G_F^n with Super-BigBite at 12 GeV

Seamus Riordan

spr4y@virginia.edu

University of Virginia

December 16, 2009

- Form factors/status of G_Eⁿ
- Setup and Measurement
- Anticipated Results and Errors

- Form factors are a fundamental property of the nucleon
- Provide excellent testing ground for QCD and QCD-inspired models
- Are not yet calculable from first principles
- Can be used to constrain broader models of nucleon structure

Scattering matrix element, $M \sim \frac{j_{\mu}J^{\mu}}{Q^2}$

Generalizing to spin 1/2 with arbitrary structure, one-photon exchange, using parity conservation, current conservation the current parameterized by two form factors

$$J^{\mu} = e\bar{u}(p') \left[F_{1}(q^{2})\gamma^{\nu} + i \frac{\kappa}{2M} q_{\nu} \sigma^{\mu\nu} F_{2}(q^{2}) \right] u(p)$$

Form Factors

- Dirac F₁, chirality non-flip
- Pauli F₂, chirality flip

 $G_F^n(2)$

4/21

Sachs Form Factors

Replace Dirac and Pauli FF with Sachs Form Factors

$$G_E = F_1 - \kappa \tau F_2$$

$$G_M = F_1 + \kappa F_2, \tau = \frac{Q^2}{4M}$$

Rosenbluth Formula $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \bigg|_{Mott} \frac{E'}{E} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta}{2} \right]$

$\lim_{Q^2 \to 0}$

$$\begin{aligned} G^{\rho}_{E}(0) &= 1, & G^{\rho}_{M}(0) = \mu_{\rho} = & 2.79 \\ G^{n}_{E}(0) &= 0, & G^{n}_{M}(0) = \mu_{n} = & -1.91 \end{aligned}$$

Gⁿ_F(2) 5/21

 Polarization measurements allow for highest Q² Gⁿ_E measurements

- DSE/q(qq) approach predicts zero crossing for Gⁿ_E
- Recent pQCD predictions give scaling behavior for F_2/F_1
- G_E^n up to Q^2 of other FFs allows for flavor decomposition

- Polarized 12 GeV beam offers new opportunities to go to higher Q²
- Two experiments at PAC34 approved
 - E12-09-006, B. D. Anderson, J. Arrington, S. Kowalski, R. Madey, B. Plaster, A.Yu. Semenov
 - Hall C, similar concept as earlier Madey experiment
 - ²H(*e*, *e*′*n*)*p*
 - $Q^2 = 2.2, 4.0, 5.2, 6.9 \, \text{GeV}^2$
 - E12-09-016, B. Wojtsekhowski, G. Cates, S. Riordan
 - Super-BigBite Family
 - ${}^{3}\overrightarrow{\text{He}}(\vec{e}, e'n)pp$
 - $Q^2 = 5.0, 6.8, 10.2 \text{ GeV}^2$

A. Camsonne, E. Chudakov, P. Degtyarenko, J. Gomez, O. Hansen, D. W. Higinbotham, C. W. de Jager, M. Jones, J. LeRose, R. Michaels, S. Nand A. Saha, V. Sulkosky, B. Wojtsekhowski (spokesperson and contact person), S. Wood *Thomas Jefferson National Accelerator Facility, Newport News, VA 23606*

> H. Baghdasaryan, G. Cates (spokesperson), D. Day, N. Kalantarlans, R. Lindgren, N. Liyanage, V. Nelyubin¹, B. E. Norum, S. Riordan (spokesperson), M. Shabestarl, W. A. Tobias, K. Wang University of Virginia, Charlottesville, VA 22901

> > D. Nikolenko, I. Rachek, Yu. Shestakov Budker Institute, Novosibirsk, Russia

K. Aniol and D. J. Magaziotis California State University. Los Angeles, CA 90032

G. B. Franklin, B. Quinn, R. Schumacher Carnegie Mellon University, Pittsburgh, PA 15213

J. Annand, D. Hamilton, D. Ireland, R. Kaiser, K. Livingston, I. MacGregor, G. Rosner, B. Seitz University of Glasgow, Glasgow, Scotland

W. Boeglin, P. Markowitz, J. Reinhold, M. M. Sargsian Florida International University, Miami, FL 33199

B. Anderson, A.T. Katramatou, G.G. Petratos Kent State University, Kent, OH 44242

A. Glamazdin Kharkov Institute of Physics and Technology, Kharkov 310077, Ukraine

W. Bertozzi, S. Gilad Massachusets Institute of Technology, Cambridge, MA 02139

J. Calarco, W. Hersman, K. Slifer University of New Hampshire, Durham, NH 03824

M. Khandaker, V. Punjabi Norfolk State University, Norfolk, VA 23504

over 100 collaborators at 25 institutions

B. Vlahovic North Carolina Central University, Durham, NC 03824

R. Gilman, C. Glashausser, G. Kumbartzki, R. Ransome Rutgers, The State University of New Jersey, Piscataway, NJ 08854

> J. M. Laget, F. Sabatie CEA Saclay, Gif-sur-Yvette, France

A. Sarty Saint Mary's University, Nova Scotia, Canada B3H 3C3

R. De Leo, L. Lagamba, S. Marrone, G. Simonetti, E. Nappi, I. Vilardi INFN Bari and University of Bari, Bari, Italy

> V. Bellini, A. Giusa, F. Mammoliti, C. Randieri, G. Russo, M. L. Sperduto, C. M. Sutera INFN Catania and University of Catania, Catania, Italy

