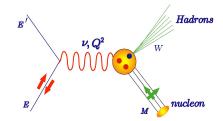
Precision Measurement of d_2^n : A Probe of the Color Force

M. Posik¹, D. Flay¹, D. Parno^{2,3} for the E06-014 Collaboration

¹Temple University
²CENPA, University of Washington
³Carnegie Mellon University


12/10/12

Outline

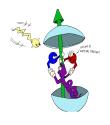
- Physics Motivation
- The E06-014 Experiment
- Oata Analysis
- Preliminary Results: Polarized Structure Functions

Polarized DIS

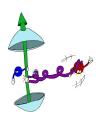
 Probes the spin content of the nucleon

$$\begin{array}{lcl} \frac{d^{2}\sigma^{\left(\downarrow\uparrow\uparrow-\uparrow\uparrow\uparrow\right)}}{dE'd\Omega} & = & \frac{4\alpha^{2}}{MQ^{2}}\frac{E'}{\nu E}\left[\left(E+E'\cos\theta\right)g_{1}\left(x,Q^{2}\right)-\frac{Q^{2}}{\nu}g_{2}\left(x,Q^{2}\right)\right]\\ \frac{d^{2}\sigma^{\left(\downarrow\Rightarrow-\uparrow\Rightarrow\right)}}{dE'd\Omega} & = & \frac{4\alpha^{2}\sin\theta}{MQ^{2}}\frac{E'^{2}}{\nu^{2}E}\left[\nu g_{1}\left(x,Q^{2}\right)+2Eg_{2}\left(x,Q^{2}\right)\right] \end{array}$$

Probing Quark-Gluon Dynamics in the Nucleon


dⁿ₂ gives access to quark-gluon correlations

$$d_2^n = \int_0^1 x^2 \left(2g_1(x, Q^2) + 3g_2(x, Q^2) \right) dx$$


- What is d₂ⁿ?
 - Average transverse Lorentz color force acting on a quark immediately after being struck by a virtual photon (M. Burkardt, hep-ph/0905.4079v1)
 - d_2^n is dominated by large x contributions

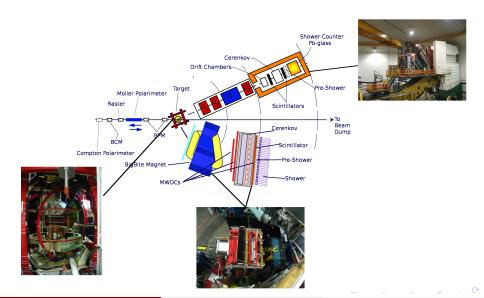
What is d_2^n ?

What is d_2^n ?

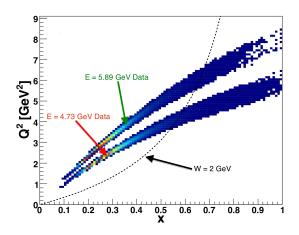
So d_2^n is...

A measure of quark-gluon correlations

What is d_2^n ?


So d_2^n is...

- A measure of quark-gluon correlations
- A force felt between the quark struck by the virtual photon and the spectator quarks



The E06-014 Experiment (1)

The E06-014 Experiment (2)

Kinematic Coverage

From Raw to Physics Asymmetries

• For the physics asymmetry, we have:

$$A_{\rm phys} = \frac{1}{P_b P_t D} A_{\rm raw}$$

where corrections are made for:

- Imperfect beam and target polarizations (P_b, P_t)
- Nitrogen dilution in the target (D)
- Pair-produced electrons

Electron Physics Asymmetries on ³He

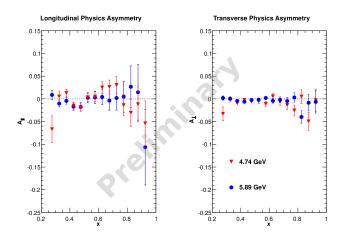


Figure: Preliminary electron asymmetries on 3 He in the DIS and resonance regions. W = 2 GeV for E = 5.89 GeV is at x = 0.62 and x = 0.52 for E = 4.74 GeV. Radiative corrections not yet applied.

