Short Range Correlations at x>2: E08-014 Analysis Update

Zhihong Ye

University of Virginia

Hall-A Winter Meeting, Dec. 10th 2012

Probe SRCs using A(e, e')

Problem: Mean Field Effect only takes charge for nucleon at low momentum, and cause the missing strength (30-40%) at high momentum.

SRCs:

- Strong interaction of nucleon pairs or cluster with high relative momenta.
- Attribute to the missing strength.
- Dominate the high momentum tail.
- Similar shape for nuclei with varying A
- Isospin dependent?

Fact: Nucleons generate high relative momenta, when they become too close.

Probe SRCs using A(e, e')

• **Inclusive Q-E Scattering Cross Section Measurement**

$$
x_{bj} = \frac{Q^2}{2m_p v} \le A, \qquad \begin{cases} x_{bj} < 1 \quad \text{Inelastic Reg} \\ x_{bj} \approx 1 \quad \text{Q-E Peak} \\ x > 1 \quad \text{or} \quad 1 \quad \text{or} \end{cases}
$$

$$
\underbrace{Q^2}_{m \ V} \le A, \qquad \begin{cases} x_{bj} < 1 \quad \text{Inelastic Region} \\ x_{bj} \approx 1 \quad \text{Q-E Peak} \end{cases}
$$

 $r > 1$ \ldots $\left(x_{bj} > 1$ High Momentum Tail *bj*

Broad Q-E peak. At x_{bi} > 1, SRCs dominate .

High Momentum Tail

 $(x, Q^2) = \frac{A}{2} a_2(A) \sigma_2(x, Q^2) + \frac{A}{3} a_3(A) \sigma_3(x, Q^2) + ... \stackrel{\underbrace{\uplus}^{\sigma}}{\underbrace{\uplus}^{\sigma}}$ R^4 $3(10^3)(1, 2)$ $\frac{2}{3}$ 2) $A_{\alpha}(\Lambda)$ $2^{(1)}\omega_2(x, y)$, ω_3 σ^2) = $\frac{A}{2}a_2(A)\sigma_2(x,Q^2) + \frac{A}{2}a_3(A)\sigma_3(x,Q^2) + ... \ge \frac{1}{2}$ R(⁴He/³He) A (1) $(2)^2$ $\frac{1}{5}$ 3 $a_2(A)\sigma_2(x,Q^2) + \frac{1}{2}a_3(A)\sigma_3(x,Q^2) + ... \geq$ A (1) (2) A $\sigma_A(x,Q^2) = \frac{A}{2} a_2(A) \sigma_2(x,Q^2) + \frac{A}{2} a_3(A) \sigma_3(x,Q^2) + ... \stackrel{\circ}{\sigma}$ R(⁴He/³He) The cross section for x_{bi} > 1.3 is given by: 2N-SRCs (*xbj >1*) 3N-SRCs (*xbj >2*) $n \cdot \mathcal{O}_p$ $D^{(\lambda)}$ $A^{(\lambda)}$ \mathcal{L} \mathcal{L} $(\Lambda^3 H_0)$ $r_3(A^3He) = K_3(\sigma_n, \sigma_n) \cdot \frac{364}{\sigma_n}$ o (x,Q^2) ² (x, Q^2) ² (x, Q^2) ³ (x, Q^2) _{3*u*} (x, Q^2) $(3H)$ K $(3G_A)$ *A* $r_2(A, D) = \frac{2}{\pi} \frac{\sigma_A(A, B)}{\sigma_A(A, B)}$, $r_3(A, B) = K_3(\sigma_n, \sigma_A)$ $, r_3(A, ^3He) = K_3(\sigma_n, \sigma_n) \cdot \frac{\partial \sigma_A}{\partial \sigma_n}$ of (x, Q^2) \rightarrow \rightarrow \rightarrow $2 \sigma_{A}(x, Q^2)$ (13H) K. $(A, D) = \frac{2}{4} \frac{\sigma_A(x, \mathcal{Q})}{\sigma_A^2}$, $r_3(A, {}^3He) = K_3(\sigma_n, \sigma_p) \cdot \frac{\sigma_A}{\sigma_A^2}$ $3U_0$ V \rightarrow 2γ , $3(1, \text{He}) - \text{A}_3(0)$ 2λ $2^{(1, D)}$ – $($ $\sigma_{\rm n}(x,0)$ $=\frac{2\sigma_A(x,Q)}{2}, r_3(A^3He) = K_3(\sigma_n,\sigma_n)\cdot \frac{3\sigma_A}{4}$

E08-014 In Hall-A

• **Standard Configurations:**

 $VDC + S1 + S2m + GC + Calo$. Two HRSs taking data. Simultaneously

• **Modified T1 & T3 Triggers:**

 $S1 + S2m + GC$, traditional T1&T3 are renamed as T6&T7

• **Mis-Tuning RQ3**

Q3 on HRS-L scaled down to 87.72% due to a power supply issue.

