Super BigBite Monte Carlo

Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu

December 10, 2012

- Needs and Overview of framework
- Physics generators
- Analysis
 - Resolution studies
 - Detailed acceptance studies
- Future Work

G_E^n , G_M^n , A_1^n , G_E^p Simulation

Basis:

- Both G_E^n , G_M^n , A_1^n have similar hardware configurations
 - $\bullet \ \, \mathsf{BigBite} + \mathsf{GEMs} + \mathsf{Cerenkov} + \mathsf{shower}/\mathsf{preshower} \\$
 - 48D48 and HCal
- FFs all use elastic or QE nucleon scattering similar reconstruction needs

Needs:

- Given a realistic field map what is the momentum resolution for various configurations?
 - High precision field propagation, multiple scattering effects in detailed geometry
- What is the acceptance given new placement of 48D48 for G_E^n , latest Cerenkov design?
- How do inelastic backgrounds contribute?

Components Included

- BigBite and 48D48 Magnet
- Realistic BigBite field
- LH₂/LD₂ cryotargets, ³He glass cells
- Vacuum scattering chamber
- GEMs
- Calorimeters
- Cerenkov

Sensitive Detector Elements

- GEM material/design from SBS GEM tracking sim
- Gas ionization layer sensitive detector for hits
- Hits taken as points only from primary track, no background
- \bullet Assume 70 μm detector res.

- Calorimeters are dead absorbers, no showering, no smearing
- Acts as "trigger" for each arm

GEM Configurations I

GEM Configurations I

G_E^n/G_M^n Proposal

GEM Configurations II

G_E^n, G_M^n, A_1^n New Frame

GEp-V Configuration

Implemented Generators

Written

- eN elastic, quasielastic
 - Use momentum distribution smearing from D and ³He
 - Kelly and E02-013 for FFs
- Parameterized *eN* inelastic from Christy/Bosted
 - Include single pion production from simple model
- DIS from CTEQ distributions

Nice to include someday:

- Wiser $\pi^{\pm,0}$ production (have ported to C)
- Internal/external radiative effects

Resolution Studies - Overview

Determine resolution given BigBite field map (thanks V. Nelyubin!)

- G_E^n and G_M^n configurations (different magnet distances, targets)
- Both GEM configurations
- Effects of Cerenkov, scattering chamber, target

To speed up analysis, maps determined from neural network

- ROOT now contains multi-layer models which use ntuples
- Don't have to consider implementing specific forms
- Relatively fast fitting
- Details Wednesday!

output values

Effective GEM Resolutions

Effective Chamber Resolutions

- With high resolution, multiple scattering contributes and must be accounted for
- Weight chambers in minimum χ^2 with effective resolutions

Resolution Results - G_E^n Momentum

• Training data results for various configurations

G _F ⁿ Conf	$\delta\theta$ for Q^2 [mrad]					
-	$1.5~{ m GeV}^2$	$3.7~{ m GeV}^2$	$6.8~{ m GeV}^2$	$10.2~{\rm GeV}^2$		
Proposal	4.5	3.8	3.5	3.4		
New conf	4.4	3.5	3.5	3.5		
G ⁿ _F Conf	δ	δv_z for Q^2 [cm]				
-	$1.5~{ m GeV^2}$	$3.7 \ { m GeV}^2$	$6.8~{ m GeV^2}$	$10.2~{ m GeV^2}$		
Proposal	0.9	0.9	0.8	0.7		
New conf	0.8	0.7	0.6	0.7		

• θ and v_z training data was roughly half width of full resolution data

Resolution Results - $G_{M_1}^n$

G ⁿ _M Conf	δ			
	$3.5~{ m GeV}^2$	$13.5~{ m GeV}^{2*}$		
New conf	1.1	1.2	1.2	1.1
No cer	1.0	1.0	1.0	1.1
No cer, no targ	0.9	0.8	1.0	1.0

* Updated $G^n_M, Q^2 = 13.5 \ {
m GeV}^2$ point

Seamus Riordan — Hall A Dec 2012 SBS MC 14/21

Rate Results - G_E^n

Kin	Cut factor	Quoted Rate [Hz]	Prop conf [Hz]
$1.5~{ m GeV^2}$	1.0	29.7	37.9
$3.7~{ m GeV^2}$	2.0	1.01	1.00
$6.8~{ m GeV}^2$	3.0	0.049	0.053
$10.2~{ m GeV^2}$	4.0	0.006	0.007
Kin	New conf [H	z] 1 m Cer [Hz]	
$1.5~{ m GeV^2}$	35	.0 35.4	
$3.7 \ { m GeV^2}$	0.9	98 0.99	
$6.8~{ m GeV}^2$	0.0	53 0.050	
$10.2 \ { m GeV}^2$	0.0	0.006	

- $\bullet~\mbox{Proposal}$ \rightarrow new conf has 48D48 distance $1.6 \rightarrow 2.8~{\rm m}$
- With plausible cuts on data, reproduce rates quoted in plots