Cross Sections

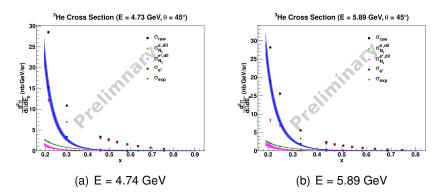


Figure: Raw ³He and positron and nitrogen background cross sections. Background-subtracted cross section shown in red.

Born Cross Sections

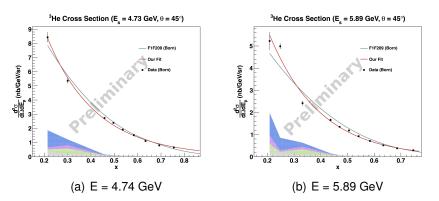


Figure: Born cross section. Error bars are statistical and systematic errors are is shown by the band. Blue curve is P. Bosted's F1F209 inclusive cross section model. The magenta curve is our current fit used to extract cross section values.

$g_1^{^3He}$ Compared to Selected World Data



Figure: Preliminary x^2g_1 structure function on 3 He in DIS and resonance regions. Radiative corrections to asymmetries not yet applied.

$g_2^{^3He}$ Compared to Selected World Data

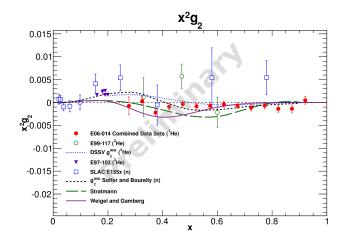


Figure: Preliminary x^2g_2 structure function on $^3\mathrm{He}$ in DIS and resonance regions. Radiative corrections to asymmetries not yet applied.

Current d₂ Uncertainty

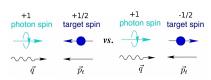

Data Set	Q^2 [GeV 2]	$\delta d_2^{^3He}$
4.74 GeV	3.20	1.13×10^{-3}
5.89 GeV	4.32	8.26×10^{-4}
Combined	3.73	6.50×10^{-4}
Lattice QCD	5.00	1.50×10^{-3}

Table: Current statistical uncertainty on $d_2^{^3He}$ for $0.27 \le x \le 0.92$

But wait, there is more...

A_1 Asymmetry

$$A_1(x, Q^2) \equiv \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$$

• We measure A_1^n through the electron asymmetries A_{\parallel} and A_{\perp} :

$$A_1^n = \frac{1}{D(1+\eta\xi)} A_{\parallel}^n - \frac{\eta}{d(1+\eta\xi)} A_{\perp}^n$$

• The asymmetries are given by:

$$A_{\parallel} \equiv \frac{\sigma_{\downarrow \uparrow \uparrow} - \sigma_{\uparrow \uparrow \uparrow}}{\sigma_{\downarrow \uparrow \uparrow} + \sigma_{\uparrow \uparrow \uparrow}} \quad \text{ and } \quad A_{\perp} \equiv \frac{\sigma_{\downarrow \Rightarrow} - \sigma_{\uparrow \Rightarrow}}{\sigma_{\downarrow \Rightarrow} + \sigma_{\uparrow \Rightarrow}}$$

• D, η , ξ and d are kinematic factors

$A_1^{^3{ m He}}$ Compared to World Data

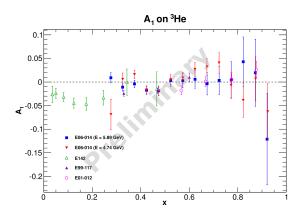


Figure: World $A_1^{3\,\mathrm{He}}$ data with E06-014 DIS and resonance data. No radiative corrections to E06-014 data.E142: Phys. Rev. D **54**: 6620 (1996). E99-117: Phys. Rev. C **70**: 065207 (2004). E01-102: Phys. Rev. Lett. **101** 182502 (2008).

