PVDIS and Solid Physics Motivation

Nilanga Liyanage

University of Virginia

Parity Violating Deep Inelastic Scattering (PVDIS)

- I. PVDIS Physics Potential
 - A. Electroweak Couplings
 - B.Look for new physics beyond SM
 - C.Charge Symmetry
 - D.Higher Twist
 - E.Other Physics and Targets:
 - d_v/u_v ; Isoscaler EMC effect

II. SoLID spectrometer

PVDIS: Electron-Quark Scattering

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{\tilde{A}_Z}{A_\gamma} \sim \frac{G_F Q^2}{4\pi\alpha} (g_A^e g_V^T + \beta g_V^e g_A^T)$$

$$C_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^{2}(\theta_{W}) + \delta C_{1u} \approx -0.19$$

$$C_{1d} = \frac{1}{2} - \frac{2}{3}\sin^{2}(\theta_{W}) + \delta C_{1d} \approx 0.35$$

$$C_{2u} = -\frac{1}{2} + 2\sin^{2}(\theta_{W}) + \delta C_{2u} \approx -0.030$$

$$C_{2d} = \frac{1}{2} - 2\sin^{2}(\theta_{W}) + \delta C_{2d} \approx 0.025$$

Moller PV is insensitive to the C_{ij}

 C_{1u} and C_{1d} will be determined to high precision by Q_{weak} , APV Cs $Q_{weak}^p = 2C_{1u} + C_{1d} \propto 1 - 4\sin^2\vartheta_W$

But C_{2u} and C_{2d} are small and poorly known: in nucleon PV experiments large theoretical uncertainty due to electroweak radiative corrections, but in PVDIS scattering is off isolated quarks and these corrections are calculable.

Deep Inelastic Scattering

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[\mathbf{a}(x) + Y(y) \mathbf{b}(x) \right]$$

$$x \equiv x_{Bjorken}$$
$$y \equiv 1 - E'/E$$
$$f_i^{\pm} \equiv f_i \pm \overline{f}_i$$

$$\mathbf{a}(x) = \frac{\sum_{i} C_{1i} Q_{i} f_{i}^{+}(x)}{\sum_{i} Q_{i}^{2} f_{i}^{+}(x)}$$

$$x \equiv x_{Bjorken}$$

$$y \equiv 1 - E'/E$$

$$f_i^{\pm} \equiv f_i \pm \overline{f}_i$$

$$a(x) = \frac{\sum_{i} C_{1i} Q_i f_i^{+}(x)}{\sum_{i} Q_i^2 f_i^{+}(x)}$$

$$b(x) = \frac{\sum_{i} C_{2i} Q_i f_i^{-}(x)}{\sum_{i} Q_i^2 f_i^{+}(x)}$$

For an isoscalar target like ²H, structure functions largely cancel in the ratio.

$$\mathbf{a}(x) = \frac{3}{10} (2C_{1u} - C_{1d}) \left(1 + \frac{0.6 \, s^+}{u^+ + d^+} \right)$$

$$\mathbf{b}(x) = \frac{3}{10} (2C_{2u} - C_{2d}) \left(\frac{u_{v} + d_{v}}{u^{+} + d^{+}} \right) + \cdots$$

Deep Inelastic Scattering

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[\mathbf{a}(x) + Y(y) \mathbf{b}(x) \right]$$

a(x) and b(x) contain quark distribution functions $f_i(x)$

$$x \equiv x_{Bjorken}$$

$$y \equiv 1 - E'/E$$

$$f_i^{\pm} \equiv f_i \pm \overline{f}_i$$

$$\boldsymbol{a}(x) = \frac{\sum_{i} \boldsymbol{C}_{Ii} \, Q_{i} \, f_{i}^{+}(x)}{\sum_{i} Q_{i}^{2} \, f_{i}^{+}(x)}$$

$$x \equiv x_{Bjorken}$$

$$y \equiv 1 - E'/E$$

$$f_i^{\pm} \equiv f_i \pm \overline{f}_i$$

$$a(x) = \frac{\sum_{i} C_{1i} Q_i f_i^{+}(x)}{\sum_{i} Q_i^2 f_i^{+}(x)}$$

$$b(x) = \frac{\sum_{i} C_{2i} Q_i f_i^{-}(x)}{\sum_{i} Q_i^2 f_i^{+}(x)}$$

at high x

For an isoscalar target like ²H, structure functions largely cancel in the ratio.

At high x,
$$f_i^{\pm} = f_{v,i}$$

with well-defined SM prediction for Q² and y

 $\mathbf{a}(x) = \frac{3}{10} (2C_{1u} - C_{1d}) \left(1 + \frac{0.6 \, s^+}{u^+ + d^+} \right)$

At high x,
$$f_i^- = f_{v,i}$$

So, at high x, A_{PV} becomes independent of x, W, $b(x) = \frac{3}{10}(2C_{2u} - C_{2d})\left(\frac{u_v + d_v}{u^+ + d^+}\right) + \cdots$ with well-defined SM prediction for Q² and y

New combination of:

Vector quark couplings C_{1a} Also axial quark couplings C_{2a}

DIS: Only way to measure C₂

Sensitive to new physics at the TeV scale

Deviations to C2u and C2d might be fractionally large

PVDIS—Electroweak couplings and sin²θ_w

Recall: sin²θ_W projects couplings onto Standard Model—measurements of couplings to elucidate extensions to the S.M.

Sensitivity: C₁ and C₂ Plots

However, A_{PV} at high x for a deuteron target still depends on some hadronic corrections!

