E08-008: Exclusive Study of Deuteron Electrodisintegration near Threshold

Charles Hanretty

University of Virginia, Charlottesville, VA

10 December 2012

Spokespersons: B. Norum (UVA), A. Kelleher (MIT), S. Gilad (MIT), D. Higinbotham (JLab)

< ロ ト < 同 ト < 三 ト < 三 ト

Outline

Motivation

- Questions
- Why electrodisintegration?
- 2 The E08008 Experiment
 - General Characteristics
 - LHRS Detector Stack
- Preliminary Analysis
 - *p*(*e*,*e*′*p*)
 - d(*e*, *e*′*p*)*n*

Questions Why electrodisintegration?

Questions

The major question:

- How do the proton and neutron interact?
- Can this interaction be described using only nucleon degrees of freedom or do non-nucleon degrees of freedom also play a role?

< ロト < 同ト < ヨト < ヨト

Why Electrodisintegration of Deuterium at Threshold?

- Why electrodisintegration?
 - It is a well-known probe.
 - "Simple": Scattering dominated by exchange of single virtual photon.
 - Strong sensitivity to non-nucleon degrees of freedom.
- Why Deuterium?
 - Deuterium (²H) is a simple, loosely bound 2-body object.
 - Provides way to study N-N interactions without having to consider 3-nucleon forces.
- The exclusivity of the reactions studied (p(e, e'p), d(e, e'p)n) allow for access to the ratio G_{Ep}/G_{Mp} (for x_B ε [1,2]).
- Why at threshold?
 - At low Q² (x_B → 2), the ratio G_{Ep}/G_{Mp} is sensitive to N-N interactions inside Deuterium.

General Characteristics LHRS Detector Stack

E08008: General Characteristics

- Ran from February 17th to February 23rd, 2011
- Took data on $p(\vec{e}, e'p)$, $d(\vec{e}, e'd)$ and $d(\vec{e}, e'p)n$ exclusive reactions.
- E_e = 3.358 GeV
- Q² acceptance: [0.71,0.90] (GeV/c)²

General Characteristics LHRS Detector Stack

E08008: LHRS Detector Stack

- Detector stack slightly modified for E08008.
- Two FPPs used:
 - Four straw chambers, two analyzers.
 - CH₂ analyzing material placed in front of Chamber 1 and 2.
 - S2m used as second analyzer. Placed in front of Chamber 3 and 4.
- Spin-orbit interactions between recoil proton and analyzer material result in φ asymmetries ⇒ reveals polarization of proton.

< ロ ト < 同 ト < 三 ト < 三 ト

 $p(\vec{e}, e'p)$ $d(\vec{e}, e'p)n$

Preliminary Analysis of $p(\vec{e}, e'p)$

イロト イポト イヨト イヨト

p(ē, e'p) d(ē, e'p)n

Applied Cuts:

- Kinematic cuts:
 - $|\delta| \leq 0.045$
 - $|\phi_{tg}| \leq 0.03$
 - $|\theta_{tg}| \leq 0.06$
 - $\bullet \ \ \text{-2 cm} \leq z_{\textit{vertex}} \leq 2 \ \text{cm}$
- FPP cuts:
 - "Conetest" (= 1)
 - $5^\circ < heta_{fpp} < 30^\circ$
- Other cuts:
 - DBB.evtypebits (= 32) (T5 trigger)
 - $0.875 \text{ GeV} < W^2 < 0.92 \text{ GeV}$

э

- 4 同下 4 ヨト 4 ヨト

 $p(\vec{e}, e'p)$ $d(\vec{e}, e'p)n$

Preliminary Analysis of $p(\vec{e}, e'p)$

• One more cut on position of analyzing material (S2m)

э

イロト イポト イヨト イヨト

 $p(\vec{e}, e'p)$ $d(\vec{e}, e'p)r$

Preliminary Analysis of $p(\vec{e}, e'p)$

• Form ϕ -distributions (ϕ_{az}) for each helicity setting.

Hall A Collaboration Meeting

Motivation $p(\vec{e}, e'p)$ The E08008 Experiment $d(\vec{e}, e'p)$ Preliminary Analysis $d(\vec{e}, e'p)$

Preliminary Analysis of $p(\vec{e}, e'p)$: At the Focal Plane

- Form φ-distributions (φ_{az}) for each helicity setting.
- Form Helicity Asymmetry $\Rightarrow \left(\frac{N^+}{N_{ave}^+}\right) \left(\frac{N^-}{N_{ave}^-}\right)$

• Fit eqn:
$$y_0 + A_y [P_x^{fpp} cos(\phi) - P_y^{fpp} sin(\phi)]$$

Preliminary Analysis

 $p(\vec{e}, e'p)$

Preliminary Analysis of $p(\vec{e}, e'p)$: Phase Shift Method

• Fit eqn:
$$\mathcal{C} \cdot cos(\phi + \delta)$$
 ; $tan(\delta) = rac{P_y^{\prime\prime}}{P_z^{\prime\prime}}$

• In dipole approximation: $\mu_{\rho} \frac{G_{E\rho}}{G_{M\rho}} = \mu_{\rho} \cdot Ksin(\chi) (\frac{P_{y}^{\mu_{\rho}}}{P_{\rho}^{fp\rho}})$ $K = \frac{E+E'}{m_p} tan^2(\theta_e/2)$; $\chi = \gamma(\mu_p - 1)\Theta_{bend}$

Charles Hanretty (UVA)

 $p(\vec{e}, e'p)$ $d(\vec{e}, e'p)n$

Preliminary Analysis of $p(\vec{e}, e'p)$: Phase Shift Method

• Fit eqn:
$$C \cdot cos(\phi + \delta)$$
 ; $tan(\delta) = \frac{P_y^{fpp}}{P_y^{fpp}}$

• In dipole approximation: $\mu_{\rho} \frac{G_{Ep}}{G_{Mp}} = \mu_{\rho} \cdot Ksin(\chi) (\frac{P_{Y}^{sp}}{P_{\rho}^{lpp}})$

p(ë, e'p) d(ë, e'p)n

Preliminary Analysis of $p(\vec{e}, e'p)$: Sago

Sago

<ロト < 回ト < 回ト < 回ト

Palmetto

590

p(ë, e'p) d(ë, e'p)

Preliminary Analysis of $p(\vec{e}, e'p)$: Sago

- Palmetto (re)written for $e08008 \Rightarrow Sago$.
- Uses information from FPP and a total rotation matrix (S).

