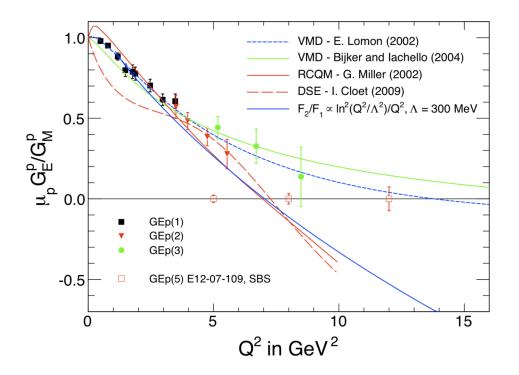
SBS overview of development


Bogdan Wojtsekhowski, JLab

- Concept of the apparatus
- Experimental program
- Layout, Parameters
- Life of the project
- Funding profile(s)
- Schedule (in a perfect case)

The concept ideas

- Vertical bending: use of the beam coordinate
- Detector location behind the magnetic field
- ➤ Field integral and tracker resolution
- Small bending angle: large acceptance
- ➢ Forward angle: the beam line through the yoke
- Calorimeters for the trigger and analysis
- > High-speed & high-resolution tracker

Flagship experiment – GEp(5) $H(\vec{e}, e'\vec{p})$

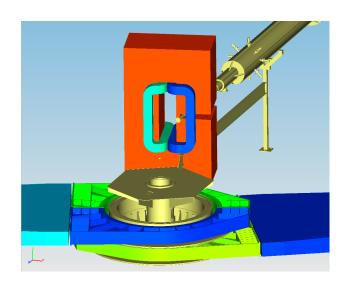
Beam: 75 μ A, 85% polarization Target: 40 cm liquid H₂ Electron arm at 28° Proton arm at angle 17°, Ω = 35 msr Spin precession angle is ~ 75° Event rate is 15 times higher than with standard spectrometer From 58 days of production time resulting accuracy (for higher Q²)

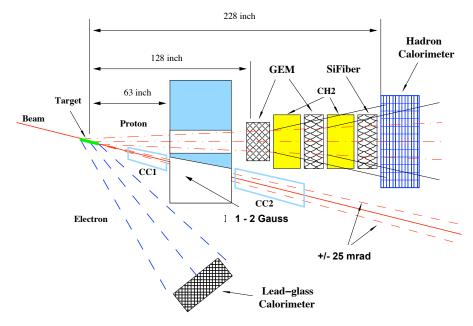
 $\Delta(\mu G_{\rm E}^{\rm p}/G_{\rm M}^{\rm p}) = \pm 0.074$

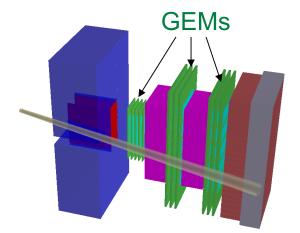
Approved group of experiments

- $GEp(5) up \text{ to } 12 \text{ GeV}^2 \text{ in } 60 \text{ days}; +/- 0.074$
- Neutron FFs: GEn to 10 GeV²; GMn to 14 GeV²
- Transversity data at high x/Q²: $n(e,e'\pi^{+/o/-}/K^{+/-})$

The physics program

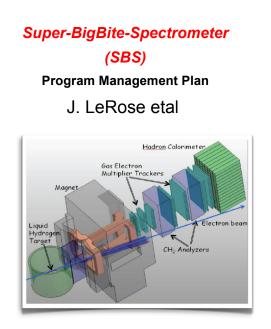

> A1n – FOM is 300+ higher compared with prev. exps.

