Neutron Magnetic Form Factor

Bogdan Wojtsekhowski, Jefferson Lab

presentation is based on E09-019 and PR10-007 R.Gilman, B.Quinn, BW

- Neutron structure and EM form factors
- The transverse neutron densities
- Approved GMn experiments at high Q²
- ✤ New proposal for 16&18 GeV²
- Neutron detection with HCalo

Dirac, Pauli and Sachs Form Factors

Hadron current, one-photon approximation, $\alpha_{em} = 1/137$, Rosenbluth, 1950

$${\cal J}^{\mu}_{hadron}\,=\,iear{N}(p_f)\;[\gamma^{
u} {F_1(Q^2)}+\;{i\sigma^{\mu
u}q_
u\over 2\,M} {F_2(Q^2)}]N(p_i)$$

Cross section and asymmetry for electron-nucleon scattering $d\sigma = d\sigma_{_{NS}} \left\{ (F_1^2 + \frac{Q^2}{4M^2} F_2^2) + (F_1 + F_2)^2 \frac{Q^2}{2M^2} (1 + 2\tan^2 \frac{\theta_e}{2}) \right\}$

Sachs, 1962

Does a nucleon have a core ?

$$egin{aligned} G_{_E} &= F_1(Q^2) \,-\, rac{Q^2}{4M^2}F_2(Q^2) & G_{_M} \,=\, F_1(Q^2) \,+\, F_2(Q^2) \ J_{fi} &=\, 2E \cdot F(-ec{q}^{\,2}), \ ec{J} = 0 &
ho(r) \,=\, rac{1}{(2\pi)^3} \int F(-ec{q}^{\,2}) e^{iec{q}ec{r}} d^3ec{q} \end{aligned}$$

Hall-A 12/16/09 slide 2

neutron Magnetic FFs Bogdan Wojtsekhowski, JLab

Kelly's parameterization

Hall-A

New parameterization

Generalized Parton Distributions

Reduction formulas at $\boldsymbol{\xi} = \boldsymbol{t} = \boldsymbol{0}$ for DIS and $\boldsymbol{\xi} = \boldsymbol{0}$ for FFs

 $egin{aligned} H^q(x,\xi=0,t=0) &= & q(x) \ & ilde{H}^q(x,\xi=0,t=0) &= & \Delta q(x) \ & ilde{\int}_{-1}^{+1} dx \, H^q(x,0,Q^2) \,= \, F_1^q(Q^2) \ & ilde{\int}_{-1}^{+1} dx \, E^q(x,0,Q^2) \,= \, F_2^q(Q^2) \end{aligned}$

Ji's sum rule for quark orbital momentum $\langle L_v^q \rangle = \frac{1}{2} \int_0^1 dx [x E_v^q(x, \xi = 0, t = 0) + x q_v(x) - \Delta q_v(x)]$ DVCS will access low t, large Q^2 kinematics FFs presently are the main source for E_v^q

slide 5 neutron Magnetic FFs Bogdan Wojtsekhowski, JLab

Impact parameter and densities

$$F_1(t) = \sum_q e_q \int dx H_q(x,t)$$
 Muller, Ji, Radyushkin

$$q(x,{
m b})=\int rac{d^2q}{(2\pi)^2}e^{i~{
m q}\cdot{
m b}}H_{_q}(x,t=-{
m q}^2)$$
 M.Burkardt

 $ho(b)\equiv\sum_{q}e_{q}\int dx\;q(x,{
m b})=\int d^{2}qF_{_{1}}({
m q}^{2})e^{i\;{
m q}\cdot{
m b}}$ P.Kroll: u/d segregation

$$ho(b)=\int_0^\infty \; rac{Q\cdot dQ}{2\pi} J_{_0}(Qb) rac{G_E(Q^2)+ au G_M(Q^2)}{1+ au} \qquad ext{G.Miller}$$

center of momentum $R_{\perp} = \sum_{i} x_{i} \cdot r_{\perp,i}$ \boldsymbol{b} is defined relative to \boldsymbol{R}_{\perp}

