E08-008: Exclusive Study of Deuteron Electrodisintegration near Threshold

Charles Hanretty

University of Virginia, Charlottesville, VA

10 December 2012

Spokespersons: B. Norum (UVA), A. Kelleher (MIT), S. Gilad (MIT), D. Higinbotham (JLab)

マラトマライ

 \leftarrow \Box

 Ω

Outline

[Motivation](#page-2-0)

- [Questions](#page-2-0)
- [Why electrodisintegration?](#page-3-0)
- 2 [The E08008 Experiment](#page-4-0)
	- **[General Characteristics](#page-4-0)**
	- **[LHRS Detector Stack](#page-5-0)**
- 3 [Preliminary Analysis](#page-6-0)
	- $p(\vec{e}, e'p)$ $p(\vec{e}, e'p)$
	- *[d](#page-20-0)*(~*e*, *e* ⁰*p*)*n*

 \leftarrow \Box \rightarrow

÷ь. \sim Ω

[Questions](#page-2-0) [Why electrodisintegration?](#page-3-0)

Questions

The major question:

- How do the proton and neutron interact?
- **Can this interaction be described using only nucleon degrees of** freedom or do non-nucleon degrees of freedom also play a role?

 Ω

イロト イ押ト イヨト イヨト

[Questions](#page-2-0) [Why electrodisintegration?](#page-3-0)

Why Electrodisintegration of Deuterium at Threshold?

- Why electrodisintegration?
	- \bullet It is a well-known probe.
	- "Simple": Scattering dominated by exchange of single virtual photon.
	- Strong sensitivity to non-nucleon degrees of freedom.
- Why Deuterium?
	- Deuterium (^{2}H) is a simple, loosely bound 2-body object.
	- Provides way to study N-N interactions without having to consider 3-nucleon forces.
- The exclusivity of the reactions studied $(p(*e*, *e*'p), d(*e*, *e*'p)n)$ allow for access to the ratio G_{E} / G_{M} (for $x_B \in [1,2]$).
- Why at threshold?
	- At low Q² (x_B \rightarrow 2), the ratio G_{Ep}/G_{Mp} is sensitive to N-N interactions inside **Deuterium**

 QQ

 (γ)

[General Characteristics](#page-4-0) [LHRS Detector Stack](#page-5-0)

E08008: General Characteristics

- Ran from February 17th to February 23rd, 2011
- Took data on $p(\vec{e}, e'p)$, $d(\vec{e}, e'd)$ and $d(\vec{e}, e'p)n$ exclusive reactions.
- E*^e* = 3.358 GeV
- Q^2 acceptance: [0.71,0.90] (GeV/c)²

 Ω

[General Characteristics](#page-4-0) [LHRS Detector Stack](#page-5-0)

E08008: LHRS Detector Stack

- \bullet Detector stack slightly modified for E08008.
- Two FPPs used: .
	- **•** Four straw chambers, two analyzers.
	- \bullet CH₂ analyzing material placed in front of Chamber 1 and 2.
	- S2m used as second analyzer. Placed in front of Chamber 3 and 4.
- Spin-orbit interactions between recoil proton and analyzer material result in ϕ asymmetries \Rightarrow reveals polarization of proton.

 $(0.12 \times 10^{14} \times 10^{14} \times 10^{14} \times 10^{14})$

 QQ

p([~](#page-6-0)*e*, *e* 0 *p*)

Preliminary Analysis of $p(\vec{e}, \vec{e}/p)$

 OQ

 $(0.12 \times 10^{14} \times 10^{15} \times 10^{14} \times 10^{14})$

p([~](#page-6-0)*e*, *e* 0 *p*)

Applied Cuts:

• Kinematic cuts:

- $| \delta | < 0.045$
- \bullet $|\phi_{tq}|$ < 0.03
- \bullet $|\theta_{tq}| \leq 0.06$
- \bullet -2 cm $<$ z_{vertex} $<$ 2 cm
- **FPP cuts:**
	- \bullet "Conetest" (= 1)
	- $5^{\circ} < \theta_{\text{fpp}} < 30^{\circ}$
- Other cuts:
	- \bullet DBB.evtypebits (= 32) (T5 trigger)
	- \bullet 0.875 GeV $< W^2 < 0.92$ GeV