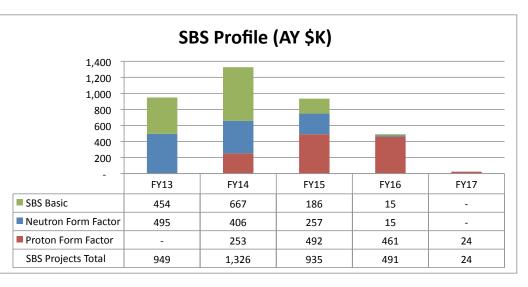

- \rightarrow **GEP** : reach unique high 12 GeV²
- ➤ GMN: reach absolute max 18 GeV²
- \succ GEN: reach very important value of 10 GeV²
- SSA in nSIDIS: very effective and timely


Polarized target RCS
SRC: e'(SBS) + p(BB) + p/n(Scin)
Pion structure function
PVDIS
J/Psi production

▷ p(e,e'φ)

Super Bigbite "Poster"

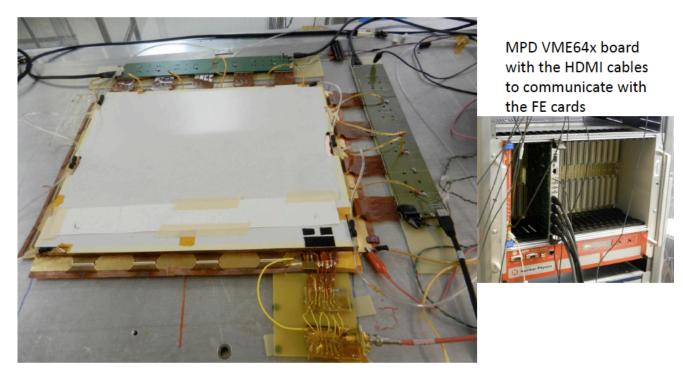




- Magnet: 48D48 <mark>46 cm gap</mark>, 2.5 Tesla∗m
- Solid angle is 70 msr at angle 15 deg.
- GEM chambers with 70 μ m resolution
- Momentum resolution is 0.5% for 8 GeV
- Angular resolution is 0.3 mrad

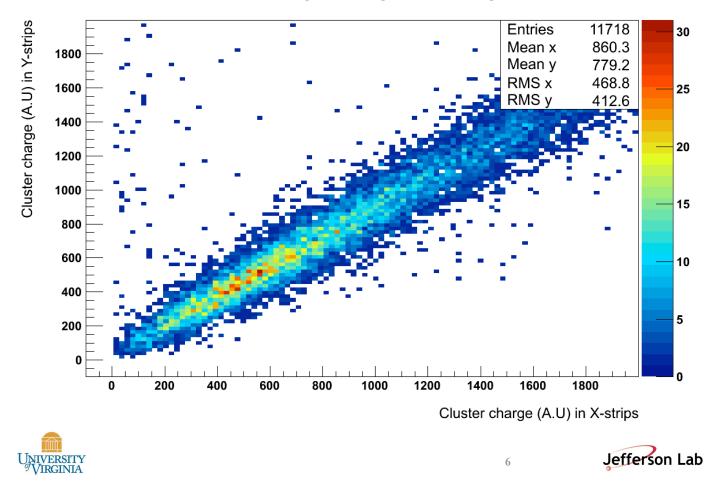
December 10, 2012

The funding: SBS projects



n.b. No contingency shown (total contingency is \$1,042K)

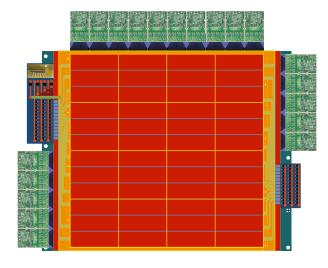
The life of the project

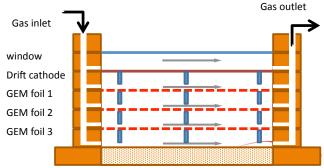

- Web page: http://hallaweb.jlab.org/12GeV/SuperBigBite/
- About 40 weekly SBS meetings: http://hallaweb.jlab.org/12GeV/SuperBigBite/SBS-minutes/
- R&D highlights: GEM, 48D48, HCAL, ECAL, CoorDet, BigBite
- Two monthly reports to DOE
- Collaboration meeting in October: http://hallaweb.jlab.org/12GeV/SuperBigBite/meetings/col_18oct12/