Transverse densities

$$\rho_{T}(\vec{b}) = \rho_{U}(b) \\ - \sin(\phi_{b} - \phi_{S}) \int_{0}^{\infty} \frac{dQ}{2\pi} \frac{Q^{2}}{2M} J_{1}(bQ) F_{2}(Q^{2})$$

GMn form factor at high Q²

neutron Magnetic FFs Bogdan Wojtsekhowski, JLab

F_1^n/F_1^p form-factor ratio

Hall-A 12/16/09

slide 9

$F_{1,2}^{d}/F_{1,2}^{u}$ form-factor ratio

The u and d quarks contributions to the proton form factors

Hall-A 12/16/09

slide 10

F_1^d/F_1^u form-factor ratio

Use well known FF fits

Is a node in F_1^d ?

Concept of the GMn experiment

R.Gilman, B.Quinn & BW D(e, e'p) and D(e, e'n)Neutron Magnetic Form Factor at $Q^2 = 18 \text{ GeV}^2$

Neutron Detector BigHAND

- Match BigBite solid angle for QE kinematics
- Flight distance ~ 10 m
- Operation at 3.10³⁷ cm²/s
- 1.6 x 5 m^2 active area
- 6-7 layers (~ 250 bars)
- 2 veto layers (~ 200)
- 0.38 ns time resolution

neutron Magnetic FFs Bogdan Wojtsekhowski, JLab

- Match BigBite solid angle for QE kinematics
- Flight distance ~ 17 m
- Operation at 3.10³⁸ cm²/s
 - 5.4 m² active area
 - 1 layer (250 bars)
 - Magnet for n/p ID
 - < 1.5 ns time resolution

HCAL Setup GEANT3/DINREG Model: a Neutron Interaction 3 **CEBAF Hall A End Station** 2.75 Cut plane at y = 0 m 2.5 2.25 (m) x 2 1.75 1.5 1.25 16 16.5 17 17.5 18 18.5 19

z (m)

Hall-A 12/16/09

2009/12/03 17.11

Fig. 48. Structure of the HCAL1 module: 1, scintillators; 2, iron plates; 3, light guide; 4, container; 5, PMT; 6, PMT magnetic shielding; 7, Cockcroft–Walton divider; 8, optical connector for LED control. Dimensions are in mm.

- Match BigBite solid angle for QE kinematics
- Flight distance ~ 17 m
- Operation at 3.10³⁸ cm²/s
 - 5.4 m² active area
 - 1 layer (250 bars)
 - Magnet for n/p ID
 - < 1.5 ns time resolution

Neutrons

E[GeV]	2.5	5.0	7.5	10.0
A[MeV]	21	55	94	135
$\sigma_A \; [\text{MeV}]$	10	17	25	30
< A/2 [%]	11.14	4.71	3.29	2.81
< A/4 [%]	2.67	0.80	0.89	0.87
$\sigma_x \text{ (gaus)[cm]}$	2.77	2.19	1.81	1.56
$\sigma_x \text{ (mean quad.)[cm]}$	3.67	2.73	2.13	1.81

Protons

E[GeV]	2.5	5.0	7.5	10.0
A[MeV]	20	55	93	135
$\sigma_A \; [\text{MeV}]$	8	17	24	30
< A/2 [%]	7.60	3.62	2.89	2.60
< A/4 [%]	1.19	0.40	0.62	1.01
$\sigma_x \text{ (gaus)[cm]}$	2.24	2.01	1.80	1.55
σ_x (mean quad.)[cm]	3.28	2.58	2.17	1.83

- Match BigBite solid angle for QE kinematics
- Flight distance ~ 17 m
- Operation at 3.10³⁸ cm²/s
 - 5.4 m² active area
 - 1 layer (250 bars)
 - Magnet for n/p ID
 - < 1.5 ns time resolution

- Match BigBite solid angle for QE kinematics
- Flight distance ~ 17 m
- Operation at 3.10³⁸ cm²/s
 - 5.4 m² active area
 - 1 layer (250 bars)
 - Magnet for n/p ID
 - < 1.5 ns time resolution

Hall-A 12/16/09

Bogdan Wojtsekhowski, JLab