Transversity Data Management / Quality Checks

Chiranjib Dutta University of Kentucky

December 12, 2009 Hall A Analysis Workshop

Outline

Outline

- Overview of the experiment
- Data Processing
- Skim Process
- Data Quality Checks
- LHRS Data Quality/Stability
- BigBite Data Quality/Stability

- Scaler Checks
- Conclusion/Status

Brief Overview of Transversity

- Single Target Spin Asymmetry in semi-inclusive deep inelastic $n^{\uparrow}(e, e'\pi^{\pm})X$ on a transversely polarized ³He target
- $\bullet\,$ Valence quark region, x=0.1 to x=0.4 and $Q^2=1$ to 3 GeV^2

- Beam energy, E = 5.9 GeV
- Polarized ³He target
- LHRS at 16° to detect $\pi^{\pm}/{\rm K}^{\pm}$
- BigBite at 30° to detect electrons

Transversity Data Processing

- Raw data stored at /mss/halla/e06010/raw
- Size>10 Tb
- Processed rootfiles in the work disk (work 5602)
- Replayed 4 times to check different detectors and to debug various problems
- The last replay (4th pass)is the \sim final replay
- Summary of the charges collected in different configurations:

Target	LHRS	Total charge(C)			
Transverse	Negative	10.3			
Transverse	Positive	8.43			
Vertical	Negative	9.05			
Vertical	Positive	8.24			

Data Processing

Pass 4 rootfiles ("final" replay)

• Energy loss calculation for beam and out going particles

- LHRS optics module and R-cut
- BigBite calorimeter energy correction
- Addition of RICH
- BigBite acceptance cut
- BigBite photon module
- Photon coincidence module
- EDT pulser for livetime calculation

Skim Process : to make the data quality checks efficient

- Normal rootfiles—>Skimmed rootfiles
- Skimmed process gets rid of : beam trips, chamber trips etc.
- Skimmed process eliminates : any problematic period of running, dead time issues, trigger issues etc.
- Formation of ss scaler (gated only by target spin)
- Calculation of offline kinematic variables

Pass-4 Skim Process Summary from Xin

ullet Total time to replay, skim and check the rootfiles \sim 4 weeks

Overview

- Accumulated charge, total number of events etc. on run-by-run basis
- BigBite optics variables/tracking variables on event-by-event basis

- Independent checks of BigBite shower-preshower
- Independent checks of wire chamber tracking etc.
- Independent checks of LHRS PID detectors
- All kinematic variables, scalers etc.
- Coincidence timing module, photon module etc.

Transversity Data Management / Quality Checks LHRS Data Quality/Stability

- No HV change during the run period
- One calibration for the experiment
- SPE aligned to channel 200
- Main peak fitted with a Gaussian to get the mean
- Run-by-run stability of the mean checked

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Transversity Data Management / Quality Checks LHRS Data Quality/Stability

Aerogel

- HV changed 4 times for one PMT
- Few different calibrations done
- SPE aligned to channel 100
- Main peak fitted with a Gaussian to get the mean
- Run-by-run stability of the mean checked

Lead Glass Counters

- No HV change during the entire run period
- One calibration for the experiment
- Pion peak aligned to channel 100 during calibration

Vertical Drift Chambers

- Offset calibrations done for different periods
- Checked for both T3 and T5 events separately on a run-by-run basis
- A lot of timing changes made at the beginning
- Very stable during the main production period except the L1A problem period

S2m TDCs

- S2m contains 16 paddles
- Only left TDCs considered since the right side was selftimed
- Very stable except at the beginning of the experiment

Wire chamber/Calorimeter

- Calibrations and extensive data quality checks done by Xin
- Tracking efficiency study
- Shower calibration and checks done by Kalyan
- $\bullet\ {\sim}15\%$ gain drop in Preshower due to radiation damage
- $\bullet\ {\sim}5\%$ gain drop in Shower due to radiation damage
- Corrections done after dividing the data into different periods

• Stable after all the corrections applied

Calorimeter degradation/ correction

Figure: Preshower peak

イロト 不得 トイヨト イヨト

SAR

Scaler checks

- Different independent checks performed
- Extensive study of different scalers by Min Huang (DUKE)
- Total 10 scalers(2 copies) (5 to LHRS and 5 to BB)
- Ungated,++,+-,- -,-+
- Few gated scalers had issues
- Ungated scaler used for the analysis
- Ungated scaler gated by the target spin in the skimming process

Transversity Data Management / Quality Checks Scaler checks

Ungated u3 and d3

• Asymmetry between LHRS and BigBite (10^{-6})

(日)、

Gated u3,d3

• Asymmetry between LHRS and BigBite

▲ロ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへの

T5 scalers(gated and ungated)

• Asymmetry between LHRS and BigBite

Scaler check summary

• A nice summary from Min Huang

	u1	d1	u3	d3	u10	d10	t1	t5	t6
Ung- ated	\checkmark	\checkmark	Good∼ 10⁻⁵	Good∼ 10⁻⁵	\checkmark	Good∼ 10 ⁻⁶	\checkmark	Good∼ 10⁻⁴	Good∼ 10 ⁻⁴
	Left	Left	Left	Left	Left	Left	Left	\checkmark	Left
-+	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
+-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
++	\checkmark	\checkmark	\checkmark	Left	\checkmark	\checkmark	\checkmark	\checkmark	Left

Good: Best channels

 \checkmark : Not so precise, problem of individual runs

Conclusion

- An extensive data quality check carried out during the last few months
- Replay of the data done 4 times already to debug and fix different issues
- Both the detectors (LHRS and BigBite) reasonably stable during the entire run period
- The final replay done and rootfiles ready for the asymmetry analysis
- Preliminary raw asymmetries already calculated
- Hopefully final results within next 6/7 months
- Thanks to Xin and Kalyan for their inputs and plots