Summary

Summary

- Exploit transverse spin interactions through g₂ structure function, to study higher twist effects
- Gain insight into the Lorentz color force inside the nucleon through the matrix element d₂
- Good statistical precision on the data will provide a direct test of lattice QCD

Current/Future Work

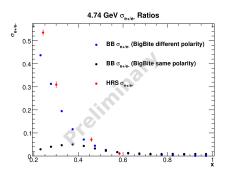
- Radiative corrections to asymmetries are underway
- BigBite simulations also well underway
- Wally Melnitchouk is looking into neutron extraction of $d_2^{^3He} o d_2^n$ and $A_1^{^3{\rm He}} o A_1^n$

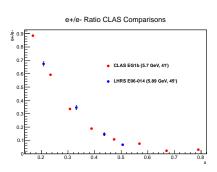
Acknowledgements

- Thanks to the spokespeople X. Jiang, S. Choi, B. Sawatzky, and Z.-E. Meziani.
- Thanks to P. Solvignon, K. Slifer, V. Sulkosky, E. Schulte, C. Dutta, K. Allada, X. Qian and the rest of the d_2^n , Transversity and the Hall A Collaborations, and the Hall A Staff at Jefferson Lab for their advice, suggestions, and continued support.
- Thank you to Temple University and Carnegie Mellon University.
- Primary analysis team: B. Sawatzky, D. Parno, D. Flay, M. Posik, Y. Zhang, G. Franklin, Z.-E. Meziani
- This work is supported by:
 DOE Award from Temple University #DE-FG02-94ER40844.

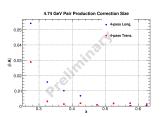
Pair Production Correction (1): Positron-Electron Ratio

$$\begin{split} R &= \left(\frac{N_p^{e+}}{N_n^{rawe-}}\right) = \kappa \left(\frac{N_n^{e+}}{N_n^{rawe-}}\right) \\ \kappa &= \left(\frac{N_p^+}{N_n^+}\right) \end{split}$$


- κ measured during 4-pass running, assumed to have same values at 5-pass running (verifying with GEANT4)
- Where p, n mean BigBite is in positive or negative polarity. rawe— is measured electron with electron cuts applied
- \bullet We assume $\frac{N_p^{e+}}{N_p^{rawe-}}$ is closer to reality based on LHRS $\frac{\sigma_{e^+}}{\sigma_{e^-}}$ measurements


Pair Production Correction (2): Asymmetry Correction

$$\begin{split} N_{n}^{e-} &= N_{n}^{rawe-} - N_{n}^{e+} \\ A_{n}^{e-} &= \left(\frac{N_{n}^{rawe-}}{N_{n}^{e-}}\right) A_{n}^{rawe-} - \left(\frac{N_{n}^{e+}}{N_{n}^{e-}}\right) A_{n}^{e+} \\ \frac{N_{n}^{e-}}{N_{n}^{rawe-}} &= 1 - R \\ A_{n}^{e-} &= \frac{A_{n}^{rawe-} - R A_{n}^{e+}}{1 - R} \\ \delta A_{n}^{e-} &= \sqrt{\left(\frac{\delta A_{n}^{rawe-}}{1 - R}\right)^{2} + \left(\frac{R \delta A_{n}^{e+}}{1 - R}\right)^{2}} \end{split}$$


assumes $\delta R = 0$

Pair Production Correction (4): Ratio Comparison

Pair Production Correction (4): 4.74 GeV Results

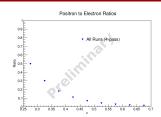
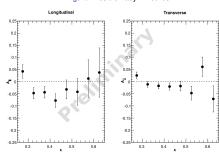
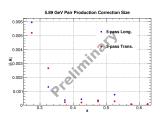




Figure: Positron asymmetries

Pair Production Correction (5): 5.89 GeV Results

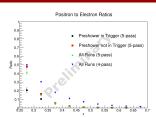
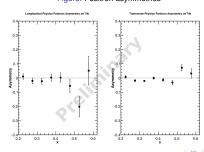
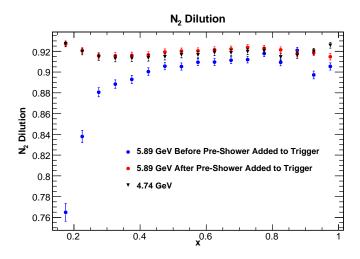
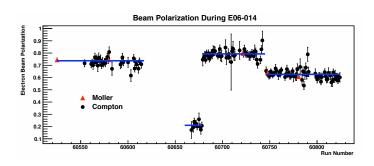
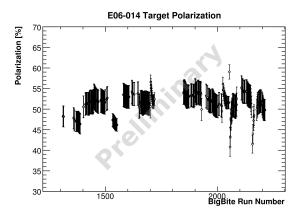




