Box Diagram Corrections

Carl Carlson work with Ben Rislow The College of William and Mary in Virginia Hall A Collaboration Meeting 14 December 2011

• Theory panic over QWeak corrections

- Need for settling problem: resonance region structure functions — for the yZ case
- Relate to PVDIS

QWeak (reminder)

- ep elastic scattering, w/polarized electron
- measure asymmetry

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = -\frac{G_F}{4\pi\alpha\sqrt{2}}Q^2 \left[Q_W^p + BQ^2 + \dots\right]$$

- LO: $Qw^p = 1 4sin^2\theta w$
- Expt'l parameters:
 - Eelectron = 1.165 GeV
 - $Q^2 = 0.026 \text{ GeV}^2$
 - 4% measurement of Q_W^p

Goal

• Test standard model

If SM is correct, sin²0w will evolve with Q² along this curve (norm fixed from HE expts. at Z-mass)

But there are radiative corrections!

• Summary as of 2003 in Erler et al. PRD 68, 016006

Troublesome box

Troublesome: y massless, so y propagator (and diagram) big when momenta are small, whence cannot use perturbation theory on hadrons

 Idea (Gorchtein & Horowitz): Im part of loop comes when electron and blob on shell, hence like amplitude² or cross section in PIS. Then get Re part of loop from dispersion theory.

• Only works for $k_{in} = k_{out}$ (i.e., $Q^2 = 0$)

History

Pre-2009, estimated box using perturbative calculation and putting in cutoff at hadronic scale.

$$\Box_{\gamma Z} = \frac{5\hat{\alpha}}{2\pi} (1 - 4\sin^2\theta_W(m_Z^2)) \left(\ln\frac{m_Z^2}{m_\rho^2} + \frac{3}{2} \pm 1 \right)$$

- Numerically this is 0.0051 ± 0.0004 ; the error limit was about 0.6% of Q_{W^p}
- G&H, with a calculation that was different and arguably better in principle got a result for the vector (on the hadronic side) of 0.0027, but with unknown robustness.

Still trouble

• With γ and Z in and out, blob described by

$$W^{\gamma Z}_{\mu\nu} = \frac{1}{4\pi} \int d^4\eta e^{iq\eta} \langle ps \left| J_{Z\mu}(\eta) J_{\gamma\nu}(0) + J_{\gamma\mu}(\eta) J_{Z\nu}(0) \right| ps \rangle$$
 and

$$W_{\mu\nu}^{\gamma Z} = \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right)F_1^{\gamma Z}(x,Q^2) + \frac{p_{\mu}p_{\nu}}{p \cdot q}F_2^{\gamma Z}(x,Q^2) - i\epsilon_{\mu\nu\alpha\beta}\frac{q^{\alpha}p^{\beta}}{2p \cdot q}F_3^{\gamma Z}(x,Q^2)$$

"Wrong" structure functions: not Fi⁸⁸ measured in purely EM deep inelastic scattering.

How to get

- Scaling region: no problem
- Resonance region
 - Use CQM, constituent quark model, to modify fits to $F_i^{\delta\delta}$ on proton target. (Rislow and me)
 - Use weak isospin and data on $F_i^{\delta\delta}$ for both proton and neutron targets to get $F_i^{\delta Z}$ (G., H., and Ramsey-Musolf; Rislow and me, unpublished).
 - PVDIS measures $F_i^{\lambda Z}$ directly!

Workers (theory)

- Gorchtein & Horowitz (PRL 102, 091806 (2009)).
 Small distinction between yy and yZ struc. fcns.
- Sibirtsev et al. (PRD 82, 013011 (2010)). Analytic result greater than above by a factor 2. Small distinction between xx and xZ struc. fcns. Had uncertainty estimates (as do those below).
- Rislow & I (PRD 83, 113007 (2011)) Confirmed factor 2. Quark model converting && to &Z structure fcns.
- Ramsey-Musolf joins G&H (PRC 84, 015502 (2011)) Agrees on factor of 2. Different analysis of "background" contributions.

Results

• Results for zZv box,

Sibirtsev <i>et al.</i>	Rislow and Carlson	Gorchtein <i>et al.</i> (2011)
$(4.7^{+1.1}_{-0.4}) \times 10^{-3}$	$(5.7 \pm 0.9) \times 10^{-3}$	$(5.4 \pm 2.0) \times 10^{-3}$

- Agree within error limits
- Target experimental error on QWeak = 0.0028
- \therefore above accuracy o.k.
- Opinion: G. et al. overly generous in error estimate of their "background" contributions
- Would like more security (for now and for future) on zZ structure functions

PVDIS in resonance region

• PVDIS asymmetry also depends on $F_i^{\delta Z}$

$$A_{PVDIS} = g_A^e \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \frac{xy^2 F_1^{\gamma Z} + \left(1 - y - \frac{x^2 y^2 M^2}{Q^2}\right) F_2^{\gamma Z} + \frac{g_V^e}{g_A^e} \left(y - \frac{y^2}{2}\right) x F_3^{\gamma Z}}{xy^2 F_1^{\gamma \gamma} + \left(1 - y - \frac{x^2 y^2 M^2}{Q^2}\right) F_2^{\gamma \gamma}}$$

• $x = Q^2/2mv$; y = v/E; $g_{A^e} = -\frac{1}{2}$; $g_{V^e} = -\frac{1}{2} + 2\sin^2\theta_W$