 \equiv

 299

イ押 トイラト イラト

 \leftarrow \Box \rightarrow

p([~](#page-6-0)*e*, *e* 0 *p*)

Preliminary Analysis of $p(\vec{e}, \vec{e}/p)$

● One more cut on position of analyzing material (S2m)

E

 $2Q$

 $(0.12 \times 10^{14} \times 10^{15} \times 10^{14} \times 10^{14})$

p([~](#page-6-0)*e*, *e* 0 *p*)

Preliminary Analysis of $p(\vec{e}, \vec{e}/p)$

Form ϕ -distributions (ϕ _{az}) for each helicity setting. \bullet

Preliminary Analysis of $p(\vec{e}, e'p)$: At the Focal Plane

- Form ϕ -distributions (ϕ_{az}) for each helicity setting. \bullet
- Form Helicity Asymmetry ⇒ ($\frac{N^+}{N^+}$ *N*⁺ → → ($\frac{N^{-}}{N^{-}_{\rm ave}}$) — ($\frac{N^{-}}{N^{-}_{\rm ave}}$ *n*^{*n*}^{*n*}∂
- Fit eqn: $y_0 + A_y [P_x^{top} cos(\phi) P_y^{top} sin(\phi)]$

p([~](#page-6-0)*e*, *e* 0 *p*)

p([~](#page-6-0)*e*, *e* 0 *p*)

Preliminary Analysis of $p(\vec{e}, \vec{e}/p)$: Phase Shift Method

• Fit eqn:
$$
C \cdot cos(\phi + \delta)
$$
; $tan(\delta) = \frac{p^{top}_{y}}{p^{top}_{x}}$

 $\frac{G_{Ep}}{G_{Mp}} = \mu_{\rho} \cdot \mathit{Ksin}(\chi) (\frac{P^{fpp}_{y}}{P^{fpp}_{y}})$ In dipole approximation: $\mu_p \frac{G_{Ep}}{G_M}$ ٠ $\frac{f(y)}{P_X^{fpp}}$ *x* $\overline{}$

$$
K = \frac{E + E'}{m_p} \tan^2(\theta_e/2) \; ; \; \chi = \gamma(\mu_p - 1) \Theta_{bend}
$$

p([~](#page-6-0)*e*, *e* 0 *p*)

fpp

Preliminary Analysis of $p(\vec{e}, \vec{e}/p)$: Phase Shift Method

• Fit eqn:
$$
C \cdot cos(\phi + \delta)
$$
; $tan(\delta) = \frac{P_Y^{\mu\nu}}{P_X^{\mu\rho}}$

 $\frac{G_{Ep}}{G_{Mp}} = \mu_{\rho} \cdot \mathit{Ksin}(\chi) (\frac{P^{fpp}_{y}}{P^{fpp}_{y}})$ In dipole approximation: $\mu_p \frac{G_{Ep}}{G_M}$ \bullet $\frac{f(y)}{P_X^{fpp}}$

p([~](#page-6-0)*e*, *e* 0 *p*) *d*([~](#page-20-0)*e*, *e* 0 *p*)*n*

Preliminary Analysis of $p(\vec{e}, e'p)$: Sago

Sago

イロトメ部 トメモトメモト

Palmetto

⇒

Charles Hanretty (UVA) Hall A Collaboration Meeting 10 December 2012 14/22

 $2Q$

p([~](#page-6-0)*e*, *e* 0 *p*)

Preliminary Analysis of $p(\vec{e}, e'p)$: Sago

- \bullet Palmetto (re)written for e08008 \Rightarrow Sago.
- Uses information from FPP and a total rotation matrix (**S**).

$$
\bullet \ \ P^{tpp} = S \cdot P^{tg} = T_1 S_{sp} T_0 \cdot P^{tg}
$$

*T***1** → rotation into FPP frame
S → spin precession through HRS dipole $\overline{I}_0 \rightarrow$ rotation from target frame

• Briefly:

 Ω

 $\mathcal{A} \cap \mathbb{R} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

p([~](#page-6-0)*e*, *e* 0 *p*)

Preliminary Analysis of $p(\vec{e}, e'p)$: Sago

- \bullet Palmetto (re)written for e08008 \Rightarrow Sago.
- Uses information from FPP and a total rotation matrix (**S**).

