
Intrinsic p_T and parton correlations from non-perturbative QCD

C. Weiss (JLab), Hall A Collaboration Meeting 10-Dec-12, arXiv:1210.1267

Q: How does nonperturbative QCD express itself in nucleon's partonic structure?

Short-distance scale $\rho \sim 0.3$ fm from chiral symmetry breaking

- \rightarrow Intrinsic p_T
- → Parton correlations

Chiral symmetry breaking in QCD

Short–distance scale $\rho \ll R$

Dynamical model: Chiral constituent quarks

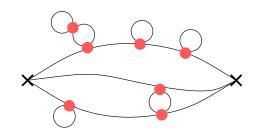
• Effect on partonic structure

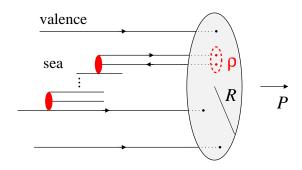
$$p_T(\text{sea}) \gg p_T(\text{valence})$$

Short-range correlations in nucleon LC wave function

Experimental tests

Single-particle inclusive: $P_{T,h}$ distributions, valence vs. sea HERMES, COMPASS, JLab12, EIC


Hadron correlations between current and target fragmentation regions JLab12, medium-energy EIC with forward detection


Exclusive meson production JLab12 Multiparton interactions Tevatron, LHC

Conceptual aspects: TMD definition, QCD evolution, mean-field and correlations in LCWF \rightarrow Theory seminar

Chiral symmetry breaking: Short-distance scale

• χ SB in QCD vacuum

Strong gluon fields of size $\rho \ll R \sim 1 \, \mathrm{fm}$ Shuryak; Diakonov, Petrov 80's

Condensate of $q\bar{q}$ pairs, π as collective excitation

Gauge—invariant measure of $q\bar{q}$ pair size $\langle\bar{\psi}\nabla^2\psi\rangle/\langle\bar{\psi}\psi\rangle\sim 1~{\rm GeV}^2$ "average virtuality" Lattice: Teper 87, Doi 02, Chiu 03. Instantons: Polyakov, CW 96

Nucleon: Dynamical mass, short—range interactions Euclidean correlation functions → Lattice, analytic methods

How does it affect partonic structure?

Nucleon fast–moving $P \to \infty$: Wave function description Feynman, Gribov 70's

Valence quark configurations of size $\sim R$

Sea quarks in correlated pairs of size $\lesssim \rho$

Soft wave function at scale ρ^{-2} QCD radiation builds up $p_T^2 \sim Q^2$ in hard processes

Can we quantify it? . . . Dynamical model!

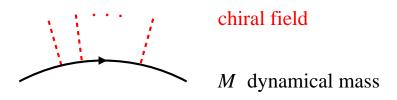
Chiral symmetry breaking: Objectives

Construct dynamical model of partonic wave function at low scale
 Effective degrees of freedom: Constituent quarks, chiral fields

Follow guiding principles

Scales Short–distance scale $\rho \ll R$

Symmetries Chiral invariance


Parametric expansion $1/N_c$ expansion

• Explore qualitative features of partonic structure

Proof of principle

Detailed modeling possible with further phenomenological input

Chiral symmetry breaking: Dynamical model

$$L_{\text{eff}} = \bar{\psi} \left(i \partial \!\!\!/ - M e^{i \gamma_5 \tau \pi / f_\pi} \right) \psi$$

binds valence quark—antiquark pairs

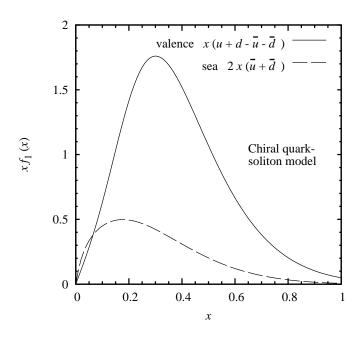
• Effective description of χSB Diakonov, Eides 83; Diakonov, Petrov 86

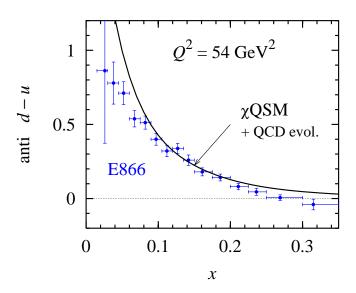
Constituent quarks/antiquarks with dynamical mass $M \sim$ 0.3-0.4 ${\rm GeV}$

Coupled to chiral field (Goldstone boson) with eff. coupling $M/f_\pi=$ 3–4 $^{\rm strong!}$

Valid up to χSB scale ρ^{-2} : Matching with QCD quarks/gluons

Field theory, solved non–perturbatively in $1/N_c$ expansion


Nucleon as chiral soliton
 Diakonov, Petrov, Pobylitsa 88; Kahana, Ripka 84


Classical chiral field "Hedgehog" $\pi \parallel r$ in rest frame

Binds valence quarks, creates quark—antiquark pairs Relativistic mean—field approximation

