PREx status report Hall A Collaboration Meeting

Mark Dalton, UVa For the PREX Collaboration

Introduction

- Will measure weak charge density, neutron density and gives neutron radius to 1%.
- Difficult experiment: very small asymmetry, very sensitive to helicity correlated beam effects.

²⁰⁸Pb

Parameters

forward angle with new septum magnets 1.05 GeV, 5 degrees, Q² ~ 0.01 GeV² $A_{PV} \sim 500 \text{ ppb}$ 0.5-1 GHz per spectrometer 50-100 μ A ~100 ppm precision at 15 Hz $\delta A_{PV} \sim 15 \text{ ppb}$ (3%)

Experimental Requirements

- Control of helicity correlated systematic errors
- Precision polarimetry (Moller and Compton polarimeter upgrades)
- Control of transverse asymmetry
- New beam modulation system
- Low current calibration (Q2 measurement)
- Hall A beamline optics
- High power lead target
- Low noise levels (statistically dominated width)

Significant New Hardware

- Green Compton polarimeter
- High field, high current Moller polarimeter
- Double Wein rotation
- Septum magnets
- Beam modulation system
- PREX detector

HC beam requirements

Beam Property	Nominal Value	Maximum Run-averaged Helicity-correlation	HC One-day ("slug") Average	Maximum Jitter at 30 Hz	
$\begin{array}{c} \text{Average} \\ \text{Current} & \langle Q \rangle \end{array}$	$50-100 \mu A^1$	200 ppb	1 ppm	1000ppm	
Energy	1.05 GeV	$\langle \frac{\Delta E}{E} \rangle \leq 1 \text{ ppb}$	5 ppb	5 ppm	
Energy spread σ_E/E	10-3	- Previou	ısly -	-	
Position <i>x</i> at target	0	< 2 nm	10 nm	10 µ m	
Angle y/ at target	0	0.3 nrad	1.5 nrad	1.5 <i>µ</i> rad	
Position y at target	0	4 nm	< 20 nm	20 µ m	
Angle y/ at target	0	1 nrad	5 nrad	$5 \mu rad$	
Spot Size ² at target	100 – 300 μm (r.m.s., unrastered) 4mm x 4mm (box, rastered)	$\delta\sigma/\sigma < 10^{-4}$	10 ⁻³	Requires	slow

• Nominal Value: This is the usual desired central value of the beam property.

HCBA during HAPPEX-III

HCBA during HAPPEX-III

PREX required levels achieved during HAPPEx II

Polarimetry

- Extensively discussed yesterday.
- Upgrades to Moller and Compton polarimeters required.
- Integrating Compton photon analysis likely to be the analysis used (minimises calibration uncertainty.) Requires linearity and integrated detector response function (can be obtained by simulation.)

Transverse Asymmetry

- Huge, possibly as much as 50 ppm
- Zero vertical periode vertical periode vertical periode vertical periode vertical periode vertication in injector vertical periode vertication in injector vertication vertic
- A_T hole measu[₱]e₀horizontal
- Feed back on measured transverse asymmetry

Q² Measurement

- ~ 0.7 % uncertainty required
- operation at 50 nA yields ~1 MHz rate (requires high rate Cutracking on optics largets.
 - Cavity BPMs appear to give enough resolution at low current.

Beam Optics in Hall A

- Multiple (competing?) parameters
 - Low Compton backgrounds
 - HC effect minimization (matching)
 - Horizontal jitter
 - phase advance
 - small intrinsic spot (30 μ m < σ < 50 μ m)
 - raster (at least 4x4 mm)

0.5mm, 10% X₀ isotopically pure (99.1%) ²⁰⁸Pb foil, sandwiched between 0.2 mm thick diamond sheets. Successfully tested up to 100 μA

Noise

- High flip rate (240 Hz), new helicity board and multiplet structure. May also run at 120 or 30 Hz, depending on rate, noise etc.
- 140 ppm statistical width per arm at 30 Hz.
- 20 ppm electronic width (18 bit ADCs)
- Beam current will depend on observed noise floor

Double Wein

Injector group will install a second Wein filter with a pair of intermediate solenoids during down.

Solenoid rotates spin +/-90 degrees (spin rotation as B but focus as B²). No optics perturbation under reversal!

PREX detector studies

Data taken to measure light output and calibrate full simulation of detector response.

Septum Magnets

Magnets are here and will be field mapped next week

Beam Modulation

- Sine wave modulation of variable frequency (~10 250 Hz) and amplitude (comparable to present.)
- Two magnets simultaneously (frequency and phase.)
- Compatible with or pause FFB.
- Will require new control and readout
- Qweak developing similar system

Summary

- PREx is the next experiment in Hall A
- Preparations are on track we have a busy few months ahead.