

nextEvent ()
parseNextEvent ()
rewind ()

When mixing calls of these two categories in one application, there is no need to worry about
one type interfering with the other. For example, if an application does a series of
parseNextEvent() calls to look at a file, then doing a parseEvent(20) method call in the middle of
the series will not change the sequence of the events returned by parseNextEvent().

Now for a word on performance. As previously mentioned, do not choose to read sequentially
when reading files < 2.1 GB in size. When reading larger files, it is usually faster to use the
sequential methods. The reason for that is they read in whole blocks (not individual events) at a
time. If the file was written with block sizes substantially greater in size than a single event (the
default when using small events), then it will be faster. The random-access methods will, on the
other hand, hop to the event of interest and only read in that single event.

It's easier to give an example of code used to read a file than to explain things abstractly. Various
lines show how to get and use a dictionary, read events with the sequential or random-access
methods, get the total number of events, and get & print data. The code below uses many of the
available evio features for reading and will read the file or buffer created in the previous section.

// For READING a file or buffer
public static void main(String args[]) {

34

JAVA EVIO (JEVIO)

String fileName = "/home/myAccount/myData";
File fileIn = new File(fileName) ;
ByteBuffer myBuf = null;

// Do we read from file or buffer?
boolean useFile = true;

try {
EvioReader evioReader;
if (useFile) {
evioReader = new EvioReader (fileName) ;
}
else {
myBuf.flip();
evioReader = new EvioReader (myBuf) ;

}

// Get any existing dictionary
String xmlDictString = evioReader.getDictionaryXML() ;
EvioXMLDictionary dictionary = null;

if (xmlDictString == null) {

System.out.println ("Ain't got no dictionary!");
}
else {

// Create dictionary object from xml string
dictionary = new EvioXMLDictionary (xmlDictString);
System.out.println ("Dictionary:\n" + dictionary.toString());

}

// How many events in the file?
int evCount = evioReader.getEventCount () ;
System.out.println("Read file, got " + evCount + " events:\n");

// Use "random access" capability to look at last event (starts at 1)
EvioEvent ev = evioReader.parseEvent (evCount) ;
System.out.println ("Last event = " + ev.toString());

// Print out any data in the last event.

// In the writing example, the data for this event was set to
// be little endian so we need to read it in that way too.
ev.setByteOrder (ByteOrder.LITTLE ENDIAN) ;

int[] intData = ev.getIntData();

if (intData != null) {
for (int i=0; i < intData.length; i++) {
System.out.println ("intData[" + i + "] = " + intDatali]);

}

// Use the dictionary

if (dictionary != null) {
String eventName = dictionary.getName (ev) ;
System.out.println ("Name of last event = " + eventName);

}

// Use sequential access to events
while ((ev = evioReader.parseNextEvent()) != null) {
System.out.println ("Event = " + ev.toString());

}

// Go back to the beginning of file/buffer for sequential methods
evioReader.rewind() ;

35

JAVA EVIO (JEVIO)

}

catch (Exception e) { e.printStackTrace(); }
}

8.7. Searching

Most users are also interested in searching an event, a bank, a segment, or a tagsegment for
various things. To this end, jevio has a couple of built in searches for ease of use. See the javadoc
for the StructureFinder class for details. Custom searches can be done by creating filters
conforming to the IEvioFilter interface. Simply define an accept() method to determine which
structures to add to a returned list. Following is an example of code that uses both the built in
search for banks with particular tag/num values and also a simple, user-defined search for
finding EvioSegment type structures with odd numbered tags.

// Take some event (not defined here)
EvioEvent event;

// Search it for banks (not segs, tagsegs) with particular tag & num values
int tag=1l, num=l;
List<BaseStructure> list = StructureFinder.getMatchingBanks (
event, tag, num);
if (list != null) {
for (BaseStructure bs : list) {
System.out.println ("Evio structure named \"" +
dictionary.getName (bs) +
"\" has tag=1 & num=1");

/= s

// Search for banks/segs/tagsegs with a custom search criteria

/=

// Define a filter to select Segment structures with odd numbered tags.
class myEvioFilter implements IEvioFilter {
public boolean accept (StructureType type, IEvioStructure struct) {
return (type == StructureType.SEGMENT &&
(struct.getHeader () .getTag() % 2 == 1));
}
bi

// Create the defined filter
myEvioFilter filter = new myEvioFilter();

// Use the filter to search "event"
list = StructureFinder.getMatchingStructures (event, filter);
if (list != null) {
for (BaseStructure bs : list) {
System.out.println ("Evio structure named " +
dictionary.getName (bs) + " is Segment with odd tag");

}

Note that any bank, segment, or tagsegment structure can call getMatchingStructures() directly
instead of through the StructureFinder class.

