Measurement of the Coulomb quadrupole amplitude in the $\gamma^* p \rightarrow \Delta(1232)$ reaction in the low momentum transfer region

(E08-010)

Adam J. Sarty

Saint Mary's University

representing

David Anez(SMU & Dalhousie U., PhD student) Doug Higinbotham (Jefferson Lab) Shalev Gilad (MIT) Nikos Sparveris(spokesperson Emeritus!)

> SAINT MARY'S UNIVERSITY SINCE 1802

> One University. One World. Yours.

Experiment proposal spear-headed by Nikos 2 years ago ... he has handed it over for us to complete!

E08-010:

A short/little few-day " $N \rightarrow \Delta$ " Experiment!

- Currently Scheduled to Run for 8 days:
 - February 16-23, 2011
 - "squeezed" in before "SRC" (E07-006).
- The focus on low Q² allows the high rates / short run
- Let me now overview the physics goals of the experiment, and give a few of the particulars.
 (Start with a general review ...)

Understanding the Nomenclature: #1 – the incident photon What "kind" (MULTIPOLE) of Photon can Excite $p \rightarrow \Delta$?

$$\gamma^* + \mathbf{p} \rightarrow \Delta(1232)$$

 $\mathsf{L}_{\gamma}^{\pi} \otimes \sqrt[1]{2^+} = 3/2^+$)

• <u>Conserve Parity</u>: Final π is +, so ...

$$\pi_{\text{initial}} = (\pi_{\gamma})(\pi_{\text{proton}}) = (\pi_{\gamma})(+) = +$$

- So photon's parity is Even.
- Recalling Parity of EM Multipoles:
 - Electric: EL = $(-1)^{L}$
 - Magnetic: $ML = (-1)^{L+1}$
 - Scalar (or Coulomb): $CL = (-1)^{L}$

• So...

$$L_{\gamma}^{\pi} = 1^{+} \Leftrightarrow M1 \text{ (magnetic dipole)}$$

 OR
 $L_{\gamma}^{\pi} = 2^{+} \Leftrightarrow E2, C2 \text{ (quadrupole)}$

Understanding the Nomenclature: $\#2 - \text{the } N\pi$ final state

Ensuring the intermediate state was (or could be!) resonance of interest - we're interested here in the $\Delta(1232)$

$$\Delta(1232) \rightarrow \mathbf{p} + \pi^{\mathbf{0}}$$

$$J^{\pi} = 3/2^{+} \rightarrow [(1/_{2}^{+} \otimes 0^{-})_{s} \otimes \boldsymbol{\ell}]$$

$$\downarrow^{\downarrow}$$

$$S^{\pi} = 1/_{2}^{+}$$

So, Constraints on *e*:

(the relative angular momentum of the $p\pi^0$ pair in Final State)

1. Can have:
$$\ell + \frac{1}{2} = \frac{3}{2}$$
 (i.e. $\ell = 1$)
or $\ell - \frac{1}{2} = \frac{3}{2}$ (i.e. $\ell = 2$)
2. MUST conserve Parity: final $\pi = +$
 $\pi_{\text{final}} = (\pi_{\pi})(\pi_{\text{proton}})(-1)^{\ell} = (+)(-)(-1)^{\ell}$
 $+ = (-1)^{\ell+1} \dots \text{ so: } \ell = \text{ODD}$
 $\therefore \ell = 1$

Understanding the Nomenclature: #3 – The final labeling Joining the Photon and N π angular momentum constraints (focusing still on Δ (1232) resonance)

• The full Multipole label for a specific $\gamma^* N \rightarrow \pi N$ transition amplitude carries information about the constraints on the initial virtual-photon & final pion-nucleon angular momentum

. . .

