Hall A DAQ status and upgrade plans

Alexandre Camsonne Hall A Jefferson Laboratory

Hall A collaboration meeting June 10th 2011

Outline

- HRS DAQ upgrade
 - Motivation
 - Current
 - Possible trigger layout
 - Timeline
 - Intel VME CPU
 - CAMAC
- Future experiments
 - Pipelined electronics
 - Fastbus
 - L3 Farm
- Summary

HRS DAQ upgrade motivations

- Upgrade rate capability and deadtime : current rate limited to 4 KHz at about 15 % dead time
- CAMAC modules obsolete : replace with NIM and VME
- High resolution TDC 1875 replacement

http://hallaweb.jlab.org/equipment/daq/daq_12gev.pdf

Current HRS

Possible trigger layout

Level 1 & Trigger Distribution

Jefferson Lab

Thomas Coffee on Antional Accelerator Facility

June 10th 2011

HRS 12 GeV Hall A DAQ upgrade milestones

	Milestone	Planned completion
•	Test 1190 and 1290 TDCs on HRS	Oct-11
•	Implement Fastbus upgrade with Intel Quad cpus	Nov-11
•	Complete the Design of Test Stand for Pipelined Electronics	Dec-11
•	Obtain prototype TIR boards, new ROC and EB components for CODA	A 3 Jan-12
•	Complete the Design of the Delay Modules (Ben Raydo)	Feb-12
•	Parts for Test Stand Delivered (FADC, TDCs, TIR, etc)	Mar-12
•	Test of Delay Module Prototype Completed	Apr-12
•	Initial Testing of Pipelined Electronics, informing final design	May-12
•	Preliminary Design of DAQ and Trigger	Jun-12
•	Order Delay Modules and other Trigger Modules	Jul-12
•	Completed Tests of Pipeline Electronics	Aug-12
•	Final Design of DAQ and Trigger	Sep-12
•	Order ADCs and TDCs (at this point, looks like Jlab FADC and CAEN	(1190) Oct-12
•	Order Crate Trigger Supervisor, Subsystem Decision Modules, etc.	Nov-12
•	Order Fibers and Gigabit Ethernet	Dec-12
•	All DAQ and Trigger modules delivered	Jan-13
•	Analysis Software Upgrades Completed (based on Test Stand)	Feb-13
•	Assembly of Full DAQ System Complete	Mar-13
•	Preliminary Tests of Full DAQ System	Apr-13
•	Final Tests of Full DAQ System	May-13

Intel VME CPUs

- Dual Core CPU
- Running Linux
- Deploy infrastructure for operating
- Support from DAQ group : Bryan Moffit and David Abbott Fastbus library adapted for the new CPU
- CPUs ordered and will be tested this summer
- Possible improvement of rate capability by a factor of 2 will be tested for g2p

CAMAC replacement

- Lecroy 4518 delay module
 - Development by Jlab electronics group
- Lecroy 4413 discriminator
 - JLAB VME discriminator available
 - 16 channels
 - 2 outputs with two different thresholds
 - Or output
 - Possibility to implement logic
- MLU 2373
 - CAEN V1495 : multipurpose FPGA logic module
 - very versatile logic but need to be careful for accurate timing

Future experiments

- SuperBigBite
 - GEM
 - Fastbus
- DVCS
 - Calorimeter
 - Analog sampling electronics
- SoLID
 - Fully pipelined electronics
 - L3 Farm

Pipelined electronics

- Continuous readout of data
- No dead time
- Fully digital logic
 - Digital sum and trigger generation for calorimeter / scintillators
- Drawbacks
 - need fully pilelined to take full advantage of DAQ
 - L1A latency of 2 us
- Possibility to use as regular ADC with look back in time
 (No more delay lines)

Pipelined electronics

- JLAB FADC 250
 - Flash ADC 12 bit 250 MHz 16 channels
 - VXS option for summing and triggering purpose
- Jlab F1 TDC
- CAEN V1190
- CAEN V1290
- APV25 GEM readout : 40 MHz
- DAQ group will handle event repacking from the block of events

Fastbus

- Large amount of channels available
- Will be used for SuperBigBite
- Drawback no pipelining/ event blocking
- 20 Mb/seconds transfer rate
- Sufficient for low rate experiments
- Might benefit from new Intel VME CPU

L3 Farm

- For data reduction for SoLID maybe SBS
- Do treatment of event for data reduction : expect factor of 5 reduction of data amount
- Need to implement test bench
 - Choose algorithms : coarse reconstruction, look up table, coincidence between detectors to optimize speed and data reduction
 - Determine efficiency and systematical effects

Summary

- HRS DAQ upgrade ongoing by stage
- Support legacy electronics while allowing fully pipelined operation
- New electronics being tested in different setups
- Availability of 100 KHz rate capabilities for future experiments
- HRS upgrade is building block of DAQ for future large experiment SBS and SoLID