36

JAVA EVIO (JEVIO)

8.8. Parsing

Users have some options while parsing events. Listeners and filters may be added to an
EvioReader to be used while events are being parsed. The previous section has a good example
of how to create a filter. One such filter can be set for a reader object allowing the user to weed
out events of no interest.

Jevio also has an IEvioListener interface that can be used to define multiple listeners that operate
during parsing in a SAX-like manner. For each listener, simply define 3 methods to be run --
before an event is parsed, just after a structure in the event (bank, segment, or tagsegment) has
been parsed, and after the entire event has been parsed. Following is an example of code that
uses both a listener and a filter.

// Read some evio format file
EvioReader evioReader = new EvioReader (fileName) ;

// Get the parser which is contained in the reader
EventParser parser = evioReader.getParser();

// Define a listener to be used with an event parser
IEvioListener listener = new IEvioListener () ({

// Run this method after each bank/seg/tagseg has been parsed
public void gotStructure (BaseStructure topStructure,
IEvioStructure structure) {
System.out.println ("Parsed structure of type " +
structure.getStructureType());

}

// Run this method before the event is parsed
public void startEventParse (BaseStructure structure) {
System.out.println ("Starting event parse");

}

// Run this method after the event has been parsed
public void endEventParse (BaseStructure structure) {
System.out.println ("Ended event parse");
}
bi

// Add the listener to the parser
parser.addEvioListener (listener);

// Define a filter to select everything (not much of a filter!)
class myEvioFilter implements IEvioFilter {
public boolean accept (StructureType type, IEvioStructure struct) {
return true;
}
bi

// Create the above-defined filter
myEvioFilter filter = new myEvioFilter();

// Add the filter to the parser
parser.setEvioFilter (filter);

// Now parse some event
EvioEvent ev = evioReader.parseEvent (1) ;

37

JAVA EVIO (JEVIO)

8.9. Transforming

Occasionally there can arise problems with the "num™ parameter defined by a EvioBank header
but not the header of the EvioSegment or EvioTagsegment. The StructureTransformer class can
be used to transform objects between these 3 classes while taking care of the troublesome num.
For example:

// Take an existing EvioSegment
EvioSegment seg;
int num = 10;

// Turn that segment into a bank
EvioBank bank = StructureTransformer.transform(seg, num);

8.10. Dictionaries

This section describes how dictionaries can be used (refer to Appendix C for the format). In
general it is easiest to have one global dictionary defined when manipulating evio data. For jevio
this can be set in the singleton NameProvider class/object. To set this global dictionary simply
do something like:

// Define xml dictionary String

String xmlDictString =
"<xmlDict>\n" +

" <dictEntry name=\"first bank\" tag=\"1\" num=\"1\"/>\n" +
" <dictEntry name=\"second bank\" tag=\"2\" num=\"2\"/>\n" +
"</xmlDict>";

// Create a dictionary object from xml String
EvioXmlDictionary dict = new EvioXmlDictionary(xmlDictString);

// Make it the global dictionary
NameProvider.setProvider (dict) ;

Once the global dictionary is set, the question is, "how is it used"? The section in this chapter for
"Searching" uses the StructureFinder class and that is the case here as well. This class uses the
global dictionary if defined, but another dictionary may be specified as an argument to its
methods. There three methods in this class that use the dictionary as seen below:

// Take some event (not defined here)
EvioEvent event;

// Names to look for

String name = "dictionaryEntry";
String childName = "childEntry";
String parentName = "parentEntry";

// Search for structures (banks, segs, tagsegs) with a particular name
List<BaseStructure> listl = StructureFinder.getMatchingStructures (
event, name, dict);

38

JAVA EVIO (JEVIO)

// Search for structures whose parent has a particular name
List<BaseStructure> 1list2 = StructureFinder.getMatchingParent (
event, parentName, dict);

// Search for structures who have a child with a particular name
List<BaseStructure> list3 = StructureFinder.getMatchingChild (

event, childName, dict);

// Print out the list of structures

if (list2 != null) {
for (BaseStructure bs : list2) {
System.out.println ("Structure named \"" + dictionary.getName (bs) +

"\" has a parent named " + parentName) ;
}
}

In order to implement other types of searches, it would be relatively simple to copy the code for
any of the three methods and modify it to suit.

When a file or buffer is read, it may have a dictionary in xml format associated with it. That
dictionary is accessible through the EvioReader.getDictionaryXML() method. For convenience,
the EvioEvent class has a place to store and retrieve an xml dictionary string by using its
setDictionaryXML(), getDictionaryXML(), and hasDictionaryXML() methods.

The dictionary can also be used directly as an object of the EvioXmIDictionary class. Once an
xml string is parsed into such an object (by means if its constructor), there are methods to
retrieve the parsed information. These methods can obtain tag/num pairs associated with a name
and vice versa. They can also obtain data types, data formats, and descriptive comments
associated with either a name or tag/num pair.