Field theory: Completeness, conservation laws, positivity $\rho^{-2}\gg M^2$ No Fock space truncation! \to PDFs, sea quarks

Chiral symmetry breaking: Parton distributions

Parton densities in model

Diakonov, Petrov, Pobylitsa, Polyakov, CW 96+; Wakamatsu et al. 97+

$$f^{q}(x, \boldsymbol{p}_{T}) = \langle N | a^{\dagger} a(xP, \boldsymbol{p}_{T}) | N \rangle_{P \to \infty}$$

 $f^{\bar{q}}(x, \boldsymbol{p}_{T}) = b^{\dagger} b$

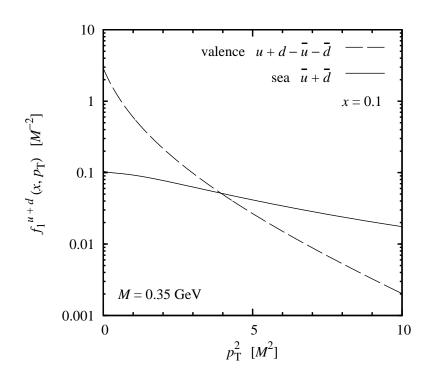
Quark/antiquark number densities at $P \to \infty$ equivalent to light-cone correlation function $\bar{\psi}...\psi$

 p_T integral convergent due to cutoff ho^{-2}

Intrinsic p_T distributions, not "TMDs" no FSI!

Interpretation

x and p_T distribution of constituent quarks and antiquarks $_{
m effective\ DOF}$


Matching with QCD quarks, antiquarks and gluons at scale ρ^{-2}

PDF fits show 30% of nucleon momentum carried by gluons at $\mu^2\sim 0.5\,{\rm GeV}^2$: "Accuracy" of model

• Flavor asymmetries

Describes well measured $\bar{d}-\bar{u}$ E866 Drell-Yan Predicts sizable $\Delta \bar{u}-\Delta \bar{d} \to$ DSSV, RHIC W

Partonic structure: p_T distributions

Sea quark p_T distribution qualitatively different from valence quarks!

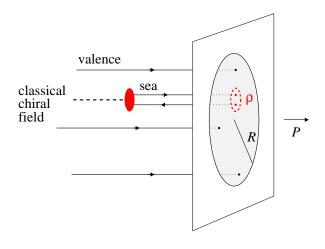
• Valence quarks $q - \bar{q}$

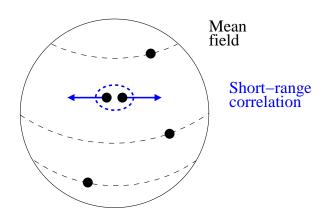
 $p_T \sim R^{-1}$, approximate Gaussian shape $\langle p_T^2
angle pprox 0.15 \, {
m GeV}^2$, weakly x–dependent

ullet Sea quarks $ar{q}$

Power-like tail $f^{ar{q}}(x,p_T) \sim C(x)/p_T^2$ up to cutoff scale ρ^{-2}

Structure determined by low-energy chiral dynamics, model-independent


 $p_T^2 \sim \rho^{-2}$: Some model dependence from UV cutoff


Similar tail in $\Delta \bar{u} - \Delta \bar{d}$

• Qualitative difference

Generic feature, rooted in dynamical scale $\rho \ll R$

Partonic structure: Short-range correlations

Parton SRCs as imprint of χSB on partonic structure

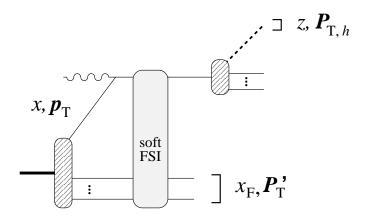
Parton short—range correlations

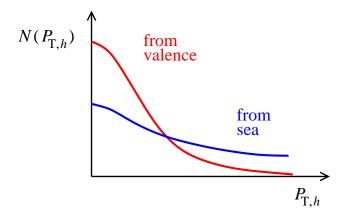
Sea quarks in nucleon LC wave function partly in correlated pairs of size $\rho \ll R$ Explains high-momentum tail of p_T distribution

Pairs have distinctive spin-isospin structure: Scalar–isoscalar Σ , pseudoscalar–isovector Π

Restoration of chiral symmetry at high p_T : $|\Psi_\Sigma|^2 = |\Psi_\Pi|^2$ at $p_T^2 \sim \rho^{-2} \gg M^2$

Large effect: Fraction of correlated sea is O(1)


• Cf. NN short-range correlations in nuclei Mean field $\Psi(\boldsymbol{r}_1,...\boldsymbol{r}_N) \approx \prod_i^N \Phi(\boldsymbol{r}_i)$


Rare configs with $|\boldsymbol{r}_i - \boldsymbol{r}_j| \ll$ average experience short-range NN interaction, generate high momentum components

Indirect probes: Momentum distributions, x>1 Direct probes: (e,e'NN) in special kinematics JLab Hall A, CLAS, Hall C at 12 GeV

. . . What about parton correlations?

