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Last Time, at the Hall A 
Collaboration Meeting...

http://bit.ly/Ellie-6-12 

Mentioned calibration on RHRS and HAND that was done 
previously

Details of  background subtraction issues

Detailed process of  accounting for proton contamination

Presented preliminary Ay0 results which indicated large values at 
low Q2 and dropping off  exponentially at higher Q2 until around 
1 (GeV/c)2 where it starts to become negligible
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These effects, especially FSI, cause Ay0 to be non-zero
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Ay0 data will test state of  the art calculations at high Q2

Extractions of  neutron physics from 3He (such as the 
electromagnetic form factors) must correctly predict this 
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Any non-zero result is indicative of  effects beyond impulse 
approximation
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AT and AL DSA measurements related to neutron form factors
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   potassium to polarize 3He via spin exchange (SEOP)
 NMR and Electron Paramagnetic Resonance (EPR) 

   used to measure target polarization
  Achieved Polarized > 50%

 51.4 ± 0.4 ± 2.8% for Ay
0

 49.6 ± 0.4 ± 2.8% for AT

 54.7 ± 0.4 ± 2.8% for AL

 See Yawei’s talk at 2:15 for more information
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The measurements ran from April-June 2009 in 
Jefferson Lab’s Hall A

The kinematics taken were:
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Target
Polarization

Q2 
(GeV/c)2 E0 (GeV) RHRS (°) RHRS P0 

(GeV) HAND (°)

Vertical 0.127 1.245 -17 1.1759 71.0

Vertical 0.456 2.425 -17 2.1813 62.5

Vertical 0.953 3.605 -17 3.0855 54.0

Transverse 0.505 2.425 -18 2.1750 62.5

Transverse 0.953 3.606 -17 3.8055 54.0

Longitudinal 0.505 2.425 -18 2.1750 62.5

Longitudinal 0.953 3.606 -17 3.8055 54.0

The Measurements
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The Measurements
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The Measurements
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AT and AL measured at Q2 = 0.505 and 0.953 (GeV/c)2

Neutron Sachs form factors will be extracted from this data

Paper being written, expect to see in 2013
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Onto
3He(e,e’d) & 3He(e,e’p)
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Compared pmiss=0 results with d➞(e➞,e’d) asym 
for Pz=⅔ & Pzz=0 to test naïve (3He=pd) model
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Disagreement may vanish by applying a more refined averaging 
procedure

Calculations from other theoretical groups will be available soon

The extracted asymmetries will facilitate our understanding of  
the properties of  3He (manaifestations of  S’, D states) that were 
not accessible by unpolarized experiments
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