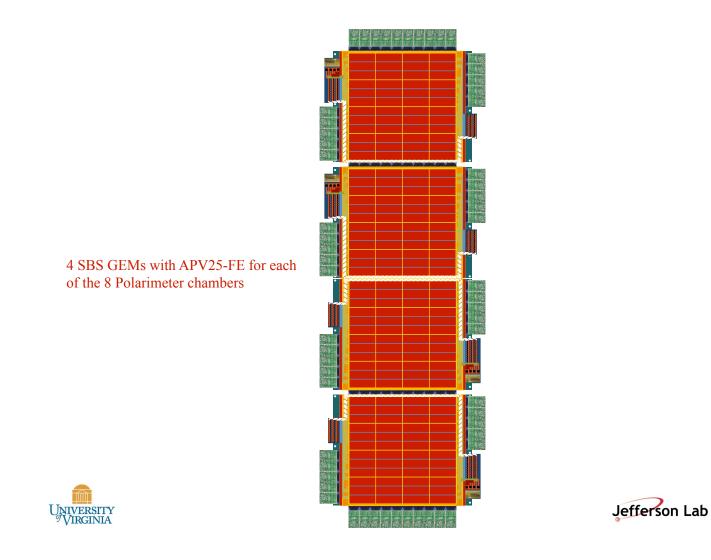
9 APV25 FE (5 on X and 4 on Y) cards on the chamber with the back plane, the Panasonic to ZIF connectors and the FE cards grounded directly to the GEM readout ground

3

December 10, 2012


Tracker GEM1 Charge sharing with 11718 good events


December 10, 2012


Proposal for a new design for the SBS GEM polarimeter trackers by Kondo Gnanvo

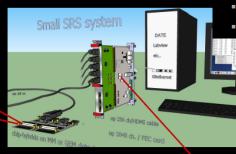
- Module of 50x50cm² to replace the 40x50cm²
 - 32 modules to be built instead of 40 for the 8 Polarimeter chambers
- Wider GEM frames along x-axis
 - Width of 30 mm instead of 8 mm
 - Better stretching
 - Alignment holes away from active area
- Wider readout support frame along x-axis (74 mm)
 - Room for strips connectors and GEM HV sectors electrodes
- No protective resistors on the GEM foils
 - External resistor boards
- Gas system same as in Evaristo's design



December 10, 2012

APV25 MPD and SRS system

Multi Purpose Digitizer (MPD)


- P. Musico, INFN Italy
- More than 2.5K Channels at UVa

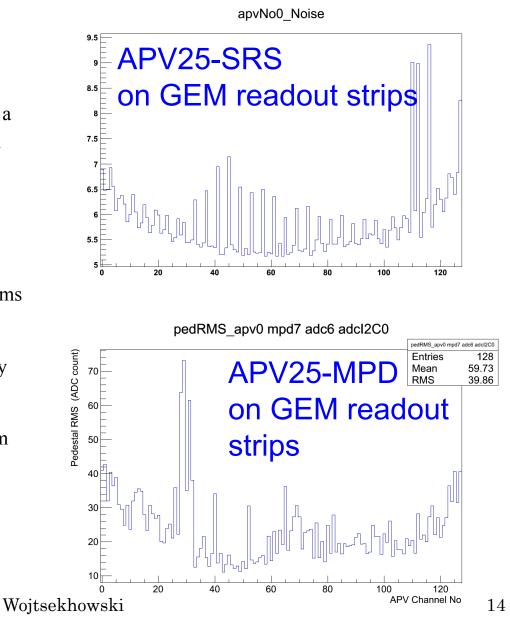
- 2 "active" components: Front-End Card and VME64x custom module (MPD=Multi Purpose Digitizer)
- HDMI Copper cables between front-end and VME
- Optional backplane acting as signal bus, electrical shielding, GND distributor and mechanical support
- Developed by INFN, manufactured by a commercial company

APV25-SRS Electronics @ UVa

Scalable Readout System (SRS)

