E08-005 Quasi-Elastic ³He⁺(e,e'n) Single Spin Asymmetry

Elena Long Hall A Collaboration Meeting December 9th, 2010

Outline

What are we doing?

Details of what we're looking for from E08-005

What's been done?

Experiment set-up and analysis so far
Where are we going?
Analysis that has yet to be done

What are we doing?

- In PWIA, A_y in Quasi-Elastic ³He[↑](e,e'n) is exactly zero
- Previous to this experiment, no measurements of Ay have been done at large Q²
- We will analyze high precision data points taken at 0.1 [GeV/c]², 0.5 [GeV/c]², and 1.0 [GeV/c]²
- Previous experiment at NIKHEF measured A_y at 0.2 [GeV/c]²
- Faddeev calculations by Bochum group correctly predicted FSI result where other groups expected a much lower value

What are we doing?

J. M. Laget, Phys. Lett. B273, 367 (1991).
 W. Gloeckle, H. Witala, D. Huber, H. Kamada, and J. Golak, Phys. Rept. 274, 107 (1996).

What are we doing?

Data will test state of the art calculations at high Q²

Neutron form factor extractions must correctly predict this asymmetry

In calculating G_Eⁿ from ³He(e,e'n), A_y from ³He[†](e,e'n) will also be calculated

At high Q², any non-zero result is indicative of effects beyond impulse approximation

What's been done? Hall A Left HRS Pion Rejectors (Rb Glass) Neutron Detector Scintillators VDCs Polarized ³He-Beam Dump Target Møller Compton Polarimeter Polarimeter Raster Gas Cerenkov BPM eP BCM ARC Wire Chambers Trigger Plane (Scintillators) Preshower Shower **BigBite Right HRS** 6

Polarized ³He Target

- Optically Pumped Rubidium Vapor used with Potassium to Polarize ³He via Spin Exchange
- NMR and EPR Measure Polarization
- Polarization was in Vertical Direction
- © Can Polarize up to 60%

Hall A Neutron Detector

Detects neutrons from ³He(e,e'n)
 Along with RHRS allows G_Eⁿ and A_y measurements to be made

Right HRS

Hall A Neutron Detector

Detects neutrons from ³He(e,e'n)
 Along with RHRS allows G_Eⁿ and A_y measurements to be made

Incident Polarized Electron

Right HRS

Av (

Hall A Neutron Detector

Detects neutrons from ³He(e,e'n)
 Along with RHRS allows G_Eⁿ and A_y measurements to be made

Incident Polarized Electron

Right HRS

Hall A Neutron Detector

Detects neutrons from ³He(e,e'n)
 Along with RHRS allows G_Eⁿ and A_y measurements to be made

Incident Polarized Electron

Right HRS

This experiment, E08–005, ran from April 26th through May 10th in Jefferson Lab's Hall A

The kinematics taken were:

Eo [GeV]		E' [GeV]			θ _{lab} [°]	Q² [GeV/c]²		lql [GeV/c]		θ _q [°]	
1.25		1.22			17.0	0.13		0.359		71.0	
2.43		2.18			17.0	0.46		0.681		62.5	
3.61		3.09			17.0	0.98		0.988		54.0	
Date	E₀ (GeV)		RHRS (°)		RHRS P₀ (GeV)	LHRS (°)	LHRS P₀ (GeV)		HAND (°)		BigBite (°)
4/26	1.245		-17		1.2205	17	1.2205		71		-74
4/27	1	.245	-17		1.1759	17	1.1759		71		-74
4/29	3.605		-17		3.0855	17	3.0855		54		-74
5/6	3.605		-17		3.0855	17	3.0855		62.5		-74
5/8	2.425		-17		2.1813	17	2	.1813	62.5	;	-74

RHRS optics calibration finished

See Ge Jin's talk from the 2010 Summer Collaboration meeting (http://bit.ly/faDudd)