Understanding the Nomenclature: #3 – The final labeling

Joining the Photon and N π angular momentum constraints (focusing still on Δ (1232) resonance)

• The full Multipole label for a specific $\gamma^* N \rightarrow \pi N$ transition amplitude carries information about the constraints on the initial virtual-photon & final pion-nucleon angular momentum

Example: The dominant "Spherical" (single-quark spin-flip) transition amplitude is labeled 2 = 1

 $J = \frac{1}{2} + \frac{1}{2}$

Magnetic photon (must be M1)

Understanding the Nomenclature: #3 – The final labeling

Joining the Photon and N π angular momentum constraints (focusing still on Δ (1232) resonance)

• The full Multipole label for a specific $\gamma^* N \rightarrow \pi N$ transition amplitude carries information about the constraints on the initial virtual-photon & final pion-nucleon angular momentum

Example: The dominant "Spherical" (single-quark spin-flip) transition amplitude is labeled

and the smaller "Deformed" (quadrupole) transitions;

Magnetic photon

(must be M1)

$$E_{1+}$$
 and S_{1+}

(with E meaning "electric" and S "scalar" photon) The "S" can also be written "L" ("longitudinal") – related by a kinematic factor to amplitudes written with "S"

Goal of these kind of "N $\rightarrow \Delta$ " **Experiments:** Quantify "non-spherical" Components of Nucleon wf

Talking with a CQM view of a nucleon wave-function:

- Dominant M_{1+} is a "spin-flip" transition; N and Δ both "spherical"...L=0 between 3 quarks
- BUT, the Quadrupole transitions (E₁₊, S₁₊) "sample" the "not L=0" parts of the wavefunctions.
- Consider writing wavefunctions like so:

$$|N(939)\rangle = a_{S} |(S = \frac{1}{2}, L = 0)J^{\pi} = \frac{1}{2}^{+}\rangle + a_{D} |(S = \frac{3}{2}, L = 2)J^{\pi} = \frac{1}{2}^{+}\rangle |\Delta(1232)\rangle = b_{S} |(S = \frac{3}{2}, L = 0)J^{\pi} = \frac{3}{2}^{+}\rangle + b_{D} |(S = \frac{1}{2}, L = 2)J^{\pi} = \frac{3}{2}^{+}\rangle$$

then, we can view the quadrupole tx as...

Goal of these kind of "N $\rightarrow \Delta$ " **Experiments:** Quantify "non-spherical" Components of Nucleon wf

 These Quadrupole transitions thus give insight into small L=2 part of wf.

Phys. Rev. C63, 63 (2000)

Goal of these kind of " $\mathbb{N} \rightarrow \Delta$ " Experiments: Quantify "non-spherical" Components of Nucleon wf

 $\hat{Q}_{[1]} = \sqrt{\frac{16\pi}{5}} \sum_{i=1}^{3} e_i r_i^2 Y_0^2(\vec{r}_i) = \sum_{i=1}^{3} e_i \left(3z_i^2 - r_i^2\right)$

- These Quadrupole transitions thus give insight into small L=2 part of wf.
- Such L=2 parts arise from "colour hyperfine interactions" between quarks

<u>IF</u>

the assumption is a "one-body interaction":

N(939)

 Δ (1232)

Goal of these kind of "N $\rightarrow \Delta$ " **Experiments:** Quantify "non-spherical" Components of Nucleon wf

- These Quadrupole transitions thus give insight into small L=2 part of wf.
- <u>BUT</u> L=2 transitions can also arise via interactions with virtual exchanged pions (the "pion cloud"):

$$\hat{Q}_{[2]} = B \sum_{i \neq j=1}^{3} e_i \left(3\sigma_{iz} \sigma_{jz} - \vec{\sigma}_i \cdot \vec{\sigma}_j \right)$$

Goal of THIS "N $\rightarrow \Delta$ " Experiment: FOCUS ON LOW Q² WHERE PION CLOUD DOMINATES

- At low momentum transfer: the Pion Cloud dominates the "structure" of wavefunctions
- These pion dynamics dictate the long-range non-spherical structure of the nucleon ... and that is where we focus.