Rate Results - G_M^n

Kin	Quoted	MC New
	Rate [Hz]	Conf [Hz]
$3.5~{ m GeV^2}$	50.0	56.6
$4.5~{ m GeV^2}$	10.0	10.2
$6.0 \ { m GeV}^2$	0.73	0.74
$8.5~{ m GeV}^2$	0.26	0.29
$10.0 \ { m GeV}^2$	0.21	0.30
$12.0 \ \mathrm{GeV}^2$	0.043	0.051
$13.5 \ { m GeV}^2$	0.010	0.012
New 13.5 GeV^2	-	0.058

• Rates agree very well with Kelly param. and what was used for the G_M^n proposal

Acceptance for A_1^n

• Just used 1-arm neutron FF setup

E = 6.	6 GeV				E=8.	$8 \mathrm{GeV}$			
x	Prop	CTEQ	B/C		x	Prop	CTEQ	B/C	
	[Hz]	[Hz]	[Hz]			[Hz]	[Hz]	[Hz]	
0.60	1.3	5.9	8.2		0.71	0.5	1.0	1.7	
0.56	8.0	7.2	9.3		0.67	1.7	1.4	2.2	
0.52	12.0	10.2	12.3		0.63	2.9	2.2	2.9	
0.48	17.0	12.8	15.4		0.58	4.1	3.3	4.5	
0.44	23.0	20.5	19.0		0.54	6.4	5.5	5.9	
0.40	30.0	24.9	24.4		0.49	8.2	6.8	8.7	
0.36	30.0	34.3	30.8		0.45	8.8	10.8	11.3	
0.32	17.0	46.0	35.3		0.40	6.2	15.4	14.3	

Rate Results - G_E^p -V

Q^2 [GeV ²]	Rate [Hz]
5	1060
8	485
12	65

- Resolutions are with constant dipole field
- Training data and realistic data comparable - not sure how accurate these are

Q^2	$5 \ {\rm GeV}^2$	$8~{ m GeV}^2$	$12 \ { m GeV}^2$
δp (%)	0.4	0.3	0.3
$\delta\theta$ (mrad)	2.3	1.5	0.9
δv_z (cm)	0.5	0.2	0.2

Analysis

- Momentum resolution propagated to reconstructed variables
- Inelastic contamination

Coding:

- Radiative effects
- Add in Wiser code for $\pi^{\pm,0}$
- Shower responses
- Cerenkov responses

- Resolution studies for GEMs show resolutions within proposal needs with new configuration
- Rates are near proposal expectations and allow for small changes in placement and sizes of hardware
- Inelastic studies are underway

BACKUP SLIDES

Components - 48D48

- Used older design for coil
- Aperture 48 in \times 18.5 in \times 48 in ($H \times W \times D$)

- \bullet Used tubes filled with gas/cryo and endcaps
- Values from Hall A NIM or G_E^n thesis

C^n		G_M''	
0 _E Matarial	CE100	Material	Aluminum
iviateriai	GEIOU	1	$10~{\rm cm}$
1	0.55 m	r	3.2 cm
r	$0.953~\mathrm{cm}$	1	0.10
$t_{\rm reg}$	1.6 mm	$t_{ m wall}$	0.18 mm
•wall	0.106 mm	$t_{ m dcap}$	$71~\mu m$
ι_{cap}	0.120 11111	$t_{ m ucap}$	102 $\mu { m m}$

- Used simplified scattering chamber
- R = 1.036 m, window 0.33 mm thick (too thin?), Aluminum

Components - Calorimeters

- Calorimeter from standard BigBite setup and CDR
- Dead absorber no showering
- Sensitive detectors record hit time and position

BigBite Shower		HCal	
h	229.5 cm	h	$330 \ \mathrm{cm}$
W	59.5 cm	W	$165 \ \mathrm{cm}$

Rate Results - G_E^n Acceptance

- Black is QE neutron inclusive, red is coincidence
- Acceptance not matched well for G_E^n for θ and ϕ was taken into account in rates
- Maybe some room for tuning?

Rate Results - G_E^n Acceptance

- Black is QE neutron inclusive, red is coincidence
- Acceptance not matched well for G_E^n for θ and ϕ was taken into account in rates
- Maybe some room for tuning?

- Cerenkov just a gas box with flat mirror - no light collection
- \bullet Mirror 1 $\rm mm$ acrylic
- Entrance (exit) windows 0.1 (0.2) mm Al
- Gas is C4F8O, 1 atm

Inelastic Generators

- Previous inelastic rates were given by MAID parameterization got both σ and A, but limited in Q^2
- Worked in Christy/Bosted inclusive parameterization of *ep* and *en* data
- Use simple single pion decay model, assume Δ contributes for $\pi^{+/-}, \pi^0$ rates

- Reproduce plots in the papers well
- C code is available if anyone else needs it

Seamus Riordan — Hall A Dec 2012 SBS MC 20/21

- QE rates given by
 - Nucleon momentum distributions just use simple smearing
 - Kelly parameterization for G_E^p , G_M^p , G_M^n , E02-013 parameterization for G_E^n

- Dumbly sample these distributions
- No offshell effects