RHRS optics calibration finished

See Ge Jin's talk from the 2010 Summer Collaboration meeting (http://bit.ly/faDudd)

HAND calibration started

88 Scintillator + 64 Veto Bars

ADC and TDC channels recorded for each of 240 PMTs

Q²=1 Proton TDC Correlations without Lead Wall

Q²=1 Proton TDC Correlations with Lead Wall

Proton tracking Q²=1.0, no lead wall

Proton tracking Q²=1.0, no lead wall

Theta Correlates to Bar

Theta Correlates to Bar

Theta Correlates to Bar

Phi Correlates to Left-Right Position

Phi Correlates to Left-Right Position

Where are we going? Ratio of protons that survive veto cuts

Example: 100% -> 7.7% -> 1.6%

Where are we going? Ratio of protons that survive veto cuts

Example: 100% -> 7.7% -> 1.6%

21

Where are we going? Ratio of protons that survive veto cuts

Example: 100% -> 7.7% -> 1.6%

21

Where are we going?

Finalize veto cuts

- Search Examine neutron penetration from deuterium target
- Examine neutron penetration from ³He target
- Make neutron cuts
- Find semi-exclusive ³He(e,e'n) asymmetry using neutron cuts
- Finalize scaling factors of asymmetry

Thank to the Hall A Quasi-Elastic Family of Experiments

<u>Spokepersons</u>

T. Averett, College of William and Mary (E05-015, E08-05) J. P. Chen, Thomas Jefferson National Accelerator Facility (E05-015) S. Gilad, Massachusetts Institute of Technology (E05-102) D. Higinbotham, Thomas Jefferson National Accelerator Facility (E05-102, E08-005) X. Jiang, Rutgers University (E05-015) W. Korsch, University of Kentucky (E05-102) B. E. Norum, University of Virginia (E05-102) S. Širca, University of Ljubljana (E05-102) V. Sulkosky, Thomas Jefferson National Accelerator Facility (E08-005)

<u>Graduate Students</u>

G. Jin, University of VirginiaE. Long, Kent State UniversityM. Mihovilovič, Jožef Stefan InstituteY. Zhang, Lanzhou University

Run Coordinators

A. Camsonne, Thomas Jefferson National Accelerator Facility
P. Monaghan, Hampton University
S. Riordan, University of Virginia
B. Sawatzky, Temple University
R. Subedi, University of Virginia
V. Sulkosky, Massachusetts Institute of Technology
Y. Qiang, Duke University
B. Zhao, College of William and Mary

K. Allada Collaboration F. Salvatore **B.** Anderson M. Shabestari J. R. M. Annand O. Hansen P. Markowitz A. Shahinyan T. Holmstrom W. Boeqlin M. Meziane B. Shoenrock P. Bradshaw J. Huana R. Michaels J. St. John B. Moffit H. Ibrahim M. Canan A. Tobias E. Jensen N. Muangma C. Chen W. Tireman H. P. Khanal R. De Leo M. Jones G. M. Urciuoli X. Deng H. Kang K. Pan D. Wang D. Parno A. Deur J. Katich K. Wang C. Dutta C. W. Kees E. Piasetzky J. Watson L. El Fassi P. Kina M. Posik B. Wojtsekhowski A. J. R. Puckett D. Flay J. LeRose Z. Ye F. Garibaldi R. Lindgren X. Qian X. Zhan X. Qui H. Lu H. Gao X. Zheng R. Gilman W. Luo A. Saha L. Zhu S. Golge

E05-015, E08-005, and E05-102

Extra Slides

Bjorken-x Yields

$$\text{Yield} = \frac{N}{Q * LT * \rho * \Delta z} * \left(\frac{1}{\varepsilon_{det} * \Delta \Omega * \Delta E'}\right)$$

Ignore since it will cancel

Scaling= $\frac{{}^{12}C}{{}^{3}He}$ Yield

Bjorken-x Scaling at $Q^2=1$

27

Bjorken-x Cuts

Bjorken-x Cuts

29