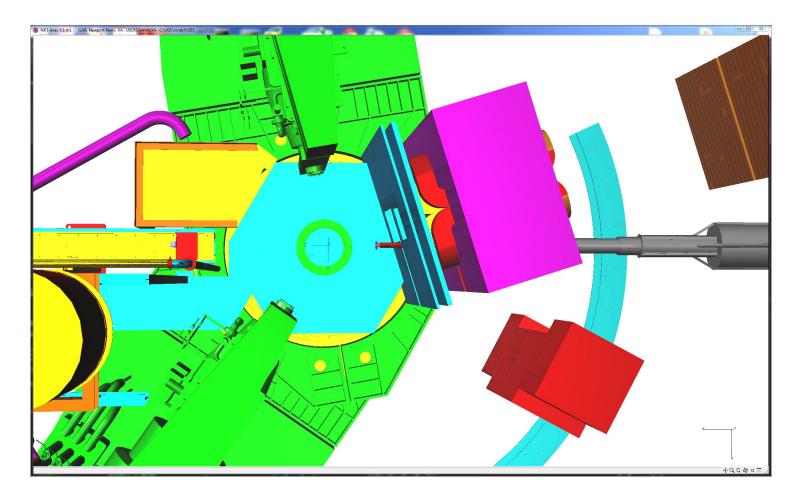
Portable readout system developed by RD51 Collaboration (CERN)
 Successfully tested with APV25 chip (many users and experiments)
 APV25 cards, 1 ADC board, 1 Data Concentrator board
 Data transferred through Gb Ethernet via UDP (ALICE DAQ)

Common platform for different chips (Bettle, VFAT, VMM1)

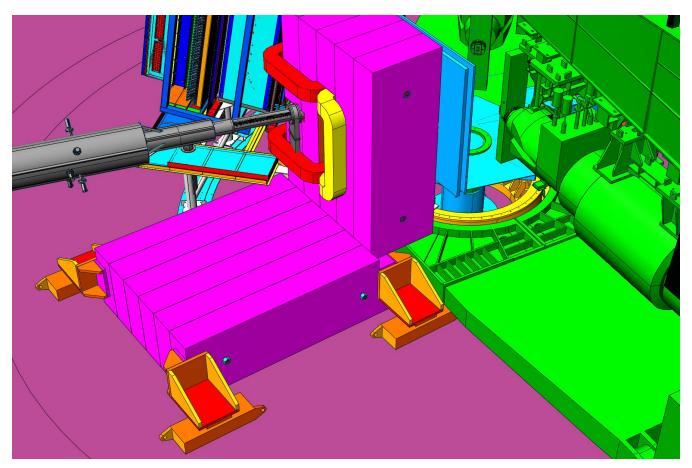


Scalable Readout System (SRS)

- H. Muller, CERN, RD51
- 2048 channels at UVa


Study of the noise

- Typical rms for each of the 128 channels of a given APV card from a pedestal run and for both MPD and SRS
- This rms is obtained after common mode correction of the baseline
- The common mode correction reduces the rms by
 - a factor of 2 for apv25-MPD (basically from ~ 40 adc counts to ~ 20)
 - A few adc counts for apv25-SRS (from ~8 adc counts to 6.5-7)


December 10, 2012

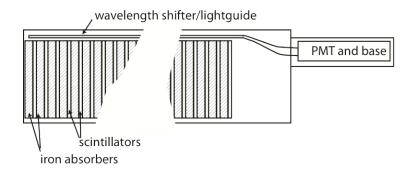
48D48 magnet for the Form Factor experiments

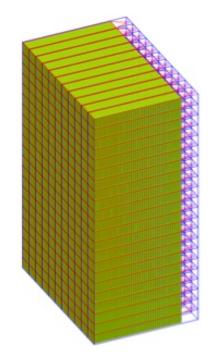
December 10, 2012

48D48 magnet for the Form Factor experiments

December 10, 2012

HCAL for the Form Factor experiments

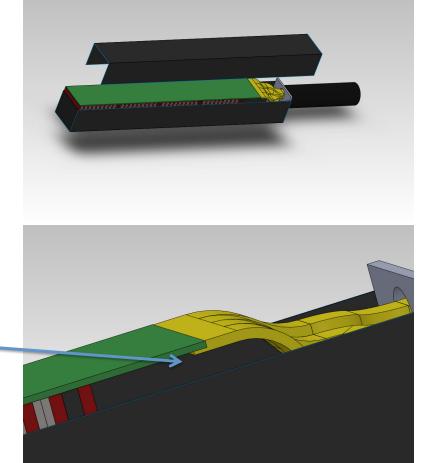

Hadron Calorimeter for Hall A (HCAL-J)