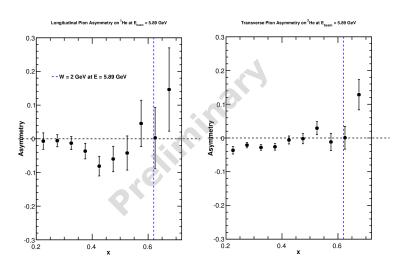
Figure: Positron asymmetries



Backup Nitrogen Dilution


Electron Beam Polarization

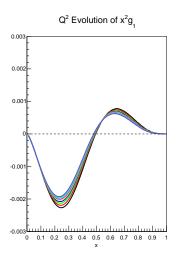
- Two methods: Møller and Compton measurements
- Combine both methods to achieve an error of $\sim 1.6\%$

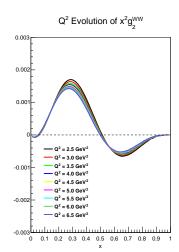


³He Target Polarization

- NMR measurement every four hours (target chamber)
- EPR at every spin rotation (pumping chamber)

Pion Asymmetries


Spin Structure Functions


• The spin structure functions:

$$g_{1} = \frac{MQ^{2}}{4\alpha^{2}} \frac{2y}{(1-y)(2-y)} \sigma_{0} \left[A_{\parallel} + \tan(\theta/2) A_{\perp} \right]$$

$$g_{2} = \frac{MQ^{2}}{4\alpha^{2}} \frac{y^{2}}{(1-y)(2-y)} \sigma_{0} \left[-A_{\parallel} + \frac{1+(1-y)\cos\theta}{(1-y)\sin\theta} A_{\perp} \right]$$

Q² Dependence: DSSV Fit

Q² Dependence: Selected Experiments

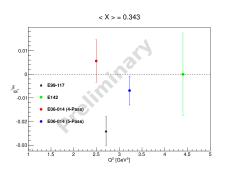


Figure: $g_1^{3}He$ vs. Q^2

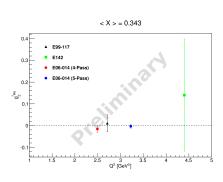


Figure: g_2^{3He} vs. Q^2

Q² Dependence: Interpolation

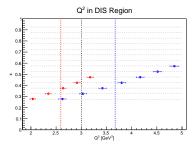


Figure: x vs Q^2 for 4 and 5 pass data. Red dashed line shows average Q^2 in the DIS region for the 4 pass data, the blue dashed line shows average Q^2 in the DIS region for the 5 pass data and the black dashed line shows the average Q^2 value in the DIS region over the entire data set.

- 3 overlapping data points
- $< Q^2 >$
 - 2.594 GeV² (4-pass)
 - 3.672 GeV² (5-pass)
 - 3.078 GeV² (4+5 pass)
- (4+5 pass) Drawn at $Q^2 = 3.0 \text{ GeV}^2$ here to get more data points for interpolation

Q² Dependence: Interpolation Comparison

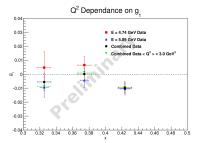


Figure: g_1 on 3 He as a function of x in a selected DIS region for various Q^2 treatments.

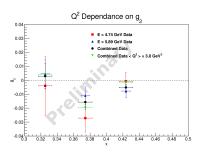


Figure: g_2 on 3 He as a function of x in a selected DIS region for various Q^2 treatments.

Q² Dependence: d₂ Comparison

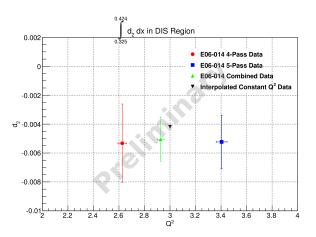


Figure: d_2 on $^3{\rm He}$ as a function of x in a selected DIS region for various ${\rm Q}^2$ treatments.