• **Kinematics Coverage:**

 $E0 = 3.356$ GeV

• **Targets:** D2, He3, He4, C12, Ca40, Ca48, *(Isospin in SRC)*and other calibration targets.

General Analysis Status

• **Finished:**

- Optics, Beam, Target, Detectors
- PID Cut, Efficiencies, Dead-Time.

• **On-going: (talked in rest of slides)**

- **Cross Section Model**
- **★ Radiation Correction (RC)**
- Monte Carlo Simulation (MC)
- Acceptance Study
- Extracting Cross Section
- **Errors Analysis**

Cooling flow

• **Problems:** The cooling system on the 20 cm long cells causes non-uniform target density. The upstream part is *cooler* than the downstream part.

Beam

- **Bumps** raise on D2, He3 and He4 targets. The effect become significant when beam current goes higher.
- **Issues:** Complicate boiling effect correction; Real target luminosity; Radiation corrections.

• **Extract the density distribution:**

Zreact (Vertex Z) distribution in data includes the density distribution as well as the acceptance effects. Divided the distribution by the histograms of simulation data with uniform density distributions:

Absolute density values at the entrance or exit of cells can be calculated from sensor readings of pressure and temperature

• **Extract the density distribution:**

Zreact (Vertex Z) distribution in data includes the density distribution as well as the acceptance effects. Divided the distribution by the histograms of simulation data with uniform density distributions:

Absolute density values at the entrance or exit of cells can be calculated from sensor readings of pressure and temperature

• **Other Corrections:**

- 1, Put the extract distributions in MC (simplified step functions)
- 2, Evaluate Radiation Corrections (RC):

Final RC value is statistically weighted by RC distribution along the Cryo-Target cell.

RC depends on the location of reactions.

XEMC – Cross Section Calculation Package

- **In C++, stand-alone package maintained by Z. Ye** Born Cross Section Models + Radiation Correction.
- Born Cross Section Model: $\sigma_{\text{born}} = \sigma_{\text{horn}}^{QE} + \sigma_{\text{horn}}^{DIS}$ $\sigma_{born} = \sigma_{born}^{QE} + \sigma_{born}^{DIS}$ σ_{born}^{QE} : Quasi-Elastic Term, available:

(1), XEM - F(y) fitting, see N. F(2), QFS - From Temple group

(3), F1F2QE09 - P. Bosted and V. I
 σ_{born}^{DIS} : Inelastic Term: (1), $XEM - F(y)$ fitting, see N. Fomin's thesis (2), QFS - From Temple group (3), F1F2QE09 - P. Bosted and V. Mamyan (*arXiv:1203.2262v2*)
- \overline{or} I_m^S : Inelastic Term:

(a), XEM - F1F206 + special corrections in different regions (b), $QFS - DIS + Delta + Resonances + DIP$ (c), F1F2IN09 - P. Bosted and V. Mamyan

All available in the code, but in term of agreement and speed, (1) + (c) works the best in our kinematics

XEMC – Born Cross Section

• Comparing with E02-019 Data:

XEMC – Radiation Correction

- **Subroutines from RadCor package** (developed by Temple group and coded by H. Yao etc.).
- **Basic Idea:** *S. Stein et al, Phy. Rev. D 12 1884*
- Simplified 1-D individual integrals of E_0 and E' for QE tail.
- **Better Radiation Correction code with 2-D integrals is available in XEM, but in FORTRAN, and run slow.**

XEMC – Radiation Correction

• Comparing with E02-019 Data:

Monte Carlo Simulation

• **SAMC – C++ version developed by H. Yao**

Standard HRS configurations.

QFS & XEMC embedded.

- **Updated HRS-R Transportation Functions** For RQ3 with mistuning field (J. LeRose)
- **Special Correction on Cryo-Target Bumps**

For non-uniform target density distributions, a simplified step function is used to generate events along *Zreact.*

Monte Carlo Simulation

• **C12 Target Plane Quantities :**

 θ_{to}

Blue -> Simulation Data Red -> E08-014 Data

HRS-R

Histograms are weighted by Cross Sections from XEMC

HRS-L

 -0.02

0.00

 δp_{lg}

 0.02

 0.04

hted Dp_tg

 7000

2006

1000

 -0.04

Monte Carlo Simulation

• **He3 Target Plane Quantities :**

 Θ_{tg}

HRS-L

The "Bump" is simulated!