$$
\bullet \ \ P^{\text{fpp}} = S \cdot P^{\text{tg}} = T_1 S_{\text{sp}} T_0 \cdot P^{\text{tg}} \ \substack{\tau_1 \\ \text{S}}
$$

 \rightarrow rotation into FPP frame \rightarrow spin precession through HRS dipole $\overline{r}_0 \rightarrow$ rotation from target frame

• Briefly:

 Ω

p([~](#page-6-0)*e*, *e* 0 *p*)

Preliminary Analysis of $p(\vec{e}, e'p)$: Sago

- Palmetto (re)written for e08008 ⇒ Sago.
- Uses information from FPP and a total rotation matrix (**S**).

$$
\bullet \ \ P^{tpp} = S \cdot P^{tg} = T_1 S_{sp} T_0 \cdot P^{tg} \ \mathcal{I}_{S}^{r}
$$

 \rightarrow rotation into FPP frame \rightarrow spin precession through HRS dipole $T_0 \rightarrow$ rotation from target frame

• Briefly:

$$
\begin{pmatrix} \Sigma_i \lambda_{x,i} \\ \Sigma_i \lambda_{z,i} \end{pmatrix} = \begin{pmatrix} \Sigma_i \lambda_{x,i} \lambda_{x,i} & \Sigma_i \lambda_{z,i} \lambda_{x,i} \\ \Sigma_i \lambda_{x,i} \lambda_{z,i} & \Sigma_i \lambda_{z,i} \lambda_{z,i} \end{pmatrix} \begin{pmatrix} \mathsf{P}_x^{tg} \\ \mathsf{P}_z^{tg} \end{pmatrix}
$$

Sago Results:
$$
\mu_p \frac{G_{Ep}}{G_{Mp}} = 0.928243 \pm 0.155129
$$

Σ*ⁱ* represents a summation over number of events, *i* Is solved for *P ^x* and *P tg z* beam pol µ*p GEp GMp* = *K P x P tg z* where: *K* =−µ*^p Ee*+*E^e* 0 2*Mp tan*θ*^e* 2

 Ω

 $\exists x \in \mathbb{R}$

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

 \leftarrow \Box \rightarrow

Preliminary Analysis of $p(\vec{e}, e'p)$: Results using Sago

 \bullet Sago results binned in θ_{fpp} :

p([~](#page-6-0)*e*, *e* 0 *p*)

p([~](#page-6-0)*e*, *e* 0 *p*)

Preliminary Analysis of $p(\vec{e}, e'p)$: Results using Sago

Preliminary Analysis of $p(\vec{e}, e'p)$: Comparison of Methods

Comparison between Phase Shift Method and Sago:

p([~](#page-6-0)*e*, *e* 0 *p*)

 $2Q$

 $p(\vec{e}, e'p)$ *d*([~](#page-20-0)*e*, *e* 0 *p*)*n*

 P reliminary Analysis of $d(\vec{e}, e'p)n$

Extraction of $\mu_p \frac{G_{Ep}}{G_{Mr}}$ *GMp* follows very similar procedure.

B

 299

イロト イ押ト イラト イラト

$p(\vec{e}, e'p)$ *d*([~](#page-20-0)*e*, *e* 0 *p*)*n*

Summary

- While cross section measurements are needed to disentangle *G*_{*Ep*} and *GMp*, the **ratio** of the two can be "readily" extracted using double-spin asymmetries.
- At low Q 2 (x $_B$ \rightarrow 2), the ratio G_{Ep}/G_{Mp} is sensitive to N-N interactions inside Deuterium.
- \bullet Preliminary Measurements of $\mu_p(G_{Ep}/G_{Mp})$:
	- $p(\vec{e}, e'p) \Rightarrow$ agrees with previous results
	- $d(\vec{e}, e'p)n$ (quasi-elastic) \Rightarrow agrees with expected value
- Still to do:
	- Study measurements for $d(\vec{e}, e'p)n$ reactions where $x_B = 1$.
	- Continue measurements for lower momentum settings where $X_B \rightarrow 2.$

 Ω

 $(0.125 \times 10^{11} \text{m}) \times 10^{11} \text{m} \times 10^{11} \text{m} \times 10^{11} \text{m}$