<u>NOW</u>: to p(\vec{e} , e' \vec{p}) π^0 Measurements

18 Response Functions:

Each with their own Unique/Independent combination of contributing Multipole transition amplitudes

15

$$\frac{a \cdot \sigma}{d\varepsilon_f d\Omega_e d\Omega_{cm}} = \frac{p_{cm}}{k_{\gamma cm}} \Gamma_\gamma \ \bar{\sigma}_0 \left[1 + hA + \boldsymbol{\mathcal{S}} \cdot (\boldsymbol{P} + h\boldsymbol{P'}) \right]$$

$$\bar{\sigma}_{0} = \nu_{L}R_{L} + \nu_{T}R_{T} + \nu_{LT}R_{LT}\cos\phi + \nu_{TT}R_{TT}\cos 2\phi$$

$$A\bar{\sigma}_{0} = \nu'_{LT}R'_{LT}\sin\phi$$

$$P_{N}\bar{\sigma}_{0} = \left[\nu_{L}R_{L}^{N} + \nu_{T}R_{T}^{N} + \nu_{LT}R_{LT}^{N}\cos\phi + \nu_{TT}R_{TT}^{N}\cos 2\phi\right]$$

$$P_{m}\bar{\sigma}_{0} = \left[\nu_{LT}R_{LT}^{m}\sin\phi + \nu_{TT}R_{TT}^{m}\sin 2\phi\right] \quad (m \in \{L, S\})$$

$$P'_{N}\bar{\sigma}_{0} = \nu'_{LT}R'_{LT}\sin\phi$$

$$P'_{m}\bar{\sigma}_{0} = \left[\nu'_{LT}R'_{LT}m\cos\phi + \nu'_{TT}R'_{TT}m\right] \quad (m \in \{L, S\})$$

<u>NOW</u>: to p(\vec{e} , e' \vec{p}) π^0 Measurements

18 Response Functions:

Each with their own Unique/Independent combination of contributing Multipole transition amplitudes

15

$$\frac{d^{\circ}\sigma}{d\varepsilon_{f}d\Omega_{e}d\Omega_{cm}} = \frac{p_{cm}}{k_{\gamma cm}}\Gamma_{\gamma} \ \bar{\sigma}_{0} \left[1 + hA + \boldsymbol{\mathcal{S}} \cdot (\boldsymbol{P} + h\boldsymbol{P}')\right]$$

$$\bar{\sigma}_0 = \nu_L R_L + \nu_T R_T + \nu_{LT} R_{LT} \cos \phi + \nu_{TT} R_{TT} \cos 2\phi$$

- No polarization required for these Responses (R's)
- L and T via cross-sections at fixed (W,Q²) but different v's ("Rosenbluth")
- LT and TT via cross-sections at different Out-Of-Plane angles ϕ
- We will extract just R_{LT} (by left/right measurements) and σ_0 since LT term is very sensitive to size of L_{1+} (see next slide...)

<u>NOW</u>: to p(\vec{e} , e' \vec{p}) π^0 Measurements

18 Response Functions:

Each with their own Unique/Independent combination of contributing Multipole transition amplitudes

For Example: decomp of 5 R's (Drechsel & Tiator)

$$R_{L} = \left| L_{0*} \right|^{2} + 4 \left| L_{1*} \right|^{2} + \left| L_{1-} \right|^{2} - 4 \operatorname{Re} \left\{ L_{1*}^{*} L_{1-} \right\} + 2 \cos \theta \operatorname{Re} \left\{ L_{0*}^{*} \left(4 L_{1*} + L_{1-} \right) \right\} + 12 \cos^{2} \theta \left(\left| L_{1*} \right|^{2} + \operatorname{Re} \left\{ L_{1*}^{*} L_{1-} \right\} \right) \right\}$$