Measurements: Single-particle inclusive

Sea quarks contribute only at $x\sim0.1$ Intrinsic p_T manifest only at z>0.5 12 GeV kinematics probably marginal. Schweitzer, Strikman, CW 12; simulations in progress

• Hadron $P_{T,h}$ distributions in SIDIS

 $\left. \begin{array}{l} \text{Intrinsic } p_T \text{ in WF} \\ \text{Final-state interaction} \\ \text{Parton fragmentation} \end{array} \right\} \quad \text{Observable } P_{T,h}$

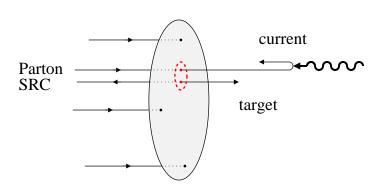
External handles: $z \leftrightarrow x, z \leftrightarrow P_{T,h}$ To be explored with CLAS12: Kinematic coverage

• Separate valence and sea quarks in target

Charge separation with pions

$$N(\pi^{+} - \pi^{-}) \propto e_{u}^{2}(u - \bar{u}) - e_{d}^{2}(d - \bar{d})$$

 $N(\pi^{+} + \pi^{-}) \propto e_{u}^{2}(u + \bar{u}) + e_{d}^{2}(d + \bar{d})$


Charge separation with kaons: u dominance, $s=\bar{s}$ fragmentation

$$N(K^+) \propto u$$
 mostly valence $N(K^-) \propto \bar{u}$

Different widths of valence/sea affect flavor separation if $P_{T,h}$ coverage incomplete Frankfurt et al. 89; Christova, Leader 01

Measurements: Correlations

 Hadron correlations between current and target fragmentation regions

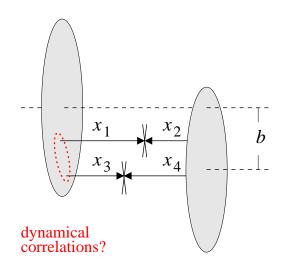
Unravel SIDIS mechanism: What balances observed $P_{T,h}$?

Observe nonpert. correlations induced by χSB

Kinematics for nonperturbative correlations

Sufficient separation in rapidity
$$\Delta y \approx \ln[W^2/(P_{T,h}^2+m_h^2)] \gtrsim 4$$

Moderate virtuality to avoid pQCD radiation $Q^2 \sim {\rm few} \ {\rm GeV}^2$


Momentum fractions of nonperturbative sea $x \sim 0.05$ –0.1

$$\rightarrow$$
 "Kinematic window" at $W^2 \approx 30 \; \mathrm{GeV}^2,$ $P_{T,h}^2 \approx 0.5 \; \mathrm{GeV}^2$

COMPASS: Detection of target fragments? EIC: Medium energiesideal JLab12: Probably marginal, but should be explored

• Other option: Exclusive meson production "Knockout" of correlated $q\bar{q}$ pairs. Many possibilities with JLab12!

Outlook: Multiparton processes in pp

$$\frac{\sigma(12; 34)}{\sigma(12)\sigma(34)} = \frac{1}{\sigma_{\text{eff}}}$$

$$\times \frac{f(x_1, x_3) f(x_2, x_4)}{f(x_1) f(x_2) f(x_3) f(x_4)}$$

ullet Double dijet rate parametrized by $\sigma_{
m eff}^{-1}$

Mean field $\sigma_{\rm eff}=\pi R_{13}^2$ avg distance btw collision points. Calculable from transverse distributions

$$\sigma_{
m eff}^{-1} \, ({
m mean \ field}) \ = \ \int \! d^2 b \, P_{12}(b) \, P_{34}(b)$$

Observed enhancement

CDF/D0 3jet + γ rate two times larger than mean field with $\langle \rho^2 \rangle (x \sim 0.1)$

Possible explanation: Parton correlations FSW, Annalen Phys. 13 (2004)

Perturbative vs. nonperturbative correlations? Higher-order vs. mulitparton processes? Many challenges. Blok, Dokshitzer, Frankfurt, Strikman 11

• LHC: High rates for multijet events

Background to new physics processes

Detailed studies of parton correlations

New field of study. Great interest! MPI@TAU Tel Aviv 2012

Summary

- Dynamical χ SB in QCD creates short–distance scale $\rho \ll R \sim 1\,\mathrm{fm}$ Natural scale for separating soft wave function \leftrightarrow pQCD radiation
- Qualitatively different p_T distributions of valence and sea quarks Valence quarks $p_T \sim R^{-1}$ Sea quarks "tail" $p_T \lesssim \rho^{-1}$
- Parton short—range correlations in nucleon
 Imprint of QCD vacuum on partonic structure
- Experimental tests

Separate valence and sea quarks in single-particle inclusive DIS: Charged pions, kaons. Details simulations in progress.

Correlations between current and target fragmentation regions: Kinematic window for non-perturbative correlations. Ideal for medium-energy EIC

Exclusive meson production: Knockout of correlated $q\bar{q}$ pair. Exploratory studies in progress.

Multiparton interactions in high-energy pp collisions