HRS detector: Status and Plan

Bogdan Wojtsekhowski, Jefferson Lab

- HRS basic package
- ❖ HRS VDC and FPP
- Trigger hodoscopes
- HRS Particle Identification: ToF, GasCher, Shower, Aerogel(s), RICH: plan for a PID working group
- ❖ Maintenance and upgrades: "hardening"

Detector Packages

VDC Left

S1 hodoscope

S2 hodoscope

Gas Cherenkov

Lead-glass calorimeter

FPP front chambers

FPP rear chambers Aerogel A1, A2 counters RICH

Right

Arm

Arm

Status of Detectors

VDC, upgrade of electronics

Left

S1 hodoscope: ready for S1m S2m operates with 0.25 ns timing Arm

Gas Cherenkov needs new mirrors,

regular replacement of PMTs

Lead-glass, in good shape, add trigger

FPP front, plan to restring ~100 wiresm

FPP rear ----- upgrade/status is experiment Aerogel A1, A2 -----RICH ----driven

VDC

Observations: atm. pressure UP/DOWN -> sparking;

after 15 years of work, VDC#4 failed.

The cause: gas leaks-> air between windows; poor

quality of the window and frame-PC gluing.

Done: rebuilt all windows (new technique);

milled-out all bumps in the frames etc.;

strung all new wires; tested chamber for leaks, signals with Fe55; copper cladding on the frame.

VDC status

Observations: atm. pressure UP/DOWN -> sparking;

after 15 years of work, VDC#4 failed.

The cause: gas leaks-> air between windows; poor

quality of the window and frame-PC gluing.

Done: rebuilt all windows (new technique);

milled-out all bumps in the frames etc.;

strung all new wires; tested chamber for leaks,

signals with Fe55; copper cladding on the frame

STATUS: VDCs (all six) are in good shape

Plan – upgrade front-end electronics (reuse Qweak's) Very good stability against oscillation Rate capability of 8 MHz (in full chamber) was shown

FPP (front)

Problems: gas consumption > 50 l/h

often HV trips due to gas

many dead wires/some

electronics

Done: repair dead electronics

built parallel gas distribution

tests of each wire/

disconnect dead

More: HV distribution on one layer

need: Gas distribution should be as

wide as a straw block

to be: tension test for each wire

done: ~ 100 wires need to

restrung

FPP (front) repair

S2m hodoscope

5 cm thickness16 paddles

Time resolution of 0.25 ns

User name Markowitz

Log entry time 17:18:14 on June 19, 2005

Entry number 146626

keyword=Kaon coincidence timing

coincidence timing for kaons, using the RICH and A1/A2 combo shows very clean spectra, with a narrow TOF

Figure 1

S1m and S1f

Scintillator of 1 cm thickness, 16 paddles; 0.2 ns time resolution

Will be ready for use in HRS (thanks to UCLA) in August

Scintillator of 0.5 cm thickness The light guide without a twist Novel s-shape acrylic plates

Aerogel counters

PMTs used in these counters are not produced any more

We have ~ 30 XP4572 for the A2 counter

The A1 counter maintenance is not possible, need redesign with different PMTs

HRS optics

HRS optics for APEX

HRS optics for APEX

Big hole: diameter 0.105"; observed sigma ~ 0.66 mm approx. due to the hole size

Small hole: diameter 0.055"; observed sigma ~ 0.40 mm -> angular resolution

Angular resolution (horizontal, at the hole) < 0.3 mrad

MC of HRS sieve slit

Positive polarity

+/-1mm along y axis slice from positron spectrometer 120 100 100

60

40

20

-0.08 -0.06 -0.04 -0.02

0

20 mm W plate

HRS optics

Active "sieve slit": tagging by a Sci Fiber detector

1 mm fibers with 1/16" pitch connected to a maPMT

Readout to via 1877s TDC 1-3 MHz rate per fiber Off-line time window of < 5 ns

All components are available and tested Prototype is under development by Neil Goeckner-Wald and Tyson Price

Summary

Basic detector is always ready
Aging scintillator S1 will be replaced
VDC electronics will be upgraded
Optics calibration detector is under development
The plan for high performance PID needs to
be decided