// Define xml dictionary String
String xmlDictString =
"<xmlDict>\n" +
" <dictEntry name=\"me\" tag=\"10\" num=\"0\" type=\"composite\" />\n" +
" <description format=\"2iN(FD)\" >\n" +
" Any comments can go right here!" +
" </description>\n" +
" </dictEntry>\n" +
"</xmlDict>";

// Create a dictionary object from xml String
EvioXmlDictionary dict = new EvioXmlDictionary (xmlDictString);

// Retrieve & print info from dictionary
System.out.println ("Getting stuff for name = \"me\":");

System.out.println (" tag = " + dict.getTag("me"));
System.out.println (" num = " + dict.getNum("me"));
System.out.println (" type = " + dict.getType("me"));
System.out.println (" format = " + dict.getFormat ("me"));
System.out.println (" description = " + dict.getDescription("me"));

System.out.println ("Getting stuff for tag = 10, num = 0:");

(
System.out.println (" type =" + dict.getType(10,0));
System.out.println (" name = " + dict.getName(10,0));
System.out.println (" format = " + dict.getFormat (10,0));
System.out.println (" description = " + dict.getDescription(10,0));

39

COMPACT JAVA EVIO

9. Compact Java Evio

When communicating EvioEvents (java objects) over the network, the user must serialize
such events into an array or buffer of bytes when sending and must deserialize the same
bytes into objects on the receiving end. This can lead to a serious performance penalty.
To avoid having to serialize and deserialize continually, a new API was developed to
allow the handling of evio data in byte buffer form. For lack of a better term, compact
was the word chosen to describe it since all evio data handled in this API are contained in
ByteBuffer objects and never expanded into EvioEvent objects.

9.1. Basics

There are 4 classes comprising all the functionality: EvioCompactReader,
EvioCompactStructureHandler, EvioCompactEventWriter, and finally EvioNode.
Starting with the simplest, the EvioNode class stores information about a single evio
structure (bank, segment, or tagsegment), but does not contain information about its
internal structure. In other words, there is no expansion into a tree and its necessarily
accompanying deserialization. It stores all the header information along with locations of
the header and data in the buffer itself.

The EvioCompactReader (compact reader for short) plays a similar role as the
EvioReader in that it parses a buffer or file (not bigger than 2.1 GB) in evio format. Its
constructor creates an EvioNode object for each event and stores it in a list. Methods
allow searching an event for structures of a given tag & num pair or dictionary entry.
Once an EvioNode object is obtained from a search, its structure's data can be retrieved.
User-created evio structures can be added to the end of any event. Perhaps the most
powerful feature of the compact reader is that the user can obtain a ByteBuffer
representing just a single structure - an event, bank, segment, or tagsegment (no block
headers / no full evio file format). This allows for the extraction of bytes representing a
single structure to be sent over the network. In this way it almost acts as a writer as well
as being a reader.

Working hand-in-hand with the compact reader, the EvioCompactStructureHandler
(structure handler for short) can parse the bytes representing a single structure previously
produced by the compact reader. Actually any EvioEvent, EvioBank, EvioSegment, or
EvioTagSegment object can produce a byte representation of itself by calling its write()
method which the structure handler can parse. The structure handler has methods to
search for structures of a given tag & num pair or dictionary entry. Once an EvioNode
object is obtained from a search, its structure's data can be retrieved. User-created evio
structures can be added to the end of any structure (which contains structures, cannot add

40

COMPACT JAVA EVIO

bank to bank of ints for example). As in the compact reader, the user can obtain a
ByteBuffer representing just a single structure.

Finally, there is the EvioCompactEventWriter or event writer for short. Its sole purpose
in life is to collect byte representations of events and write them into an evio version 4
format file or buffer. Some constructors have arguments needed to create a file with a
generated name and can split the file into many if desired (just like the CODA event
builder). The size of an internal buffer is specified into which events are stored with the
writeEvent() method. When the internal buffer is full, it writes to the specified file. Of
course, when writing to a buffer no additional internal buffer is used. The close() method
finishes things up.

A simple measurement shows that using compact classes to search a file for structures of
a given tag/num pair is about 9x faster than using EvioReader.

At this point perhaps some examples would help to clear up any difficulties in
understanding the use of this API. Not all features are demonstrated.