Status report 9/26/12 G.B. Franklin, Carnegie Mellon

JLAB/CMU/JINR/Catania Collaboration

Based on JINR design used at COMPASS

Want faster scintillator and wavelength shifters

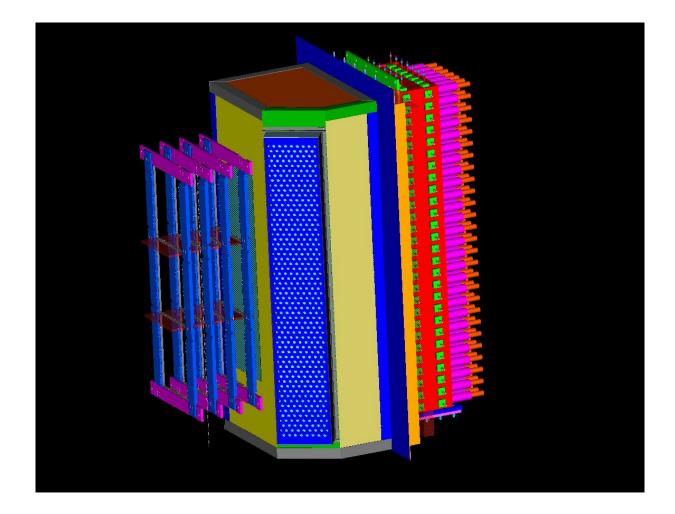


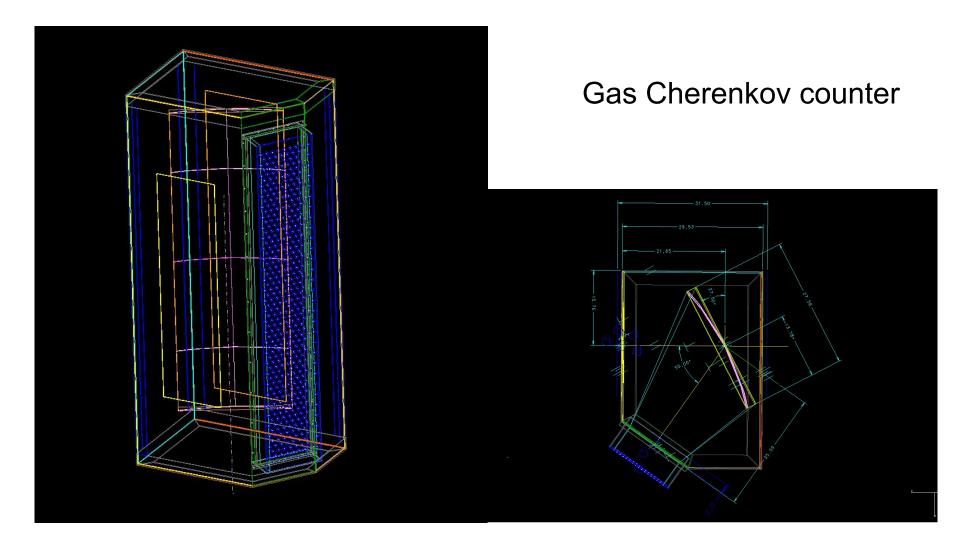
1

HCAL for the Form Factor experiments

Design Initiated

CMU Mechanical Engineering Student Glenn Philon




Possible light guide design utilizing over-size guide with lip to facilitate stronger joint

December 10, 2012

4

Collaboration behind these efforts:

