Hall A Compton Polarimeter

Sirish K. Nanda Jefferson Laboratory

Hall A Collaboration Meeting June 9-10, 2011

Thomas Jefferson National Accelerator Facility

Compton Polarimetry Basics

- Non-Intrusive measurement
- Accuracy improves with higher beam and photon energies
 - Figure-of-Merit ~ $\sigma x A^2 ~ k^2 x E^2$

Thomas Jefferson National Accelerator Facility

Hall A Compton Upgrade

- Upgrades the Infra-red Compton Polarimeter to green to provide accurate electron beam polarimetry from 1 to 11 GeV.

- Precision experiments PReX, MOLLER, SoLID, DVCS, ³He experiments are a few beneficiaries
- With planned cavity power boost, extend dynamic range down to 1 μA beam current

High Power Green Fabry-Perot Cavity

Twice the Analyzing power of IR cavity **Increased Figure-of-Merit**

Electron Detector

- High resolution silicon micro-strips
- Movable in dispersive plane for wide energy dynamic range

Photon Calorimeter

- Single crystal GSO detector
- Counting and integrating capabilities

Compton Photon Target

Thomas Jefferson National Accelerator Facility

PREX Fabry-Perot Cavity

• Design

- Intra-cavity power 3 kW
 - Wavelength 532 nm
- Mode CW/ TEM₀₀

Solution

- Cavity mechanics with mirrors on adjustable gimbals
- Nd:Yag seed laser + Ytterbium Fiber Amplifier + PPLN Second Harmonic Generator

 -> High Finesse FP Cavity
- Pound-Drever-Hall cavity lock electronics
- People
 - A. Rakhman, M. Hafez, A. Tobias *et.al lasers and FP cavity*
 - M. Friend, A. Camsonne Detectors and DAQ

Result

- The Good
 - Successfully Installed and commissioned for PREX with designed power
 - Production polarimetry runs with integrating GSO detector
- The Bad
 - Some radiation damage to cavity mirrors from high backgrounds
 - Mechanical instability of cavity under vacuum load

Green Cavity in Compton Lab

- JSA

Photograh: Alan Gavalya

Thomas Jefferson National Accelerator Facility

Test Setup in Compton Lab

- The old Saclay cavity resurrected as a test cavity
- Replace fixed 10mm mirror mount with adjustable 7.75 mm mount
 - Mirrors can be aligned before pulling vacuum
 - Vacuum load expected to be small to be tested
- Work in progress on Higher power Fiber Amp PPLN green laser

Thomas Jefferson National Accelerator Facility

G2p Plans

Boost Cavity Power

- Change Cavity mirrors to higher finesse
 Remove T=240 ppm mirrors, install T=80 ppm (ATF80) mirrors
- Expected cavity power > 5kW

Schedule

- Mirrors on hand
- Successfully locked at 5kW in the Compton Lab
- Installation in Hall A in July

Run Plan

- A few dedicated Compton runs with 1uA straight thru beam
- GSO detector in counting mode for 3% polarimetry
- Continued commissioning of the e-detector

• Goal

- Stand-alone Asymmetry measurement with improved tracking resolution
- Provide absolute energy calibration for photon detector

• Scope

- 768 ch 240 μ m pitch silicon μ strips
- 4 Planes, 192 strips/plane, 1 cm spacing between planes
- 120 mm Vertical motion to allow coverage of Compton edge from 0.8-11 GeV

Thomas Jefferson National Accelerator Facility

Compton Electron Spectrum

• First Compton Scattered electron spectrum obtained in the new silicon microstrip e-detector in April 2009

- Singles spectrum with 3GeV electron beam
- However, detector plagued with low efficiency
- Sent back to Clermont-Ferrand for troubleshooting Jan '11

Thomas Jefferson National Accelerator Facility

Tests at Clermont-Ferrand

B. Joly, M. Brossard, M. Crouau, M. Magne, G. Savinel, C. Munos Camacho, P. Bertin

- 32 Si μstrips(0.5mm thickness) cosmic tests
- Evaluate 1mm thick Si µstrips with the same setup
- Improved electronic noise shielding

Preliminary results

PMT thresh.	selected	"detected"	efficiency
(mV)	events	events	
	(PMT > thresh.)	(at least	
		1 chan > 3 sigma)	
90	2411	2072	86%
121	2037	1847	91%
151	1782	1635	92%
181	1577	1455	92%

- peak amplitude for *m.i.p* is well above noise
- 90 % detection efficiency
- Perspective: testing a stacked detector with a trigger logic

Thomas Jefferson National Accelerator Facility

Calorimeter

- Single crystal GSO, 6 ϕ x15 cm cylinder supplied by Hitachi Chemicals
- High light output, fast decay time (less than 60 ns)
- Triggered counting as well as continuous integration.
- Performance of the GSO calorimeter has been outstanding!
- Successful polarimetry production data for PREX with integrating DAQ

Thomas Jefferson National Accelerator Facility

Hall A 12 GeV Scope

Upgrade beam-line instrumentation to measure beam polarization and energy up to 11 GeV

System	Present "6 GeV" Capability	11 GeV Requirements
Møller Polarimeter	± 1%	± 3%
Compton Polarimeter	± 1%	± 3%
ARC Energy Measurement System	± 2 x 10 ⁻⁴	± 5 x 10-4

Thomas Jefferson National Accelerator Facility

12 GeV Compton Beamline

Present Magnetic Chicane

- Four dipole design with 300 mm displacement
- 1.5Tm dipoles will go to 8 GeV
- Design choices
 - Keep present 300 mm geometry, and overall length
 - => Higher strength dipoles => \$\$\$
 - Reduce displacement to 218 mm
 - Keep present dipoles
 - New beamline geometry => \$\$

Decision to go with 218 mm chicane adopted in 2005

Hall A 12GeV Beam line Optics

Thomas Jefferson National Accelerator Facility

Schedule

- Design:
 - Completed 2010
- Fabrication:
 - Begins Fall this year
- Installation:
 - During 12MSD (May 2012 Apr 2013)
- Project Completion Milestone:
 - October 2013 accelerator to deliver 3-pass >6 GeV beam to Hall A.
 - Compton Polarimeter ready for commissioning.

Conclusion

- Boost cavity power to >5kW for g2p
 - Provide 3% beam polarimetry at 1uA
- E-detector being reworked and bench tested at Clermont
 - Beam tests planned during g2p runs
- 12 GeV Compton upgrade approaching construction phase.
 - On track for 2013 Completion

