Talk to the HAND: The ³He(e,e'n) Channel in A_y and G_Eⁿ Measurements

Vincent Sulkosky Elena Long

Hall A Collaboration Meeting 2009-06-11

- In PWIA, Ay in Quasi-Elastic ³He[↑](e,e'n) is very small
- Solution As of yet, no measurements of A_y have been done at large Q²
- JLab will analyze high precision data points taken at 0.1 [GeV/c]², 0.5 [GeV/c]² and 1.0 [GeV/c]²

Previous experiment at NIKHEF measured A_y at 0.2 (GeV/c)²

Where PWIA predicts Ay to be exactly zero

Faddeev Calculations by Bochum group correctly predicted result where other groups expected a much lower value

[5] S. Nagorny and W. Turchinetz, Phys. Lett. B449, 222 (1998).

Data will test state of the art calculations at high Q²

Neutron form factor extractions must correctly predict this asymmetry

At High Q², any non-zero result is indicative of effects beyond impulse approximation

This experiment, E08–005, ran from April 26th through May 10th

The kinematics taken were:

E₀ [GeV]	E' [GeV]	θ _{lab} [deg]	Q² [GeV/c]²	lql [GeV/c]	θ _q [deg]
1.25	1.22	17	0.13	0.359	71
2.43	2.18	17	0.46	0.681	62
3.61	3.09	17	0.98	0.988	54

G_Eⁿ: Electronic Form Factor of the Neutron

The data points taken will also add to the world deuteron data as well as ³He data

Agreement
between d and ³He
is expected

G_Eⁿ: Electronic Form Factor of the Neutron

This experiment, part of E05-102, began running on May 12th and will continue to run through this week

Expecting an accuracy of better than 0.0039
 Data will cover the Q² = 0.4 to 0.5 (GeV/c)² range

 Detects Neutrons from ³He(e,e'n)
 Along with RHRS allows a G_Eⁿ and A_y Measurements to be made

 Detects Neutrons from ³He(e,e'n)
 Along with RHRS allows a G_Eⁿ and A_y Measurements to be made

 Detects Quasi-Elastically Scattered Electrons from ³He(e,e'n)
 Angle at 16°, 17° and 18°

88 Scintillator + 64 Veto Bars

 ADC and TDC channels recorded for each of 240 PMTs

Signals go to Amplifiers
 where they are split

 One feed goes to discriminators and then to TDC

Other goes to 554ns
 delay and then to ADC

Trigger comes from RHRS

Data Taking is Just the Beginning

Thanks to the E08-005 and E05-102 Collaborations

Graduate Students involved with
 Quasi-Elastic Family of Experiments

Ge Jin, University of Virginia

Selena Long, Kent State University

Miha Mihovilovič, Jožef Stefan Institut

Yawei Zhang, Lanzhou University