E. De Sanctis, L. Hovsepyan, M. Mirazita, S. A. Pereira, P. Rossi INFN, Laboratori Nazionali di Frascati, Frascati, Italy

E. Cisbani, F. Cusanno, S. Frullani, F. Garibaldi, M. Iodice, M. L. Magliozzi, F. Meddi, G. M. Urciuoli INFN Rome and gruppo collegato Saniti and University "La Sapienza", Rome, Italy

> A. D'Angelo INFN Rome2 and University "Tor Vergata", Rome, Italy

J. Lichtenstadt, E. Piasetzky, I. Pomerantz, G. Ron Tel Aviv University, Israel

T. Averett, L. Pentchev, C. Perdrisat College of William and Mary, Williamsburg, VA 23185

S. Abrahamyan, S. Mayilyan, A. Shahinyan, H. Voskanyan Yerevan Physics Institute, Yerevan, Armenia

> M. Olson St. Norbert College, De Pere, WI 54115

8/21

Polarized Target Measurements

Long. polarized beam/polarized target transverse to \vec{q} in scattering plane

Helicity-dependent asymmetry roughly proportional to G_E/G_M

$$\frac{\sigma_{+}-\sigma_{-}}{\sigma_{+}+\sigma_{-}} = A_{\perp} = -\frac{2\sqrt{\tau(\tau+1)}\tan(\theta/2)\mathbf{G}_{E}/\mathbf{G}_{M}\hat{n}\cdot(\hat{q}\times\hat{T})}{(\mathbf{G}_{E}/\mathbf{G}_{M})^{2} + (\tau+2\tau(1+\tau)\tan^{2}(\theta/2))}$$

Experimental Layout

- Same neutron arm/(or HCAL) at 17 m, but no veto
- Place magnet $B \cdot dl = 1.7 \text{ T} \cdot \text{m}$ in front to deflect protons reduces background by factor of 5

Upgraded ³He Target

- Simulations show sustainable polarization of 62% with $I = 60 \ \mu A$
- Overall effective luminosity gain of 15

Super-BigBite Components

- $\bullet\,$ Estimated rates are 60 kHz/cm^2 current drift chambers replaced by GEM chambers
- GEM detectors shown to work up to 2500 kHz/cm^2 at CERN
- $\bullet\,$ Momentum resolution of $\sigma_{\rho}/\rho\sim$ 0.5% for e^- of 3 4 GeV
- Existing BigBite Cerenkov+preshower pushes pion contributions <0.1%

- Neutron arm detects recoiling proton/neutron
- Measures momentum through ToF, charge through veto layers
- Covers 5m × 1.6m about about 17 m away - matches BigBite acceptance for QE electrons
- Time resolution $\sigma_t = 300 \text{ ps}$, only $\sim 20\%$ momentum resolution for 6.3 GeV neutrons
- Cuts on $p_{miss,\perp}$ allows for selection on QE, suppress FSI

Need to reliably separate neutral QE events

Cut on:

- Components of missing momentum wrt \vec{q}
- Invariant mass assuming free stationary nucleon target

• For E02-013, $Q^2 = 1.7 \text{ GeV}^2$

- Using more strict cuts, inelastic contribution is predicted to be about $\sim 25\%$ of final neutral sample
- Similar case was present for E02-013, 5% contribution to the final systematic error should be achievable

- Nuclear effects evaluated by M. Sargsian in Generalized Eikonal Approximation
 - Determine effective neutron/proton polarization
 - Evaluate rescattering effects on asymmetry
- MEC and IC become suppressed at higher Q²
- At high p, total cross sections for σ_{pp}, σ_{pn} becomes roughly constant
- Charge exchange can modify final asymmetry

FSI Results

Goals

Brings GEn up to similar range as other form factors with 55 days of beam

- Hall A BigBite program was been very productive over the last several years - we anticipate similar success with SBB
- Measurements at 12 GeV Jefferson Lab have a significant impact on the range of Q² form factors are measured - almost triples Gⁿ_E measured range.

Q^2	time	Counts	G_E^n/G_M^n	stat. err.	sys. err.	G_E^n	Total ΔG_E^n
(GeV^2)	(days)		(Galster)			(Galster)	$(G_M^n \text{ known})$
5.0	2	20000	-0.1770	0.0319	0.0222	0.0046	0.0010
6.8	6	45000	-0.1918	0.0259	0.0253	0.0028	0.0005
10	36	30000	-0.2098	0.0380	0.0161	0.0014	0.0003

Quantity (for $Q^2 = 10 \text{ GeV}^2$)	Expected Value	Rel. Uncertainty
Raw asymmetry (Galster+Kelly)	-0.0292	19.9% (stat)
Beam polariation P_e	0.85	2.4%
Target polariation $P_{^{3}\text{He}}$	0.60	3.3%
Neutron polariation P_n	0.86	2.3%
Nitrogen dilution D_{N_2}	0.94	2.1%
Accidental dilution D_{back}	0.95	< 1%
Final state interactions	0.95	5.3%
Inelastic correction	0.8 - 1.2	5.0%
Statistical error in G_E^n/G_M^n		18.1%
Systematic error in $\overline{G_E^n}/\overline{G_M^n}$		7.7%

1

	Beam Energy	Data Taking Time	Total Time
	(GeV)	(hours)	(hours)
Calibration Runs	4.400		48
$Q^2 = 5.0 \text{ GeV}^2$	4.400	38	48
$Q^2 = 6.8 GeV^2$	6.600	154	192
$Q^2 = 10.2 \text{ GeV}^2$	8.800	864	1080
Configuration Changes			16
Total		1055	1384

21/21

Inelastic Contributions

