
E12-11-112: the x>1 ³He/³H experiment

Patricia Solvignon Jefferson Laboratory

Spokepeople:John Arrington (ANL)Donal Day (UVa)Doug Higinbotham (Jlab)Patricia Solvignon (JLab)

Hall A Collaboration Meeting December 10-11, 2012

Tensor force dominance

Main physics goals: E12-11-112

- Isospin-dependence
 - ✓ Improved precision: Extract R(T=1/T=0) to 3.8%
 - ✓ FSI much smaller (inclusive) and expected to cancel in ratio
- 3N SRCs structure (momentum-sharing and isospin)
 - \checkmark Q² dependence can test models of the momentum sharing
 - ✓ ³He/³H ratio very sensitive to isospin-momentum correlations
- Improved A-dependence in light and heavy nuclei
 - ✓ Average of ³H, ³He \rightarrow A=3 "isoscalar" nucleus
 - ✓ Determine isospin dependence → improved correction for N>Z nuclei, extrapolation to nuclear matter
- Absolute cross sections (and ratios) for ²H, ³H, ³He: test calculations of FSI for simple, well-understood nuclei

Isospin structure of 2N-SRCs

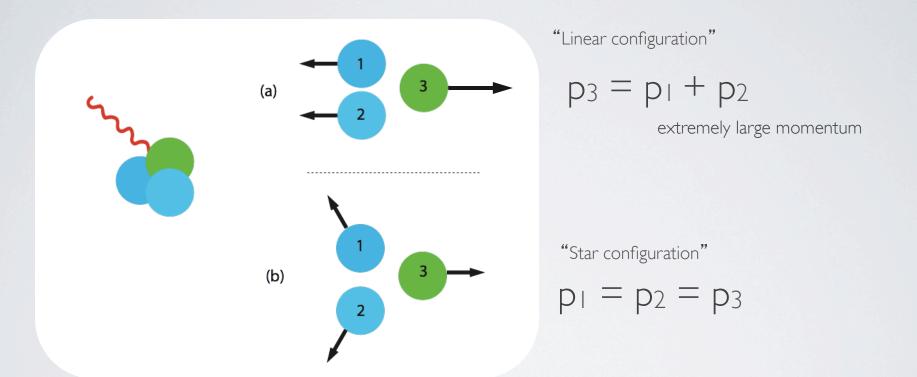
³He/³H is simple/straightforward case:

Simple estimates for 2N-SRC

Isospin independent

$$\frac{\sigma_{{}^{3}He}/3}{\sigma_{{}^{3}H}/3} = \frac{(2\sigma_{p} + 1\sigma_{n})/3}{(1\sigma_{p} + 2\sigma_{n})/3} \xrightarrow{\sigma_{p} \approx 3\sigma_{n}} 1.40$$

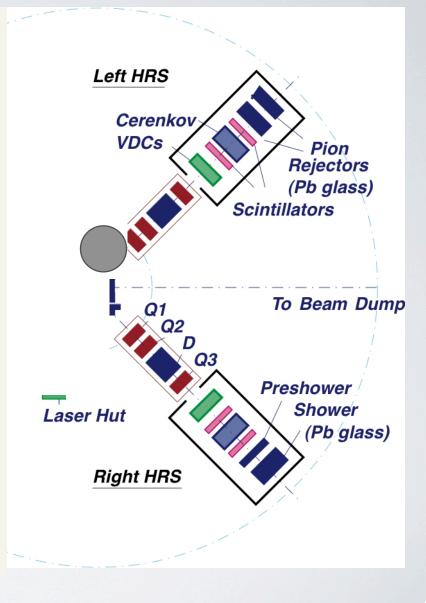
Full n-p dominance (no T=1) $\frac{\sigma_{_{3_H}}/3}{\sigma_{_{3_{He}}}/3} = \frac{(2pn + 1mn)/3}{(2pn + 1pp)/3} = 1.0$