ŷ

 $q = (\omega, \mathbf{q})$

$$R_{T} = \left| E_{0+} \right|^{2} + \frac{1}{2} \left| 2M_{1+} + M_{1-} \right|^{2} + \frac{1}{2} \left| 3E_{1+} - M_{1+} + M_{1-} \right|^{2} + 2\cos\theta \operatorname{Re} \left\{ E_{0+}^{*} \left(3E_{1+} + M_{1+} - M_{1-} \right) \right\} + \cos^{2}\theta \left(\left| 3E_{1+} + M_{1+} - M_{1-} \right|^{2} - \frac{1}{2} \left| 2M_{1+} + M_{1-} \right|^{2} - \frac{1}{2} \left| 3E_{1+} - M_{1+} - M_{1-} \right|^{2} \right) \right)$$

$$R_{TL} = -\sin\theta \operatorname{Re} \Big\{ L_{0+}^* \Big(3E_{1+} - M_{1+} + M_{1-} \Big) - \Big(2L_{1+}^* - L_{1-}^* \Big) E_{0+} + 6\cos\theta \Big(\frac{L_{1+}^*}{L_{1+}^*} \Big(E_{1+} - \frac{M_{1+}}{L_{1+}^*} + M_{1-} \Big) + L_{1-}^* E_{1+} \Big) \Big\}$$

 $R_{TT} = 3\sin^2\theta \left(\frac{3}{2} |E_{1+}|^2 - \frac{1}{2} |M_{1+}|^2 - \operatorname{Re}\left(\frac{E_{1+}^*(M_{1+} - M_{1-}) + M_{1+}^*M_{1-}\right)\right)$

$$R_{TL'} = \sin\theta \operatorname{Im} \left\{ L_{0+}^* \left(3E_{1+} - M_{1+} + M_{1-} \right) - \left(2L_{1+}^* - L_{1-}^* \right) E_{0+} + 6\cos\theta \left(\frac{L_{1+}^*}{L_{1+}^*} \left(E_{1+} - \frac{M_{1+}}{L_{1+}} + M_{1-} \right) + L_{1-}^* E_{1+} \right) \right\}$$

Status of World Data at Low Q² (2 years old...from proposal) EMR ~ E2/M1 ratio CMR ~ C2/M1 ratio

Status of World Data at Low Q² (2 years old...from proposal) EMR ~ E2/M1 ratio CMR ~ C2/M1 ratio

Where our Planned Results Fit (2 years old...from proposal) focus on: CMR ~ C2/M1 ratio at lowest Q²

Where our Planned Results Fit (2 years old...from proposal) focus on: CMR ~ C2/M1 ratio at lowest Q²

Step back to look at what we actually will measure:

Q^2 (GeV/c) ²	W (MeV)	${ heta_{pq}^{}}^{*}_{ m (deg)}$	$\theta_e^{}_{(\mathrm{deg})}$	P_e' (MeV/c)	θ_p (deg)	$\frac{P_p'}{(\text{MeV}/c)}$	Time (hrs)
0.040	1221	0	12.52	767.99	24.50	547.54	1.5
0.040	1221	30	12.52	767.99	12.52	528.12	2
0.040	1221	30	12.52	767.99	36.48	528.12	3.5
0.040	1260	0	12.96	716.42	21.08	614.44	1.5
0.090	1230	0	19.14	729.96	29.37	627.91	1.5
0.090	1230	40	19.14	729.96	14.99	589.08	3
0.090	1230	40	19.14	729.96	43.74	589.08	4.5
0.125	1232	0	22.94	708.69	30.86	672.56	3.5
0.125	1232	30	22.94	708.69	20.68	649.23	7
0.125	1232	30	22.94	708.69	41.03	649.23	7
0.125	1232	55	22.94	708.69	12.52	596.43	3.5
0.125	1232	55	22.94	708.69	49.19	596.43	3.5
0.125	1170	0	21.74	788.05	37.31	575.57	3
0.125	1200	0	22.29	750.16	34.06	622.63	2
Config	guration cl	nanges					17
Calibrations							8
			Total:				72

Finish with a Step back to look at what we actually will measure:

 σ_0

1290

W

1250

1300

W (H+V)

1160

e'pq*

LT

ż

Theta-pq

 $Q^2 = 0.040 \text{ GeV}^2$

 $Q^2 = 0.090 \text{ GeV}^2$

Finish with a Step back to look at what we actually will measure:

 $Q^2 = 0.125 GeV^2$

