

A Probe of the Color Force

On Behalf of the E06014 Collaboration

Hall A Collaboration Meeting 10 June 2011

Matthew Posik Temple University

Graduate Student: David Flay (Temple), Recent Graduate: Diana Parno (CMU)

Friday, June 10, 2011

 \bigcirc d_2 gives a clean probe to quark-gluon correlations

 d_2 gives a clean probe to quark-gluon correlations

A virtual photon (color blind) strikes a quark in the nucleon and interacts with it through QED

 d_2 gives a clean probe to quark-gluon correlations

- A virtual photon (color blind) strikes a quark in the nucleon and interacts with it through QED
- The struck quark then interacts with the surrounding quarks and gluons through the color force

 d_2 gives a clean probe to quark-gluon correlations

 A virtual photon (color blind) strikes a quark in the nucleon and interacts with it through QED

The struck quark then interacts with the surrounding quarks and gluons through the color force

The resulting color field interaction is what is measured by d_2

 d_2 gives a clean probe to quark-gluon correlations

 A virtual photon (color blind) strikes a quark in the nucleon and interacts with it through QED

The struck quark then interacts with the surrounding quarks and gluons through the color force

The resulting color field interaction is what is measured by d_2

or ...

 $e d_2$ is the average transverse color force on a quark just after interaction with a virtual photon (M. Burkardt)

6

Kinematic Coverage

- Data sets at two beam energies: 4.7 GeV and 5.9 GeV in DIS region
- 5.9 GeV primary data set (most of E06014 data)
 - 4.7 GeV data set will be used in Q^2 evolution

Experimental Definitions

$$\sigma_0 = \left(\frac{Ne}{Q\rho LT\epsilon}\right) \left(\frac{1}{w\Delta E'\Delta\Omega\Delta Z}\right)$$
 (LHRS)

•
$$A_{\parallel} = \frac{\sigma^{\downarrow \uparrow} - \sigma^{\uparrow \uparrow}}{\sigma^{\downarrow \uparrow} + \sigma^{\uparrow \uparrow}}$$

• $A_{\perp} = \frac{\sigma^{\downarrow \Rightarrow} - \sigma^{\uparrow \Rightarrow}}{\sigma^{\downarrow \Rightarrow} + \sigma^{\uparrow \Rightarrow}}$ (BigBite)

$$\bullet$$
 \Rightarrow = Target spin towards BigBite

Combining BigBite and LHRS Data

•
$$d_2 = \int_0^1 \frac{MQ^2}{4\alpha^2} \frac{x^2 y^2}{(1-y)(2-y)} \sigma_0 \\ \left[\left(3 \frac{1+(1-y)\cos(\theta)}{(1-y)\sin(\theta)} + \frac{4}{y} tan(\frac{\theta}{2}) \right) A_\perp + \left(\frac{4}{y} - 3 \right) A_\parallel \right] dx$$

Measured cross-sections and asymmetries allow us to evaluate d_2 exclusively from our data (no world data extractions needed)

Combining BigBite and LHRS Data

•
$$d_2 = \int_0^1 \frac{MQ^2}{4\alpha^2} \frac{x^2 y^2}{(1-y)(2-y)} \sigma_0 \\ \left[\left(3 \frac{1+(1-y)\cos(\theta)}{(1-y)\sin(\theta)} + \frac{4}{y} tan(\frac{\theta}{2}) \right) A_\perp + \left(\frac{4}{y} - 3 \right) A_\parallel \right] dx$$

• Measured cross-sections and asymmetries allow us to evaluate d_2 exclusively from our data (no world data extractions needed)

We also pick up the spin structure functions:

•
$$g_1 = (2\sigma_0) \left(\frac{MQ^2}{4\alpha^2} \frac{y}{(1-y)(2-y)} \right) \left[A_{\parallel} + tan(\frac{\theta}{2})A_{\perp} \right]$$

• $g_2 = (2\sigma_0) \left(\frac{MQ^2}{4\alpha^2} \frac{y^2}{2(1-y)(2-y)} \right) \left[-A_{\parallel} + \frac{1+(1-y)cos(\theta)}{(1-y)sin(\theta)}A_{\perp} \right]$

11

4.7 GeV ³He Asymmetries

Asymmetry analysis done by Diana Parno and Matt Posik

BigBite Positron Dilution Factor

Data were taken with BigBite in positive polarity (focus on detecting positrons) and negative polarity (focus on detecting electrons)

Positron dilution factor:

$$D_{e^+} = 1 - \frac{N^+ Q^-}{N^- Q^+}$$

Positron contamination in BigBite is still being studied

What's Next

- Continue pair-production contamination studies
- Combine cross-section and asymmetries to form:
 - $\bigcirc g_1$ and g_2 spin structure functions
 - \bullet d_2
- Radiative corrections to asymmetries and cross-sections
- Form 5.9 GeV data set asymmetries
- Apply nuclear corrections

Thank You

To the Hall A collaboration

All those who took shifts on E06014

Primary analysis team: Brad Sawatzky, Diana Parno, David Flay, Yawei Zhang, Gregg Franklin, Zein-Eddine Meziani

P. H. Solvignon, V. Sulkosky, S. Riordan, Yi Qiang, L. El Fassi

X. Qian, J. Huang, K. Allada, C. Dutta

Cherenkov Cuts

BigBite T2 Trigger

А

в

Main electron trigger

Friday, June 10, 2011

T2 Trigger Effect on Pions

Friday, June 10, 2011

21

1200

1000

BigBite Cherenkov

BigBite Cherenkov: Pion Rejection

 N_{cer} = Number of pions left after Cherenkov cut

$$N_{\pi}$$
 = Number of events in pion sample

BigBite Cherenkov: Pion Rejection

Small angle side pion rejection factor at 3 photo-electron cut ~200

Large angle side pion rejection factor at 3 photo-electron cut ~900

• N_e = number of events in electron sample

N_{cer} = number of events in electron sample after Cherenkov cut

PMTs on small-angle (beamline) side

Small angle average electron detection efficiency >85%

PMTs on the large-angle (RHRS) side

T2 Trigger

	-		Sh/PSh Sum#	Short patch cable	Long patch cable
		A	26	N4-24L	20
I I	_	В	25	N2-24L	24
CI	C1 overlaps with A+B+C+D	>c	24	N3-21L	52
		D	23	N6-36L	-
		 E	22	N3-22L	6
C2	C2 overlaps with D+E+F+G	F	21	N4-21L	17
		G	20	N4-23L	-
		Н	19	N1-21L	S6–1NAU
C3	C3 overlaps with G+H+I+J	I	18	N1-22L	23
		J	17	N3-24L	-
C4	C4 overlaps with J+K+L+M	K	16	N2-21L	2
		L	15	N2-22L	14
C5 C6	C5 overlaps with M+N+O+P C6 overlaps with P+Q+R+S	М	14	N1-24L	-
		N	13	N4-22L	51
		0	12	N2-23L	11
		Р	11	N3-23L	-
		Q	10	N7-32L	1
C7	C7 overlaps with S+T+U+V	R	9	N5-32L	9
		S	8	N1-23L	-
		Т	7	N6-33L	53
C8	C8 overlaps with V+W+X+Y	U	6	N6-31L	5
C9	C9 overlaps with Y+Z	V	5	N5-36L	-
		W	4	N7-33L	3
		X	3	N6-32L	21
		Y	2	N6-35L	-
		Z	1	N5-31L	50
		29			