Coincidence Timing for Transversity

Jin Huang M.I.T. Hall A Analysis Workshop Dec 14, 2009 @ JLab

Extended Target Correction

- Origin of the Correction
- Raster Correction
- New Raster Cable Map

Coincidence TOF Calibration for E06010

- Introduction
- LHRS Timing
- BigBite Timing
- Coincidence Timing

Extended Target Correction

Origin of the Correction Raster Correction New Raster Cable Map

Jin Huang <jinhuang@mit.edu>

Extended Target Correction

HRS Optics Matrix

- Base on VDC track parameters: t, y, th, ph
- Target Variables: y, th, ph, dp
- But with one assumption
 - $\cdot x_{tg} = 0$
 - Or equal to
 - beam along hall center line
 - HRS at 90°
- How to make it work for real configuration?
- -> Extended Target Correction THaExtTargCor in analyzer

Do the math

- To model the correction:
 - 1. Fix track on VDC

erson Lab

- 2. Shift beam location, HRS angle
- 3. Look at shift on target variables to produce same track on VDC
- A simple magnet modeling
 - Use 1st order transportation matrix in HallA NIM

Say, beam shift vertically

From the 1st model:

$$\frac{dth_{tg}}{dy_{beam}} = -0.645 - 0.416 y_{tg} \cot \theta_0 + \text{Smaller Second Order Terms}$$
$$\frac{ddp_{tg}}{dy_{beam}} = -0.2 - 0.129 y_{tg} \cot \theta_0 + \text{Smaller Second Order Terms}$$
$$\frac{dph_{tg}}{dy_{beam}} = \frac{dy_{tg}}{dy_{beam}} = 0$$

In analyzer we apply two corrections believe from fitting of data

$$\frac{dth_{tg}}{d(-x_{tg})} = 0.61$$

$$\frac{ddp_{tg}}{d(-x_{tg})} = 0.19$$
Agree well with Expectation
Huang

Beam x, HRS angle...

- Leading correction on beam x (horizontal) is Second order
- Leading correction on HRS angle is Third order
- These two term could be ignored

Detail could be found at

http://www.jlab.org/~jinhuang/Meeting/2009.09.25%20Tran sversity%20Collaboration%20Meeting/173.htm

Therefore Raster is important

- Raster determine beam position
- Two independent raster: x, y
- Two raster cable found swapped long before Transversity
 - New raster cable map
 - Patch on Analyzer (Sept 09, 2009 -> CVS)

Suggested check for your experiment

Identifying the problem / Raster BPM correlation

efferson Lab

Jin Huang <jinhuang@mit.edu>

urb.y

Identifying the problem / dp

- Check L.tr.tg_dp dependency
 - Cutting central ray into spectrometer
 - A peak structure should be correlated with Beam Y

Identifying the problem / Carbon Targets

 Positive slope on raster current VS target Y -> +rawcury (should be rawcurx) is toward beam left = +X in Hall Coordinate System

Identifying the problem / Special Target Run

a run with beam hit on top of carbon foils

Jin Huang <jinhuang@mit.edu>

Identifying the problem / Special Targets

erson Lab

 From top edge of carbon foils +rawcurx (should be rawcury) is toward vertical down = -Y in Hall Coordinate System

Identifying the problem / Special Targets

 From top edge of carbon foils +rawcurx (should be rawcury) is toward vertical down = -Y in Hall Coordinate System

Fixing Raster Cable Map

To fix the raster cable map in db_rb.Raster.dat

- 1. Downloading Newest Analyzer from CVS
 - Thanks to Ole fixing the THaRaster
- 2. Change Raster Cable map from

3. Similar for right arm is available

son Lab

Coincidence TOF Calibration for E06010

Introduction LHRS Timing BigBite Timing Coincidence Timing

Jin Huang <jinhuang@mit.edu>

E06-010 Setup

- E0-6010 Setup
 - Two arm coincidence
 - Each arm equipped HRS with a high resolution timing detector
 - LHRS server as hadron arm

efferson Lab

- Detecting pion, kaon and proton
- Total fly length ~27m
- BigBite detector electron with short fly path

The idea

- coincidence time (CT) between this two spectrometers are defined as the time difference between when two particles are created in the reaction
 - Sharp peak @ Ons for perfect system
 - Multiple peaks for multi-final state
- Useful for
 - Reducing random coincidence background
 - Help hadron arm PID

General Calibration

- 3 independent piece for calibration
 - $CT = RF Time_{LHRS} RF Time_{Bigbite} Trigger Time Difference$
- RF Time_{Spectrometer} is
 - time cost between
 a vertex reaction and single arm trigger
 - Consist of
 - Time of flight
 - Respond time of timing detector
 - timing detector TDC
- Calibrated VS RF signal
- Only relative timing counts

LHRS Timing by Chiranjib Dutta

- Timing detector : s2m
- Optimal Calibration Order
 - Rough offset alignment by looking into two-barhit events, with tight ADC cut
 - To precision below 1ns, so possible for next step
 - 2. Fit for matrix elements for fly path length using RF structure, with tight ADC cut
 - fly path length matrix is similar as optics matrix but independent
 - Up to 2nd order of x_{pf} and th_{pf} is fine for us
 - 3. Fine bar offset and time walk correction using RF structure

LHRS Timing Calibrations by Chiranjib Dutta

Time walk effect contribute to a ~0.5ns long tail, corrected

LHRS single arm final by Chiranjib Dutta

efferson Lab

- Reached a 1σ resolution ≤ 140 ps
- Checked with RF Structure RF Time_{Spectrometer} t_{RF}

BigBite Timing

- Simpler due to
 - Short flight path, simple described by

 $\Delta L_{\rm time \ walk}/c = 1.4 * \theta_{\rm MWDC}$

- Similarity of particle speed (e & γ)
- Timing detector : BigBite Timing Plane
 - 13 scintillator bar behind shower detector
 - Resolution ~230ps
 - Larger but similar time walk effect for all PMTs $\Delta t_{\text{time walk}} = -17.9(\text{ADC} \text{pedstal})^{-0.140} \text{ns}$
 - Calibrated by minimizing timing difference between timing of neighbor bars when both hit

BigBite single arm final

efferson Lab

Final electron timing resolution reached
 σ~270ps Bigbite RF Structure

Jin Huang <jinhuang@mit.edu>

Combing -> CT

- Difference between two single arm trigger is measured by high res. TDC
- Compiling All Pieces:
 - **σ~340ps**

fferson Lab

- Random Coinc Rej. 100:1
- Pion Rej. from Kaon
 >25:1
- Also for (e,γhadron)
 σ~400ps

It's check run by run

Fun part: Identifying more particle with CT?

We can also identify deuteron and possibly anti-proton? from the (e,e'hadron) CT

Special Thanks to contributors to this talk

- Chiranjib Dutta
- Kalyan Allada
- Yi Qiang, Vincent Sulkosky, Ole Hansen, et al,

Jin Huang <jinhuang@mit.edu>