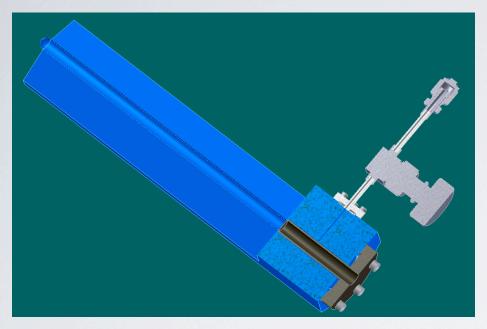

40% difference between full isosinglet dominance and isospin independent

Few body calculations [M. Sargsian, Wiringa/Pieper (GFMC)] predict n-p dominance, but with sizeable contribution from T=1 pairs

■ Goal is to measure ³He/³H ratio in 2N-SRC region with 1.5% precision → Extract R(T=1/T=0) with uncertainty of 3.8%

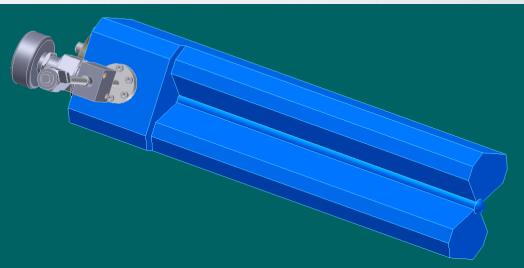
3N-SRC configurations


Different configurations possible for 3N-SRCs, for example:


Inclusive measurement can help to differentiate between these configurations and test isospin structure

E12-11-112: Experimental setup

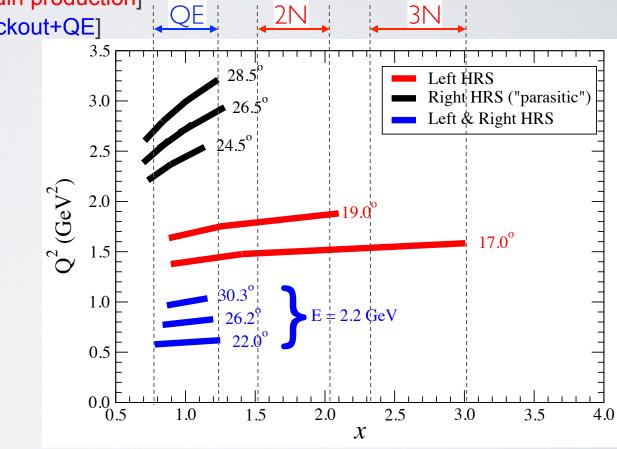
- Standard Hall A HRS configuration
- Gas Cerenkov + Calorimeter PID
- ¹H, ²H, ³H, ³He room temperature cells, 20 atmospheres (10 for ³H)
- Empty cell for window subtraction (check software cut on windows, subtract residual contribution)
- Carbon foils for optics



Tritium target: updated design

- Four identical cells: ¹H, ²H, ³He at 20 atm, ³H at 10 atm.
- Operate at room temperature
- Length: 25cm, Diameter: 1.25cm
- 18 mil windows and walls

- Technical review in 2010
- Prototype requested and funded
- Goal is to be ready by 2015