Reminder of scaling region

 Current expt. has kinematics in scaling region. Formula simplifies and uses pdf's. For general target "A",

$$A_{PVDIS} = \frac{3G_F Q^2}{2\sqrt{2}\pi\alpha} \frac{2C_{1u}(u_A + \bar{u}_A) - C_{1d}(d_A + d_A + s_A + \bar{s}_A) + Y(2C_{2u}u_{VA} - C_{2d}d_{VA})}{4(u_A + \bar{u}_A) + d_A + \bar{d}_A + s_A + \bar{s}_A}$$

• Where
$$Y(y) = \frac{1}{1 + (1 - y)^2}$$

(in SM) $C_{1u} = 2g_A^e g_V^u = -\frac{1}{2} + \frac{4}{3}\sin^2\theta_W$, $C_{1d} = 2g_A^e g_V^d = \frac{1}{2} - \frac{2}{3}\sin^2\theta_W$, $C_{2u} = 2g_V^e g_A^u = -\frac{1}{2} + 2\sin^2\theta_W$, $C_{2d} = 2g_V^e g_A^d = \frac{1}{2} - 2\sin^2\theta_W$.

 Proposal goal is to measure (small) Y term, and test standard model for axial quark coupling. Work in scaling region, where rest of terms better known, especially for isoscalar target (e.g., d).

PVDIS in resonance region

- Can measure $F_i^{\delta Z}$ with wide coverage in energy, angle, Q^2 .
- For sparser data, have predictions from existing models.

proton target

- CB = CQM modified Christy-Bosted F_{1,2}^{xx} fit
- Model I, II = GHRM based results
- MAID from isospin rotated MAID p & n EM fits
- Vertical dashed line =
 6 GeV PVDIS expt. point

Where from? : CQM for resonance excitation

Quark model with usual EM current:

$$J^{\mu}_{\gamma} = \sum_{q} e_{q} \bar{q} \gamma^{\mu} q$$

Quark model with Z-boson current:

$$J_Z^{\mu} = \sum_q \bar{q} \gamma^{\mu} \left(g_V^q - g_A^q \gamma_5 \right) q$$

- \bullet Get vector part of Z-boson matrix elements by substitution $e^q \to g_V{}^q$.
- In EM notation, current matrix elements for positive helicity photon gotten from effective operator

$$H_{eff} = \sum_{q} \left(A \, e_q L_{q+} + B \, e_q S_{q+} \right)$$

• A = electric, B = magnetic

Procedure CQM

• Use proton and resonance SU(6) quark model states, calculate helicity matrix elements A_λ for Z and z

• Form ratios

$$C_R = \frac{2\sum A_\lambda(\gamma p \to R)A_\lambda(Z_V p \to R)}{\sum |A_\lambda(\gamma p \to R)|^2}$$

- Multiply contribution for each (of 7) resonances in Christy-Bosted fit by C_R
- Some cases simple, like p to Roper. Only B-term, and $C_R = \frac{2}{3} + Q_W^p$ (Q² indep.)
- Some, like P₁₃(1520) and S₁₁(1535), more complicated, but belong to same SU(6) multiplet, so can separate information on A and B terms, and get Z-boson matrix elements. C_R now Q² dependent.
- Po something related for smooth background

Where from : Weak isospin relations

Basic relation

 $2\langle R^+|J^{Z_V}_{\mu}|p\rangle = (1 - 4\sin^2\theta_W)\langle R^+|J^{\gamma}_{\mu}|p\rangle - \langle R^0|J^{\gamma}_{\mu}|n\rangle - \langle R^+|\bar{s}\gamma_{\mu}s|p\rangle$

• Neglect contribution of strange quark (A4, G0, HAPPEX)

- GHRM obtain matrix elements at $Q^2 = 0$ from PDG, form ratios C_R and neglect further Q^2 dependence in C_R. Use Christy-Bosted for resonances as we did.
- For background they extrapolate scaling region fits, modified for zZ case. [Model I = Color Dipole Model, G. Cvetic et al (2001), Model II = Generalized Vector Dominance, Alwall & Ingelman (2004)]

Where from : MAID

• Same basic relation

 $2\langle R^+|J_{\mu}^{Z_V}|p\rangle = (1 - 4\sin^2\theta_W)\langle R^+|J_{\mu}^{\gamma}|p\rangle - \langle R^0|J_{\mu}^{\gamma}|n\rangle$

- MAID gives Q² dependent fits to both neutron and proton resonance electroproduction amplitudes [Tiator (2011)].
- C_R Q² dependent for all resonances.
 See effect on Roper

F3^{8Z}

- Foremost: small contribution ($g_V^e = -\frac{1}{2} + 2\sin^2\theta_W$) Less than 5% of PVDIS asymmetry in resonance region comes from F₃^{8Z}
- CQM: nonrelativistically, axial term is kinematic factor times magnetic term
- Or, simple isospin rotation from charged current matrix elements. Fits by Lalakulich et al (2006). On the other hand there is almost no resonance neutrino data to fit to.

Proton plots with error estimates

20

Deuteron plots

CQM ("CB")

- Weak neutral current structure functions in resonance region are usable quatities
- Models notably different
- Can measure in PVDIS
- Would like on proton target, as well as deuteron
- \bullet Would also be interested in lower Q^2

Many thanks