Upgrade of Hall A Møller Polarimeter

E.Chudakov¹

¹Hall A, JLab

For Hall A collaboration meeting, Dec 2008

Møller Polarimeter in Hall A

Traditional polarized electron target

- Longitudinally polarized ferromagnetic foils 7-30 μ m thick
- Relatively low magnetic field $B \sim 250 \; \mathrm{Gs}$
- Foils tilted at 20° to the beam

Spectrometer

- Quads and a dipole minimization of θp correlation \Rightarrow small Levchuk effect < 1%
- Used at 0.6 6 GeV
- Acceptance $75^{\circ} < \theta_{CM} < 105^{\circ}, -10^{\circ} < \phi_{CM} < 10^{\circ}$
- Single arm rate at 0.5 μ A \sim 0.5 MHz

Møller Spectrometer

Plans for PREX

Systematic Errors

The goal for the systematic error				
Variable	Error			
	OLD	Present	PREX goal	
Target polarization	3.5%	2.0%	0.5%	
Target angle	0.5%	0.5%	0.0%	
Analyzing power	0.3%	0.3%	0.3%	
Levchuk effect	0.2%	0.2%	0.2%	
Dead time	0.3%	0.3%	0.3%	
Others	-	-	0.3%	
Total	3.6%	2.1%	~1.0%	

Specs for the upgrade

Physics purpose, driven by PREX

- Improve the systematic error $\sim 3\% \Rightarrow \sim 1\%$
- Measurements at high beam currents $0.5\mu A \Rightarrow 50\mu A$

General Approach

- Hall C target clone (the claim $\sigma P_{beam} \sim 0.5\%$ @ $\sim 3~\mu$ A)
- Round target foil \sim 1 μm thick \Rightarrow rate factor \sim 0.03
- Target heating $\Rightarrow \langle \mathcal{I}_{beam} \rangle < 3\mu A \Rightarrow \text{duty cycle} < 0.06$
- Fast raster 0.7 × 0.7 mm²
- Instantaneous rate ×2.5 ⇒ detector/electronics upgrade

Ways to reduce the duty cycle

- Hall C: fast motion of the beam on/off Moller foil with a kicker magnet
- Change the micro-structure: similar to G0: use the "n"-th bunch only
- Ohange macro-structure: similar to tune beam: 1 ms on / 30 ms off

Bunch suppression

Options (from the draft of a paper by M.Poelker et al)

- G0: laser running at 499/16MHz too long to install
- For regular bunch charges: laser at $\mathcal{F}_{laser} < \mathcal{F}_{RF}$ bunch suppresssion on the chopper. Beat frequency condition ($\mathcal{F}_{RF} = 499MHz$):

$$\mathcal{F}_{laser} \cdot (n+1) = \mathcal{F}_{RF} \cdot n$$
, $n = 3, 4, 7, 15, 31, ...$ - "magic" numbers

regular $\mathcal{F}_{laser} = \mathcal{F}_{RF}$

n = 15

continuous

Beat frequency mode - leak through

Pulses overlap

- $au_{\it pulse}$ \sim 200 ps @50 μ A
- $\quad \quad \tau_{\textit{pulse}} \text{ grows with } \mathcal{I}_{\textit{beam}} \\ \text{ (electro-repulsion)}$
- Fully open slit 110 ps
- No leak: $\Delta \tau > 160 \text{ ps}$

Optimization

- n=15 same slit $\Delta \tau =$ 133 ps, contamination \sim 5% bad
- n=7 same slit $\Delta \tau = 285$ ps, no contamination; other slit $\Delta \tau = 95$ ps leak $\sim 30\%$ invasive for other halls
- n=4 other slit $\Delta \tau = 166$ ps non-invasive?

Macro-pulsing - tune beam

- Pulses $\Delta t > 4 \mu s$ at repetition rate $k \times 30 \ Hz$
- Limitation: at $\mathcal{I}_{\textit{inst}} =$ 50 μ A accelerator stabilization time \sim 100 μ s
- No micro-suppresssion: $\Delta t = 1$ ms at $k \times 30$ Hz
- Micro-suppresssion n=4: $\Delta t = 1$ ms at $k \times 120$ Hz

Target heating

nne /nz /ns 19 zz

Numerical solution

- Beam
- Conductivity
- Radiation

Target heating with the real raster

Average heating by 1.5 μ A

- $\Delta T_{max} \sim$ 22 K no raster
- $\Delta T_{max} \sim 12 \text{ K raster 1} \times 1 \text{ mm}^2$

50 μ A, $\sigma_X \sim$ 30 μ m, $\Delta t =$ 1 ms Raster \sim 1.4 \times 1.4 mm², 25 \times 24 kHz

Results

- In pulse $\Delta T_{max} \sim$ 12 K
- Total △T_{max} ~ 24 K acceptable!

Issues

Beam optics for this raster

Counting rates

Instantaneous rates with bunch suppression

	OLD	NEW
Beam current	0.3 μ A	50 μ A
Target thickness	12 μ m/sin 20 $^\circ$	1 μ m
Ap.counter's rate	2 MHz	(×1.2)∼ 2.4 MHz

Modifications needed

- 8 ns between bunches
- Electronics upgrade: pulses 12 ns ⇒ 7.0 ns

Statistical accuracy

Duty cycle 3% \Rightarrow 1% in \sim 20 min

Regime

Non-invasive, small raster

- Bunch suppression n=4 non-invasive
- Tune beam $\Delta t = 1$ ms at 120 Hz
- Small raster of 0.7 × 0.7 mm²

Design and Construction

- New taget holder: design nearly finished
 - Design end of December
 - Manufacturing end of January, 2009
- Cryo-supply: general concept only
 - Design end of March
 - Manufacturing end of May, 2009
 - Temporary run from a dewar
- Magnet mounting
 - Alignment not easy! Our beam tune is often far from the center.
 - Design of alignment tools
 - Main focus at the moment
- Power supplies and instrumentation: ordered
- Installation June-July 2009

Current Configuration Plans for PREX

Target area

Plans for PREX

Target holder