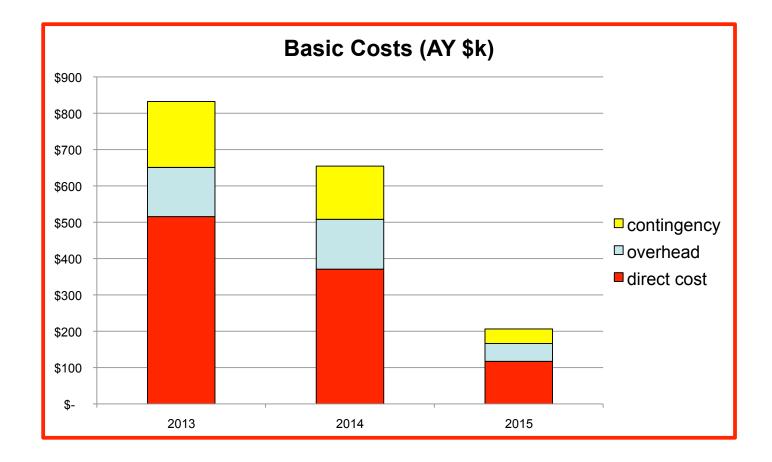
GEM chambers:	INFN & UVa
Gas Cherenkov:	W&M/ NCAT/ JLab
Timing hodoscope:	GU/CSULA/YerPhI
Design and DAQ:	JLab
Lead-glass calorimeter:	JLab

Time line:

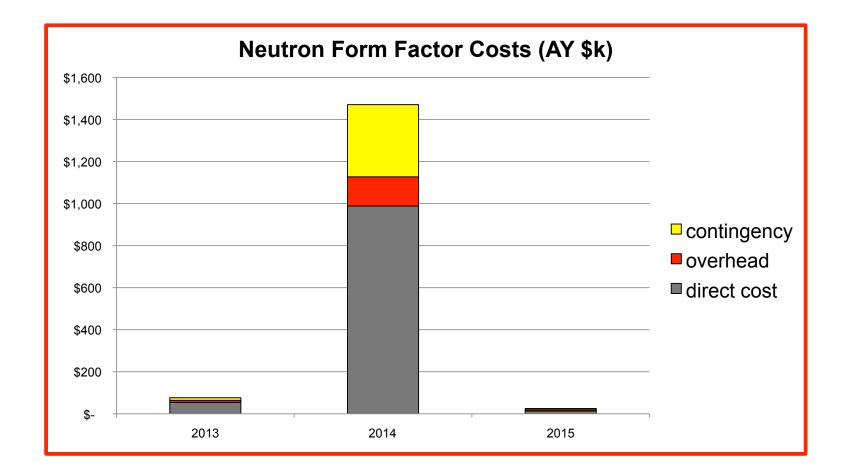
It is driven by the collaboration schedule and preparation for the experiments. If everything works well, a new detector could be ready by 2015.

Recent Events

- October 1: The "Program" started
 - Project 1: SBS Basic (WBS 1)
 - Project 2: Neutron Form Factor (WBS 2)
- October 15: Sent the 1st Monthly e-mail report to DOE
 - With Modified PMP
 - Personnel shifts
 - Schedule Shifts/Delays

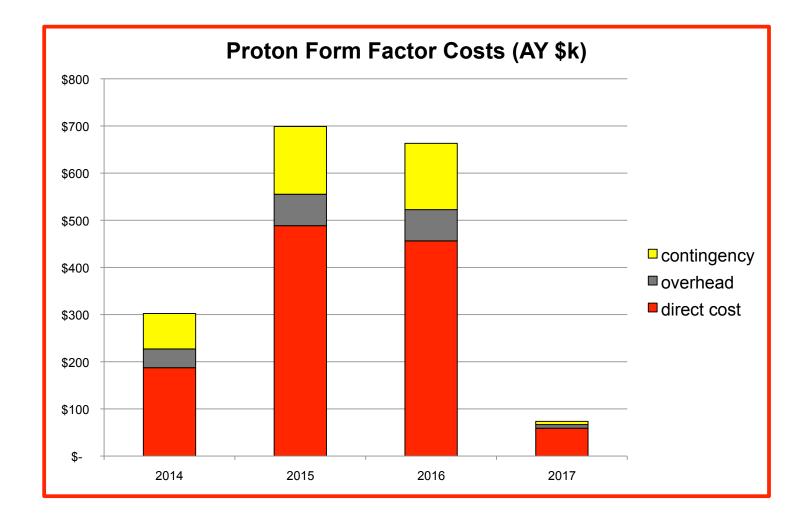

WBS 1 (SBS basic)