9.2. Examplel

[/ mmm e
// Read file, search for tag/num, print data, add bank
[/ mmm e

public static void main(String args([]) {

try {
// Read file /tmp/myFile with compact reader
EvioCompactReader reader = new EvioCompactReader ("/tmp/myFile");

[/ mmm e
// Search for structure and print its data
[/ mmm e
// Search first event for tag = 3, num = 4
List<EvioNode> returnlList = reader.searchEvent(l, 3, 4);
if (returnlList.size() < 1) {

throw new Exception ("Found nothing in search");

}

// First structure found in event 1 with tag = 3, num = 4

EvioNode node = returnList.get (0);

// Get data in structure

ByteBuffer buf = reader.getData (node);

// Type of data in structure

DataType dType = node.getDataTypeObj () ;

// Print data in structure

if (dType == DataType.DOUBLE64) {
System.out.println ("Double data =");
DoubleBuffer dbuf = buf.asDoubleBuffer():;
for (int i=0; i < dbuf.limit(); i++) {

System.out.println(i + " " + dbuf.get(i));

}

}

[/ mmm e

// Add user bank to first event

[/ mmm e

// Create a bank to add to end of event, tag = 5, num = 6

41

COMPACT JAVA EVIO

EvioBank bank = new EvioBank (5, DataType.INT32, ©);
int[] intData = new int[] {1,2,3};
try {
bank.appendIntData (intData) ;
}

catch (EvioException e) {}

ByteBuffer bb = ByteBuffer.allocate (4*12);
bank.write (bb);
bb.flip();

// Add bank to event 1
reader.addStructure (1, bb);
}
catch (EvioException e) {
e.printStackTrace () ;

}

9.3. Example 2

[/ e m e
// Read file, select events and obtain their buffers.

// Collect the buffers and write them to another file.
[/ mmm e

public static void main(String args([]) {

try {
// Read file /tmp/myFile with compact reader

EvioCompactReader reader = new EvioCompactReader ("/tmp/myFile");

// Number of events in file
int evCount = reader.getEventCount () ;

// Create writer to file /home/user/outputFile
int runNumber = 1, split = 0, internalBufSize = 1000000;
String dictionary = null;
EvioCompactEventWriter compactWriter =
new EvioCompactEventWriter ("outputFile", "/home/user",

runNumber, split, internalBufSize,
ByteOrder.BIG ENDIAN, dictionary);

// Loop over all events
for (int i=0; i < evCount; i++) {
// Read event #i from input file
ByteBuffer evBuf = reader.getEventBuffer (i) ;
// Write event to output file
compactWriter.writeEvent (evBuf) ;
}
// Flush internal buffer to file & close
compactWriter.close();
}
catch (EvioException e) {
e.printStackTrace () ;

}

42

JEVIO GUI -
Section

10. Java Evio Event-Viewing Gui

In the jevio jar file, there is a graphical user interface for looking at EV1O format files
event-by-event. To run it simply type:

java org/jlab/coda/jevio/graphics/EventTreeFrame

HOWEVER, the simple gui above was further developed with many more features and
put into its own package called JEventViewer-1.0. The newer viewer has the capability of
grabbing ET events and cMsg messages and parsing them as evio data. It can also look at
any file as a list of 32 bit integers — very useful for debugging. To run it type:

java org/jlab/coda/eventViewer/EventTreeFrame

For this to work the JEventViewer-1.0.jar and jevio-4.3.jar jar files must be in your
CLASSPATH. If you want to look at ET and cMsg data, then the ET and cMsg jar files
must be in the CLASSPATH as well. For further documentation look in the
JEventViewer-1.0 package.

EVIO FILE FORMAT

A. Evio File Format

There has been a change in the format used to store evio data in files (and in this version,
buffers and over TCP sockets as well). Following are descriptions of both the old format
and the new.

A.1 Old Format, Evio Versions 1-3

Each file is divided into equal size blocks with each block having a header of 8, 32-bit
integers or words. The fixed sized block was used as a means to recover data in case of
tape storage problems. Following is a diagram of the header:

OLD BLOCK HEADER

MSB(31) LSB(0)

Block Length
Block Number
Header Length

Start
End
Version
Reserved 1
Magic Number

e The block length is number of 32 bit words in the block (including itself).
Although it is adjustable, this was generally fixed for versions 1-3 at 8192 (32768

bytes).
e The block number is an id # used by the event writer.

e The header length is the number of 32 bit words in this header. In theory this too
is adjustable but in practice was always 8.

e The start is the offset in words to the first event header in block relative to the
start of the block.

44

EVIO FILE FORMAT

e The end is the number of valid words (header + data) in the block. This is equal to
the block size unless it is the last block in which case it may be less.

e The version is the current evio format version number (1,2, or 3).
e The reserved 1 is unused.

e Finally, the magic number is the value 0xc0da0100 and is used to check
endianness.

Following the header is the data. Often events ended up being split across one or more
blocks. The start header word was used to find the beginning of the next event's header
inside the block.

A.2 New Format, Evio Version 4

Each file is still divided into blocks with each block having a header. In the new format,
to simplify things, each block contains an integral number of events which in turn means
that the size of each block is not fixed. Following is a diagram of the new header:

NEW BLOCK HEADER
MSB(31) LSB(0)

Block Length

Block Number

Header Length
Event Count
Reserved 1

Bit info | Version

Reserved 2

Magic Number

e The block length is number of 32 bit words in the block (including itself). In
general, this will vary from block to block.

e The block number is an id # used by the event writer.

e The header length is the number of 32 bit words in this header - set to 8 by
default. This can be made larger but not smaller. Even though, theoretically, it can
be changed, there are no means to do this or take advantage of the extra memory
through the C, C++ or Java evio libraries.

e The event count is the number of events in this block - always integral. Note that:
this value should not be used to parse the following events since the very first
block may have a dictionary whose presence is not included in this count.

e The Reserved 1 & 2 are unused.

45

EVIO FILE FORMAT

e And the magic number is the value 0xc0da0100 and is used to check endianness.

e That leaves only the bit info and version word for discussion. The version is the
current evio format version number (4) and takes up the lowest 8 bits. The other
bits are used to store the various useful data listed below:

BIT INFO WORD

Bit # (0 = LSB) Function
0-7 Version# = 4
8 = 1 if dictionary is included
(first block only)
9 = 1 if this block is the last

block in file, buffer, or
network transmission
13-10 type of events in block:
ROC Raw =0
Physics =1
Partial Physics = 2,
Disentangled Physics = 3,
User =4,
Control =5,
Prestart = 6,
Go =7,
Pause = 8,
End=9
Other = 15
31-14 unused

What isn't so clear yet is how events are divided into blocks. In java, some of the
constructors for the EventWriter class have arguments specifying

46

EVIO DATA FORMAT

B. EVIO Data Format

B.1 Bank Structures & Content

EVIO data is composed of a hierarchy of banks of different types. Container banks
contain other banks, and leaf banks contain an array of a single primitive data type.
Three types of banks exist: BANK, SEGMENT, and TAGSEGMENT. BANK has a
two-word header, the latter two have a one-word header. All banks contain a length, tag
and type. BANK additionally has a num field. SEGMENT and TAGSEGMENT differ
on the number of bits allocated to the tag and type. Tag and num are user-defined while
type denotes the bank contents and the codes listed in the table below MUST be used or
endian swapping will fail. Length is always the number of 32-bit longwords to follow
(i.e. bank length minus one). New to this version of EVIO is the pad for both BANK and
SEGMENT banks which indicates the number of bytes used for padding when type
indicates 8 or 16 bit integers.

BANK HEADER

MSB 32 bits LSB
length
tag | pad| type | num
Bits: 16 2 6 8

SEGMENT HEADER

tag |pad| type | length
Bits: 8 2 6 16

TAGSEGMENT HEADER

tag | type | length
Bits: 12 4 16

47

EVIO DATA FORMAT

CONTENT TYPES
contentType Primitive Data Type

0x0 32-bit unknown (not swapped)
0x1 32 bit unsigned int
0x2 32-bit float
0x3 8-bit char*
0x4 16-bit signed short
0x5 16-bit unsigned short
0x6 8-bit signed char
0x7 8-bit unsigned char
0x8 64-bit double
0x9 64-bit signed int
Oxa 64-bit unsigned int
Oxb 32-bit signed int
Oxc TAGSEGMENT
Oxd SEGMENT
Oxe BANK
Oxf COMPOSITE
0x10 BANK
0x20 SEGMENT
0x21 Hollerit*
0x22 N value*

*this type is only used internally for composite data

There are a few more things that the user must keep in mind:
e Dbank contents immediately follow the bank header
e the first bank in a buffer or event must be a BANK
e the CODA DAQ system defines specific conventions for tag and num values.

B.2 Changes From Previous Versions

There are a few changes from previous EVIO versions to take note of. A backwards-
compatible change has been made for strings (type 0x3). Previously, a single ASCII, null-
terminated string with undefined padding was contained in this type. Starting with
version 4, an array of strings may be contained. Each string is separated by a null-
termination (value of 0). A final termination of at least one 4 (ASCII char of value 4) is
required in order to differentiate it from the earlier versions and to signify an end to the
array. It is a self-padded type meaning it always ends on the 32 bit boundary.

48

EVIO DATA FORMAT

Another change is that the type of 0x40, which was redundantly defined to be a
TAGSEGMENT, has been removed since its value uses bits necessary to store the
padding. This is unlikely to cause any problems since it was never used.

The pad in the BANK and SEGMENT types indicates the number of bytes used for
padding to 32 bit boundaries when type indicates 8 or 16 bit integers (type = 0x4, 0x5,
0x6, or 0x7). For 16 bit types pad will be 0 or 2 while for the 8 bit types it will be 0-3.
Unlike previous versions, this allows EVIO to contain odd numbers of these types with
no ambiguity. For example, since a bank of 3 shorts is the same length as a bank of 4
shorts (banks must end on a 32 bit boundary) previously there was no way to tell if the
last short was valid data or not. Now there is. Note, however, this is not the case with the
TAGSEGMENT bank and so it is not recommended for storing these types.