- Charge Symmetry (CSV)
- Higher Twist (HT)

A set of precision measurements over a broad kinematic range can untangle the physics

QCD:

Charge Symmetry Violation $u^p(x) \stackrel{?}{=} d^n(x) \Rightarrow \delta u(x) \equiv u^p(x) - d^n(x)$ We already know CSV exists: $d^p(x) \stackrel{?}{=} u^n(x) \Rightarrow \delta d(x) \equiv d^p(x) - u^n(x)$

$$d^p(x) \stackrel{?}{=} u^n(x) \quad \Rightarrow \quad \delta d(x) \equiv d^p(x) - u^n(x)$$

u-d mass difference

$$\delta m = m_d - m_u \approx 4 \text{ MeV}$$

$$\delta M = M_n - M_p \approx 1.3 \text{ MeV}$$

electromagnetic effects

- Direct observation of CSV—very exciting!
- Important implications for high energy collider pdfs
- Could explain significant portion of the NuTeV anomaly

 $\frac{\delta A_{PV}}{A_{PV}} \approx 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$

For A_{PV} in electron-²H DIS:

MRST PDF global with fit of CSV Martin, Roberts, Stirling, Thorne Eur Phys J C**35**, 325 (04)

Sensitivity will be further enhanced if u+d falls off more rapidly than δu - δd as $x \rightarrow 1$

QCD:

MRST, PLB582, 222 (04)

Higher Twist--MRST Fits

Order of DGLAP influences size of HT

$$Q^2=(W^2-M^2)/(1/x-1)$$
 $Q^2_{min}=Q^2(W=2)$

		D(x)		D/Q ² _{min} (%)	
x	Q^2_{min}	LO	N³LO	LO	N³LO
0.1-0.2	0.5	007	0.001	-14	2
0.2-0.3	1.0	11	0.003	-11	0.0
0.3-0.4	1.7	06	-0.001	-3.5	-0.5
0.4-0.5	2.6	.22	0.11	8	4
0.5-0.6	3.8	.85	0.39	22	10
0.6-0.7	5.8	2.6	1.4	45	24
0.7-0.8	9.4	7.3	4.4	78	47

$$A_{\text{meas.}} = A_{\text{PV}} \left[1 + \frac{C(x)}{Q^2} \right]$$

If $C(x)^D(x)$, there is large sensitivity all large x.

Coherent Program of PVDIS Study

Strategy: requires precise kinematics and broad range

	X	У	\mathbf{Q}^2
New Physics	no	yes	no
CSV	yes	no	no
Higher Twist	yes	no	yes

- Measure A_d in **narrow** bins of x, Q^2 with 0.5% precision
- Cover broad Q^2 range for x in [0.3,0.6] to constrain HT
- Search for CSV with x dependence of A_d at high x
- Use x > 0.4, high Q^2 to measure a combination of the C_{iq} 's

Fit data to:
$$A_{\rm meas.} = A_{\rm SM} \left[1 + \frac{\beta_{HT}}{\left(1-x\right)^3 Q^2} + \beta_{\rm CSV} x^2 \right]$$

Statistical Errors (%) vs. Kinematics

SoLID Spectrometer

- High Luminosity on LH2 & LD2
- Better than 1% errors for small bins
- Large Q² coverage
- x-range 0.25-0.75
- $W^2 > 4 \text{ GeV}^2$
- Moderate running times
 - →Large Acceptance
- Solenoid (from BaBar, CDF or CLEOII) contains low energy backgrounds (Møller, pions, etc)
- Trajectories measured after baffles

- Fast tracking, particle ID, calorimetry, and pipeline electronics
- Precision polarimetry (0.4%)

SoLID Spectrometer for SIDIS

Main Challenge: large area

- COMPASS GEM chambers only 30 cm \times 30 cm; there were total 22 chambers, total area \sim 2 m².
- Requirements for SOLID more than an order of magnitude larger.

Plane	Z (cm)	R _I (cm)	R_O (cm)	Total Area (m²)	circumference (cm) Inner outer	
4	120	39.0	87.2	1.9	245	548
5	150	48.7	109.0	3.0	306	684
6	190	61.7	138.0	4.8	388	867
7	290	94.2	210.7	11.2	592	1323
8	310	100.7	225.2	12.7	633	1414
total:				33.6		

This is the bare minimum: high rates may require multiple chambers at the same location.

- Disk area larger than available GEM foil size (currently \sim 45 x 45 cm²); need larger foil and segmentation.
- Large total area: most current GEM foil production at CERN shop: can they handle this volume? Need new foil manufacturing

TOTEM T1 prototype chamber made with single mask GEM foils spliced together (33 cm x 66 cm)

- Base material up to 51.4 cm wide now available
- CERN is now capable of producing $200 \text{ cm} \times 60 \text{ cm}$ GEM foil.

This combined with Splicing: $200 \text{ cm } \times 120 \text{ cm } GEM \text{ foil may be possible}$ in the next two years

M. Villa, et al., Nucl. Instr. and Meth. A (2010), doi:10.1016/j.nima.2010.06.312

M. Alfonsi et al. / Nuclear Instruments and Methods in Physics Research A 617 (2010)

Summary

- •Measurements of Parity Violation in Deep Inelastic Scattering contain a wealth of information about:
 - The Standard Model
 - Charge Symmetry (CSV)
 - Higher Twist (HT)
- •A program of PVDIS measurements at JLab has begun with the 6 GeV CEBAF accelerator and will continue into the 12 GeV era
- •For the complete picture—to unravel the full richness of the physics reach of this process a dedicated—a large-acceptance spectrometer is needed.
- Instrument SOLID be challenging but feasible with technology that is becoming available.

· GFM technology: