E08-005 Update: Quasi-Elastic ³He¹(e,e'n) Target Single Spin Asymmetries Elena Long Hall A Collaboration Meeting December 15th, 2011 #### Why are we doing this? - Ay is sensitive to final state interactions (FSI) - In PWIA, A_y in Quasi-Elastic ³He[↑](e,e'n) is exactly zero - Previous to this experiment, no measurements of Ay have been done at large Q² #### Why are we doing this? - We are analyzing high precision data points taken at 0.1 [GeV/c]², 0.5 [GeV/c]², and 1.0 [GeV/c]² - Previous experiment at NIKHEF measured A_y at ~0.2 [GeV/c]² - Almost no data and very few reliable predictions #### Why are we doing this? [1] J. M. Laget, Phys. Lett. B273, 367 (1991). [2] W. Gloeckle, H. Witala, D. Huber, H. Kamada, and J. Golak, Phys. Rept. 274, 107 (1996). #### Hall A Neutron Detector - Detects neutrons from ³He(e,e'n) - Along with RHRS allows G_Eⁿ and A_y measurements to be made #### Right HRS - Detects quasi-elastically scattered electrons from ³He(e,e'n) and ³He(e,e') - With q along beam polarization on ³He(e,e'), allows a G_Mⁿ measurement to be made #### Hall A Neutron Detector - Detects neutrons from ³He(e,e'n) - Along with RHRS allows G_Eⁿ and A_y measurements to be made #### Right HRS - Detects quasi-elastically scattered electrons from ³He(e,e'n) and ³He(e,e') - With q along beam polarization on ³He(e,e'), allows a G_Mⁿ measurement to be made - This experiment, E08-005, ran from April 26th through May 10th in Jefferson Lab's Hall A - The kinematics taken were: | E₀
[GeV] | E'
[GeV] | θ _{lab}
[°] | Q²
[GeV]² | q
[GeV/c] | θ _q
[°] | |-------------|-------------|-------------------------|--------------|---------------|-----------------------| | 1.25 | 1.22 | 17.0 | 0.13 | 0.359 | 71.0 | | 2.43 | 2.18 | 17.0 | 0.46 | 0.681 | 62.5 | | 3.61 | 3.09 | 17.0 | 0.98 | 0.988 | 54.0 | | Date | E₀
(GeV) | RHRS
(°) | RHRS Po
(GeV) | LHRS
(°) | LHRS Po
(GeV) | HAND
(°) | BigBite
(°) | |------|-------------|-------------|------------------|-------------|------------------|-------------|----------------| | 4/26 | 1.245 | -17 | 1.2205 | 17 | 1.2205 | 71 | -74 | | 4/27 | 1.245 | -17 | 1.1759 | 17 | 1.1759 | 71 | -74 | | 4/29 | 3.605 | -17 | 3.0855 | 17 | 3.0855 | 54 | -74 | | 5/6 | 3.605 | -17 | 3.0855 | 17 | 3.0855 | 62.5 | -74 | | 5/8 | 2.425 | -17 | 2.1813 | 17 | 2.1813 | 62.5 | -74 | #### RHRS Selection of Neutrons Subtracting background from ToF Subtracting background from ToF Subtracting background from ToF Subtracting background from ToF - Error Estimates - Background-subtracted ToF peaks used to find asym - Q²=1.0 GeV², Quasi-Elastic, Vertical ³He(e,e'n) - Background-subtracted ToF peaks used to find asym - Q²=0.5 GeV², Quasi-Elastic, Vertical ³He(e,e'n) - Background-subtracted ToF peaks used to find asym - Q²=0.1 GeV², Quasi-Elastic, Vertical ³He(e,e'n) Raw Target SSA vs. Q² Target SSA vs. Q² with Target Polarization Dilution - Background-subtracted ToF peaks used to find asym - Q²=0.1 GeV², Quasi-Elastic, Vertical ³He(e,e'n) & ³He(e,e'p) Raw Target SSA vs. Q² Target SSA vs. Q² with Target Polarization Dilution Target SSA vs. Q2 with Target Polarization Dilution ³He(e,e'n) Double-Spin Asymmetries for E05-102 Transverse ${}^{3}\overrightarrow{He}(\overrightarrow{e,e'n})$ Q²=1 DSA ³He(e,e'n) Double-Spin Asymmetries for E05-102 Longitudinal ³He(e,e'n) Q²=1 DSA #### Where are we going? - Include contribution of proton contamination to asymmetry, especially $Q^2=0.1~\text{GeV}^2$ - Finalize background subtraction error estimates - Finalize systematic errors of asymmetry - (E05-102) Finish raw semi-exclusive ³He(e,e'n) double-spin asymmetries for transverse and longitudinal polarization at Q²=1.0 and 0.5 GeV² - (E05-102) Extract G^E_n from transversely polarized ³He(e,e'n) asymmetry # Thank you to the Hall A Quasi-Elastic Family of Experiments E08-005, Spokepersons and E05-102 E05-015, T. Averett, College of William and Mary (E05-015, E08-05) J. P. Chen, Thomas Jefferson National Accelerator Facility (E05-015) S. Gilad, Massachusetts Institute of Technology (E05-102) D. Higinbotham, Thomas Jefferson National Accelerator Facility (E05-102, E08-005) X. Jiang, Rutgers University (E05-015) W. Korsch, University of Kentucky (E05-102) B. E. Norum, University of Virginia (E05-102) S. Sirca, University of Ljubljana (E05-102) V. Sulkosky, Thomas Jefferson National Accelerator Facility (E08-005) ## Graduate Students E. Long, Kent State University G. Jin, University of Virginia M. Mihovilovič, Jožef Stefan Institute Y. Zhang, Lanzhou University ## Run Coordinators A. Camsonne, Thomas Jefferson National Accelerator Facility P. Monaghan, Hampton University S. Riordan, University of Virginia B. Sawatzky, Temple University R. Subedi, University of Virginia V. Sulkosky, Massachusetts Institute of Technology Y. Qiang, Duke University B. Zhao, College of William and Mary B. Anderson K. Allada Collaboration J. R. M. Annand P. Bradshaw W. Boeglin M. Canan C. Chen T. Holmstron H. Ibrahim O. Hansen E. Jensen J. Huang P. Markowitz M. Meziane R. Michaels B. Moffit H. Kang M. Jones N. Muangma H. P. Khanal K. Pan R. De Leo E. Piasetzky M. Posik D. Parno X. Qian F. Garibald R. Lindgren J. LeRose P. King H. Gao D. Flay L. El Fass C. Dutta A. Deur X. Deng C. W. Kees J. Katich R. Gilman W. Luo S. Golge A. Saha X. Zheng A. J. R. Puckett B. Wojtsekhowski M. Shabestar B. Shoenrock A. Shahinyan G. M. Urciuoli W. Tireman J. St. John J. Watson K. Wang D. Wang X. Zhan A. Tobias Z. Ye #### Extra Slides #### What are we doing? - Data will test state of the art calculations at high Q² - Neutron form factor extractions must correctly predict this asymmetry - In calculating G_{E}^{n} from ${}^{3}\overrightarrow{He}(\overrightarrow{e},e'n)$, A_{y} from ${}^{3}He^{\uparrow}(e,e'n)$ will also be calculated - At high Q², any non-zero result is indicative of effects beyond impulse approximation Electron ID Electron ID Electron ID ## What's being worked on - Background-error - Q²=0.1 GeV², Quasi-Elastic, Vertical ³He(e,e'n) ### What's being worked on Raw Target SSA vs. Q² #### What's being worked on Target SSA vs. Q2 with Target Polarization Dilution #### Yields $$\label{eq:Yield} \text{Yield} = \frac{N}{Q*LT*\rho*\Delta z}*(\frac{1}{\varepsilon_{det}*\Delta\Omega*\Delta E'})$$ Ignore since it will cancel # Neutron Detection P **(1)** P ³He(e,e') Asymmetry for Q²=1 with transversely polarized target is checked against Jin Ge's analysis