B.3 Composite Data Type

A new type - COMPOSITE - has been added which originated with Hall B but also
allows for future expansion if there is a need. Basically the user specifies a custom format
by means of a string. Although in practice it acts like a primitive type in that you can
have a bank containing an array of them, a single COMPOSITE type looks more like 2
banks glued together. The first word comprises a TAGSEGMENT header which is
followed by a string describing the data to come. After this TAGSEGMENT containing
the data format string, is a BANK containing the actual data.

COMPOSITE TYPE

tag | type | length

data format string ...

length
tag |pad| type | num

actual data ...

The routine to swap this data must be provided by the definer of the composite type - in
this case Hall B. This swapping function is plugged into the EVIO library's swapping
routine. Currently its types, tags, pad, and num values are not used. Only the lengths are
significant.

There is actually another new type defined - the Hollerit type, but that is only used inside
of the COMPOSITE type and refers to characters in an integer form. Following is a table
of characters allowed in the data format string.

49

EVIO DATA FORMAT

DATA FORMAT CHARACTERS

Data format Meaning
char
((
))
i 32-bit unsigned int
F 32-bit floating point
a 8-bit ASCII char
S 16-bit short
S 16-bit unsigned short
C 8-bit char
c 8-bit unsigned char
D 64-bit double
L 64-bit int
I 64-bit unsigned int
I 32-bit int
A Hollerit
N Multiplier in 32-bit int

In the format string, each of the allowed characters (except ")" or "N") may be preceded
by an integer which is a multiplier. Items are separated by commas. Instead of trying to
explain the format abstractly, let's look at the following example:

i,L,2(s,2D,NF)

This format translates into the data being read and processed in the following order: a
single 32-bit unsigned int, a single 64-bit int, a multiplier of 2 (32 bit int) of everything
inside the parantheses, an unsigned short, 2 doubles, a multiplier, multiplier number of
32-bit floats, an unsigned short, 2 doubles, a multiplier, multiplier number of 32-bit
floats. The data is read in according to this recipe.

There are a couple of data processing rules that are very important:

1) If the format ends but the end of the data is not reached, the format in the last
parenthesis will be repeated until all data is processed. If there are no parentheses
in the format, data processing will start again from the beginning of the format
until all data is processed.

2) The explicitly given multiplier must be a number between 2 and 15 - inclusive. If
the number of repeats is the symbol 'N' instead of a number, that multiplier will be
read from data assuming 'I' format and may be any positive integer.

50

EVIO DATA FORMAT

The COMPOSITE data type allows compact storage of different primitive data types and
eliminates the need for extra banks and their accompanying headers. It does, however,
pay a penalty in the amount of computing power needed to read, write, and swap it. For
example, each time a COMPOSITE bank needs to be swapped, EVIO must read the
format string, process it, and convert it into an array of ints. Then, with the converted
format as a guide, EVIO must read through the data item-by-item, swapping each one. It
IS quite compute intensive.

51

EVIO DICTIONARY FORMAT

C. EVIO Dictionary Format

Since names are easier for humans to deal with than pairs of numbers, the basic idea
behind the dictionary is to associate a single string, a name, with 2 integers, an evio tag
and an evio num. The xml protocol was used to accomplish this. The following gives the
different xml formats used by the different versions of evio.

C.1 Evioversions 2 & 3

The xml format has been evolving. Originally, because EV1O data is stored in a
hierarchical manner with banks containing banks containing data, the dictionary format
was also hierarchical. In other words, a string was associated with not only the 2 numbers
but a place in the hierarchy as well. The idea was that a given pair of tag/num values
could occur in more than one location in the hierarchy and must be distinguishable from
each other. Following is an example of the first format used:

<xmlDict>
<xmldumpDictEntry name="event 1" tag="1" num="1"/>
<!-- DC -->
<xmldumpDictEntry name="DC" tag="500" num="0"/>
<xmldumpDictEntry name="DC id" tag="500.1" num="0.0"/>
<xmldumpDictEntry name="DC output" tag="500.2" num="0.100"/>
<xmldumpDictEntry name="sectorb5" tag="500.2.5" num="0.100.23"/>
</xmlDict>

There is only one possible element - xmldumpDictEntry. Notice the dotted notation of
the tag & num attributes. This notation, for example the tag 500.2.5, simply means that
this dictionary entry has a tag value of 5, its parent has a tag value of 2, and its
grandparent has a tag value of 500. Basically it is a way of specifying a place in the evio
tree or hierarchy.