- 48D48 Magnet transportation and modifications
- 48D48 Magnet assembly and support platform
- Magnet power supply and its associated infrastructure
- Beam-line vacuum and shielding components
- Beam-line steering magnets


WBS 1 Milestones

ID #	Level	Milestone	Date
1.1-01M	1	Project start	10/1/2012
1.2-01M	2	Magnet delivered to JLab	4/30/2013
1.2-10M	2	Platform parts received	6/27/2014
1.2-20M	2	Magnet assembled on platform	3/19/2015
1.2-30M	2	Beam-line parts received	9/24/2015
1.1-10M	1	Project completion	1/29/2016

SBS Basic



Neutron Form Factor

J. Lerose SBS-2012 collaboration meeting

Proton Form Factor

J. Lerose SBS-2012 collaboration meeting

The Monthly Report

- Executive summary of the "projects"
- Management Highlights
- WBS 1
 - Work breakdown structure
 - Milestones (scheduled, expected, achieved)
 - Project oversight
 - WBS 1.1, 1.2, 1.3 progress problems
 - Costs
- WBS 2 (ditto)
- WBS 3 (ditto) This year no progress, problems, or costs

October 15 report is already 7 pages (nothing really to report except that we started)

J. Lerose SBS-2012 collaboration meeting

Equipment: current time-line

	Front tracker	Polar GEM	Coord Detect	Hadron Calo	Elec Calo	48D48	RICH	Trigger
2008/2	INFN	UVa/	ISU/UVa	CMU	W&M/	JLab	???	JLab/
	Collab.	JLab	SMU	Dubna	JLab			RU
2009/1	R&D	pre-R&D		pre-R&D		pre-R&D		
2011/1	Test	pre-R&D		pre-R&D		pre-R&D		
2012/1	Test	pre-R&D	pre-R&D	R&D	R&D	pre-R&D		
2012/2	Prod 'on	pre-R&D	pre-R&D	R&D	R&D	R&D		
2013/1	Prod'on	pre-R&D	R&D	design	Tests	design		
2013/2	Pro'ced!	Prod'on	design	Tests		Prod'on		
2014/1	Ready	Prod'on	Prod'on	Prod'on				
2014/2	Ship'nt	Prod'on	Prod'on	Prod'on	R&D			R&D
2015/1	Tests	Pro'ced!	Prod 'on	Prod'on	R&D	Install		
2015/2	A1n	Tests	Ship'nt	Ship'nt	Tests	Tests		Prod'on
2016/1	ready	Pro'ced!	Tests	Tests	Prod 'on	ready		Prod'on
2016/2	ready	GMn	GMn	GMn	Pro'ced!	GMn		Tests

December 10, 2012

Equipment: development/collaborations

	Front tracker	Polar GEM	Coord. Detect.	Hadron Calo	Elec Calo	48D48	RICH	Trigger
institute	INFN	JLab/	SMU/UVa	JLab/	W&M/	JLab	???	RU/
		UVa	NSU	CMU	JLab	ready		JLab
2016/1	ready	Pro'ced!	Tests	Tests	Prod'on	ready		Prod'on
2016/2	GMn	GMn	GMn	GMn	Pro'ced	GMn		Tests
2017/1					Tests			ready
2017/2		GEp			GEp			GEp
2018/1								
2018/2								
2019/1								
2019/2								
2020/1								

More progress is needed in

MOUs with collaborating groups and universities

GEp-5: DAQ, Electron arm

GEn: He-3 target system

SIDIS: SBS arm PID (RICH)

Summary

SBS is an approved and funded project(s) with a well defined scope and time line of construction (per budget).

Precision measurements of the nucleon FFs are of a great large interest for the nuclear physics.

Technical advances of SBS are very significant.

Production of the components will start in 2013.