•
$$P^{fpp} = S \cdot P^{tg} = T_1 S_{sp} T_0 \cdot P^{tg} S_{sp}^{T_1}$$

 $T_1 \rightarrow$ rotation into FPP frame $S \rightarrow$ spin precession through HRS dipole $T_0 \rightarrow$ rotation from target frame

Briefly:

イロト イポト イヨト イヨト

p(ë, e'p) d(ë, e'p)

Preliminary Analysis of $p(\vec{e}, e'p)$: Sago

- Palmetto (re)written for $e08008 \Rightarrow Sago$.
- Uses information from FPP and a total rotation matrix (S).

•
$$P^{tpp} = S \cdot P^{tg} = T_1 S_{sp} T_0 \cdot P^{tg}$$

$$T_1 \rightarrow$$
 rotation into FPP frame
 $S \rightarrow$ spin precession through HRS dipole
 $T_2 \rightarrow$ rotation from target frame

Briefly:

p(ë, e'p) d(ë, e'p)

Preliminary Analysis of $p(\vec{e}, e'p)$: Sago

- Palmetto (re)written for e08008 \Rightarrow Sago.
- Uses information from FPP and a total rotation matrix (S).

•
$$P^{fpp} = S \cdot P^{tg} = T_1 S_{sp} T_0 \cdot P^{tg}$$
 $T_1 \rightarrow \text{rotation into FPP frame} S \rightarrow \text{spin precession through}$

 $\stackrel{s}{T_0}$ \rightarrow spin precession through HRS dipole $\stackrel{r}{T_0}$ \rightarrow rotation from target frame

Briefly:

$$\begin{pmatrix} \Sigma_{i}\lambda_{x,i} \\ \Sigma_{i}\lambda_{z,i} \end{pmatrix} = \begin{pmatrix} \Sigma_{i}\lambda_{x,i}\lambda_{x,i} & \Sigma_{i}\lambda_{z,i}\lambda_{x,i} \\ \Sigma_{i}\lambda_{x,i}\lambda_{z,i} & \Sigma_{i}\lambda_{z,i}\lambda_{z,i} \end{pmatrix} \begin{pmatrix} \mathsf{P}_{x}^{tg} \\ \mathsf{P}_{z}^{tg} \end{pmatrix}$$
Sago Results: $\mu_{p}\frac{G_{Ep}}{G_{Mp}} = 0.928243 \pm 0.155129$

$$\mu_{p}\frac{-\mathsf{L}p}{G_{Mp}} = K\frac{\mathsf{X}}{P_{z}^{tg}}$$
of events where:

• Is solved
$$K = -\mu_p \frac{E_e + E_{e'}}{2M_p} tan_2^{\theta_e}$$

Charles Hanretty (UVA)

10 December 2012 17 / 22

・ 同 ト ・ ヨ ト ・ ヨ

Inte E00008 Experiment
Preliminary Analysis $p(\vec{e}, e'p)$
 $d(\vec{e}, e'p)n$ Preliminary Analysis of $p(\vec{e}, e'p)$: Results using Sago

• Sago results binned in θ_{fpp} :

 $p(\vec{e}, e'p)$ $d(\vec{e}, e'p)n$

Preliminary Analysis of $p(\vec{e}, e'p)$: Results using Sago

Charles Hanretty (UVA)

Preliminary Analysis of $p(\vec{e}, e'p)$: Comparison of Methods

• Comparison between Phase Shift Method and Sago:

 $p(\vec{e}, e'p)$

p(ë, e'p) d(ë, e'p)n

Preliminary Analysis of $d(\vec{e}, e'p)n$

• Extraction of $\mu_{\rho} \frac{G_{E\rho}}{G_{M\rho}}$ follows very similar procedure.

Method	p(<i>e</i> , <i>e</i> ' <i>p</i>)	d(ë, e'p)n
Phase Shift	0.873801 ± 0.149866	0.892813 ± 0.092599
Sago	0.928243 ± 0.155129	0.912247 ± 0.108031

Charles Hanretty (UVA)

イロト イポト イヨト イヨト

Summary

While cross section measurements are needed to disentangle G_{Ep} and G_{Mp}, the ratio of the two can be "readily" extracted using double-spin asymmetries.

p(ë, e'p) d(ë, e'p)n

- At low Q² (x_B → 2), the ratio G_{Ep}/G_{Mp} is sensitive to N-N interactions inside Deuterium.
- Preliminary Measurements of $\mu_{\rho}(G_{E\rho}/G_{M\rho})$:
 - $p(\vec{e}, e'p) \Rightarrow$ agrees with previous results
 - $d(\vec{e}, e'p)n$ (quasi-elastic) \Rightarrow agrees with expected value
- Still to do:
 - Study measurements for $d(\vec{e}, e'p)n$ reactions where $x_B = 1$.
 - Continue measurements for lower momentum settings where $x_B \rightarrow 2.$

・ロト ・ 同ト ・ ヨト ・ ヨト