52

EVIO DICTIONARY FORMAT

C.1.1 Jevio problems

The jevio-1.0 software package did not allow dotted notation for the tag, but did allow it
for the num. The rules that jevio uses to determine whether a bank, event, segment, or
tagsegment object matches a particular dictionary entry is:

1) ifitis an EvioSegment or EvioTagSegment object, the first entry that matches its
tag value is returned

2) ifitis an EvioEvent object, the first entry that matches its tag value and the first
level num value is returned

3) ifitis an EvioBank object, the first entry that matches its tag value and the
complete hierarchy of num values is returned

Although this works after a fashion, it unfortunately does not match tag values in a
hierarchical manner.

C.1.2 C++ Evio problems

The C++ library's handling of the dictionary's tags & nums is not perfect either. The
difficulty arises from the fact that when creating an evio tree of banks, segments, and
tagsegments, C++ evio does not distinguish between them. Each container is simply a
node that may be added, removed, cut, and pasted anywhere in the tree. Only upon
serializing the tree to a file does the fact that a node is one of the 3 types come into play.
In order for this model to function, all segments and tagsegments are essentially treated
as banks with num = 0. Thus a dictionary entry with tag = 1 & num = 0 will match both a
bank with those parameters and a segment with tag = 1 but no num. Worse yet, a node
can set num = 1, be written out as a segment, and then be read back in with num = 0. This
limitation must be taken into consideration when creating dictionaries & evio trees.

C.2 Evio version 4

A number changes to the previous evio dictionary format have been made. Let's start with
what has been eliminated. Previously the num and tag values could be hierarchical with
each level separated by a period such as:

tag = '1.2.3" num = '2.5"'

These types of values for tag and num were stored in the dictionary making the matching
of a bank to a dictionary entry tricky since now the parents and children of the bank
became involved. Not only was the matching complicated but a dictionary entry would
have to change depending on where a particular bank was moved to in an evio event tree
- very inconvenient and prone to error.

The first change eliminates these hierarchical tags & nums. Each dictionary entry is a
single name associated with a single tag value and a single num value (with segments and
tagsegments given a num value of 0). It becomes a simple matter to build hierarchies into
the name as will be demonstrated below.

53

EVIO DICTIONARY FORMAT

The C/C++ dictionary and the Java dictionary now have identical formats. In the old xml
format, there was only one entry type namely, the xml element of xmldumpDictEntry.
There are now 3 types of XML dictionary elements: dictEntry (replaces
xmldumpDictEntry which is too long), bank and leaf.

For each of these elements, the only attributes a dictionary parser will look at are name,
tag, num, and the newly added type (of contained data). All other elements and attributes
are ignored, so the XML can be used to define whatever else is desired. Note that only
the following case-independent values are valid for type with all other values being
ignored:

int32, unint32, long64, ulong64, shortl6, ushortl6, char8, uchars,
charstar8, float32, double64, bank, segment, tagsegment, composite,
unknown32

The simplest xml element is dictEntry, it just makes an entry into the map of names vs
tag/num pairs:

<dictEntry name="fred" tag="1" num="1" />

Here the name "fred" is a synonym for the tag/num pair (1,1).

The elements "bank™ and "leaf" are used for describing hierarchical bank structures. Take
a look at the following:

<bank name="CLAS12" tag="1" num="0">
<bank name="DC" tag="20" num="0">
<leaf name="xpos" tag="20" num="1"/>
<leaf name="ypos" tag="20" num="2"/>
<leaf name="zpos" tag="20" num="3"/>
</bank>
<bank name="SC" tag="30" num="0">
<leaf name="xpos" tag="30" num="1"/>
<leaf name="ypos" tag="30" num="2"/>
<leaf name="zpos" tag="30" num="3"/>
</bank>
</bank>

where "bank™ means an evio container (bank, segment, or tagsegment), and "leaf"" means
an evio container with no children. The parser will generate map entries equivalent to the
following:

<dictEntry name="CLAS12" tag="1" num="0"/>
<dictEntry name="CLAS12.DC" tag="20" num="0"/>
<dictEntry name="CLAS12.DC.xpos" tag="20" num="1"/>
<dictEntry name="CLAS12.DC.ypos" tag="20" num="2"/>
<dictEntry name="CLAS12.DC.zpos" tag="20" num="3"/>
<dictEntry name="CLAS12.SC" tag="30" num="0"/>
<dictEntry name="CLAS12.SC.xpos" tag="30" num="1"/>
<dictEntry name="CLAS12.SC.ypos" tag="30" num="2"/>
<dictEntry name="CLAS12.SC.zpos" tag="30" num="3"/>

54

EVIO DICTIONARY FORMAT

This scheme works well if all tag/num pairs are unique. That way there is a unique string
associated with each tag/num pair. If multiple names are linked with the same pair, then
searching for a particular name may not return the appropriate values, and searching for a
tag/num pair may not return the appropriate name. Likewise, if a single name is linked
with multiple pairs, the same confusion can result. In order to avoid these problems, both
the C++ and Java implementations of the dictionary only allow unique mappings.