Histograms are weighted by Cross Sections from XEMC

HRS-R

Experimental Cross Section

• **Yield Ratio Method:** *binning on xbj*

$$
\frac{d\sigma_{born}^{EX}}{dE^{'}d\Omega}(E_0, E^{'}, \theta_0) = \frac{Y_{EX}^{i}}{Y_{MC}^{i}} \times \sigma_{born}^{MC}(E_0, E^{'}, \theta_0),
$$

Where, **Experimental Yield:**

$$
Y_{EX}^{i} = \frac{N_{EX}^{i}}{N_{e} \cdot \varepsilon_{\text{eff}}}, \qquad N_{e} \qquad \text{- Total electric}
$$

$$
\varepsilon_{\text{eff}} \qquad \text{- Total effective}
$$

, and the state of the stat $Y_{\text{rw}}^i = \frac{N_{EX}}{\lambda}$ *N_e* -- *Total electron charge -- Total events in ith bin ⁱ ^NEX eff -- Total efficiencies*

And **Monte Carlo Yield**:

gen MC x₁ een m $MC \rightarrow MC \rightarrow MC \rightarrow N \rightarrow T_{c1}l_{d2}$ *j i j j* MC _{*C*} Γ ¹ Ω ³² Δ ² Δ _{*MC*}¹ $t_g \sum rad \left(\sum j, \frac{\nu}{j} \right)$ *i* MC N_{tg} $\sum_{i \in i}$ rad (\sum_{j}, \sum_{j})
 N_{MC}^{gen} N_{g}^{gen} $10 \ldots \ldots \ldots$ *E* $Y'_{\mu c} = N_{\mu} \cdot \sum \sigma^{\mu c} (E', \theta) \cdot \frac{\tau - \mu c - \mu c}{\sigma} N_{\mu c}$ ' $N_{\rm L} = N_{\rm L} \cdot \sum \sigma_{\rm rad}^{\rm MC}(E^{\rm t}_{\rm i},\theta_{\rm i}) \cdot \frac{\Delta \Omega_{\rm MC} \Delta E^{\rm t}_{\rm MC}}{1.5887} \hspace{5mm} N_{\rm L} \hspace{1mm} N_{\rm L} \hspace{1mm} - \hspace{1mm} \text{Total target lum}$ $\cdot \sum \sigma_{rad}^{MC}(E^{\prime},\theta_j) \cdot \frac{\Delta S Z_{MC} \Delta L_{MC}}{N^{gen}}$ N_{tg} -- Total targe ϵ , and the second component of the second ϵ $\sigma_{rad}^{MC}(E^{\prime},\theta_i)$. $\frac{\Delta^2 M C \Delta^2 M C}{\Delta E^{\gamma} e n}$ *N*_{tg} -- Total target luminosity $N_{MC}^{\,gen}$ -- Total generated MC events

 $\Delta\Omega_{_{MC}}$, $\Delta E^{\prime}_{_{MC}}~$ - Entire phase space in MC (slight larger than real HRS acceptance) $\sum \sigma_{rad}^{MC}(E'_{j},\theta_{j})$ - Radiated Cross Section Sum of all events in ith bin *ji*

Experimental Cross Section – C12 Yield

Yield in Xbj Bining: *Dots -> Experiment, Lines -> MC*

Experimental Cross Section – C12 XS

Cross Section in Xbj Bining : *Dots -> Experiment, Lines -> MC*

Experimental Cross Section – He3 Yield

Yield in Xbj Bining: *Dots -> Experiment, Lines -> MC*

Experimental Cross Section – He3 XS

XS in Xbj Bining: *Dots -> Experiment, Lines -> MC*

Summary:

- \triangleright On the last stage of data analysis
- \triangleright Target issues have been resolved
- \triangleright Nice cross section model (XEMC) and simulation tool (SAMC)
- \triangleright Preliminary cross section results look nice but needed more works.

Remaining Works:

- \triangleright Absolute Densities of Cryo-Target. Ca40 and Ca48 Thickness.
- \triangleright Scattering Angle Checking through pointing study.
- \triangleright Acceptance Study.
- Iterate Cross Section Model to fit our kinematic regions.
- \triangleright Errors Analysis
- **▶** Taking Ratio!

Getting close to the final results and I am looking for a post-doc job!

Backup Slides

Experimental Cross Section – Yield in E'

Yield in E' Bining: Study the Acceptance of E' (as an example, data on HRS-L)

Experimental Cross Section – Yield in E'

Yield Ratio in E' Bining: Study the Acceptance of E' (as an example, data on HRS-L)

Experimental Cross Section – XS in E'