In addition to the tag, num, and name attributes, the dictionary can also hold the type
information about the contents of an evio container (unknown types are ignored). For
example the following associates "fred" with 32 bit signed integers:

<dictEntry name="fred" tag="1" num="1" type="int32" />

The new composite type of data requires even more information about the format of the
data inside. To accommodate this, all dictionary entries may now have a description xml
subelement defined. These descriptions may have the format attribute defined as well:

<xmlDict>
<dictEntry name='myName' tag='123' num ='456' type='composite' >
<description format='F,D,Ni' >
F TDC
D ADC min=5.0 max=10.0
N multiplier
i scaler bits0-15=counterl bitsl5-32=counter2
</description>
</dictEntry>
</xmlDict>

The description and format can be anything meaningful to the user. Hall D will use a set
format for both entries when using composite type data so they can be parsed and
additional information extracted from it. This is done to allow flexibility to the user but
not in a way that would be a constantly changing specification for evio.

C.2.1 Pretty Printing
Dictionary entries without the num attribute may be defined in order to beautify any
printed output:

<dictEntry name="GeneralTag" tag="1" />
<dictEntry name="SpecificTag" tag="1" num="1" type="int32" />

For example, say the 2 dictionary entries above are the only ones defined for tag = 1.
Now, if an evio data file is being printed and contains a bank with tag = 1 and num = 2,
what this does is assigned the name “GeneralTag” to such a bank whose specific tag/num
pair has no corresponding dictionary entry.

C.2.2 Behaviors

There are a few other issues that need to be addressed. The use of the "leaf" element is
optional and may be replaced by "bank". However, if "leaf" is used, it may not have any
children. Even though XML is case-sensitive, in the parsing of the dictionary, all the
accepted elements' and attributes' cases are ignored.

55

EVIO DICTIONARY FORMAT

The rules that jevio now uses to determine whether a bank, event, segment, or tagsegment
object matches a particular dictionary entry is:

1) ifitis an EvioEvent, EvioBank, EvioSegment or EvioTagSegment (any kind of
container) object, the first and only entry that matches its "tag™ value and its
"num" value is returned

2) ifitis an EvioSegment or EvioTagSegment object, its num value is assumed to be
0 (zero) for purposes of matching

The xml representation of a dictionary can be embedded in a larger xml document.
Giving this larger document as the dictionary to be parsed is perfectly acceptable and the
code will pick out the dictionary portion. If multiple dictionaries are included, only the
first is used and the rest are ignored.

Furthermore, irrelevant xml elements and attributes may be present and are simply
ignored. When the jevio toXml() method of a dictionary is called, only the dictionary
portion of the original, full xml document is returned as a String.

C.2.3 Differences between C++ and Java

There still are a couple differences between Java and C++. The first is if a "leaf" entry
has any children, jevio will print a warning and ignore any such children while evio will
throw an exception. Similarly, if there are duplicate entries - either names or tag/num
pairs - an exception is thrown in C++ but in Java they are ignored (including any of their
children) and a warning is printed. These differences are allowed for backwards
compatibility purposes in jevio. Be aware that in jevio all the dictEntry elements are
processed before the bank and node elements. So if there are duplicate entries, any
dictEntry elements are given preference over the bank or leaf.

56

EVIO FUNCTION OBJECTS

D. EVIO Function Objects

A number of useful adaptable function objects for applying STL algorithms to the lists
returned by getNodeList() are provided. Adaptable means they can be used with STL
function object adaptors (see the STL documentation). Their constructors are:

operator() returns bool:

typeIs<T> (void)

typeEquals (int aType)

tagEquals (unsigned short aTag)

numEquals (unsigned char aNum)

tagNumEquals (unsigned short aTag, unsigned char aNum)
parentTypeEquals (int aType)

parentTagEquals (unsigned short aTag)

parentNumEquals (unsigned char aNum)

parentTagNumEquals (unsigned short aTag, unsigned char aNum)
isContainer (void)

isLeaf (void)

operator() returns void:

toCout (void)

57

REVISION HISTORY

E. Revision History

Version Date Comment

1.0 Early 1990°s | Original C version

2.0pre-beta Mid-2002 XML utilities, bug fixes, 1/0 enhancements, etc.
2.0beta Oct 2005 C++ API, stream and DOM parsing and trees, etc.
2.0 Jan 2007 Full tree manipulation API implemented

4.0 Aug 2012 Random access, append mode, new file format

4.1 Nov 2012 Read and write files > 2.1 GB

4.3 Jan 2014 Merge evio-4.1 and jevio-4.3 into evio-4.3

58