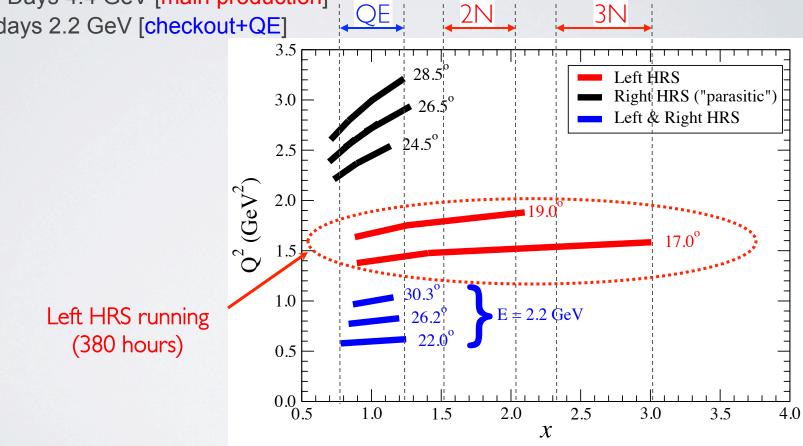

Kinematic coverage

Beam current: 25 µA, unpolarized

Raster interlock

Beam energy: 4.4, (2.2) GeV

- 17.5 Days 4.4 GeV [main production]
- 1.5 days 2.2 GeV [checkout+QE]

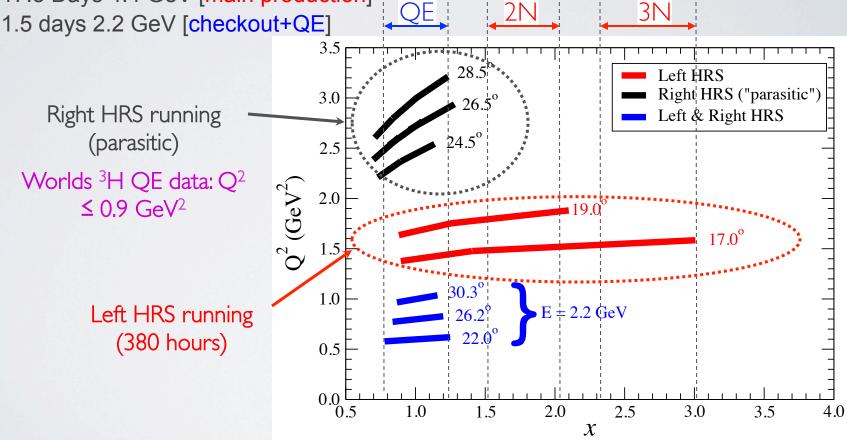

Kinematic coverage

Beam current: 25 µA, unpolarized

Raster interlock •

Beam energy: 4.4, (2.2) GeV

- 17.5 Days 4.4 GeV [main production] •
- 1.5 days 2.2 GeV [checkout+QE] •


Kinematic coverage

Beam current: 25 µA, unpolarized

Raster interlock

Beam energy: 4.4, (2.2) GeV

- 17.5 Days 4.4 GeV [main production]

Summary

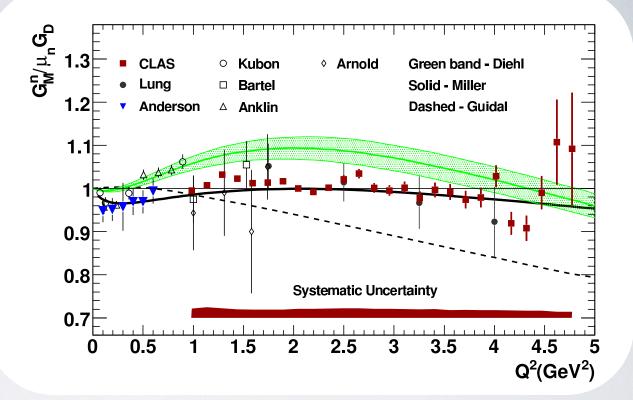
Study of isospin dependence of 2N-SRC from ³H/³He from inclusive scattering: will complement the results of 2N knockout experiments

- Greater precision
- Smaller final-state interactions

First look at isospin-momentum structure in 3N-SRC region

Quasi-elastic data on ³H and ³He for Q² of 0.6-3.0 (GeV/c)²

Beam time approved: 19 days including data taking, calibrations, background studies and configuration changes


Hall A spectrometers in standard configuration, same ³H target system needed for the approved MARATHON experiment (E12-10-103)

Quasielastic data

This experiment: 0.6-1.0 GeV² 1.4,1.7 GeV² 2.2-3.0 GeV²

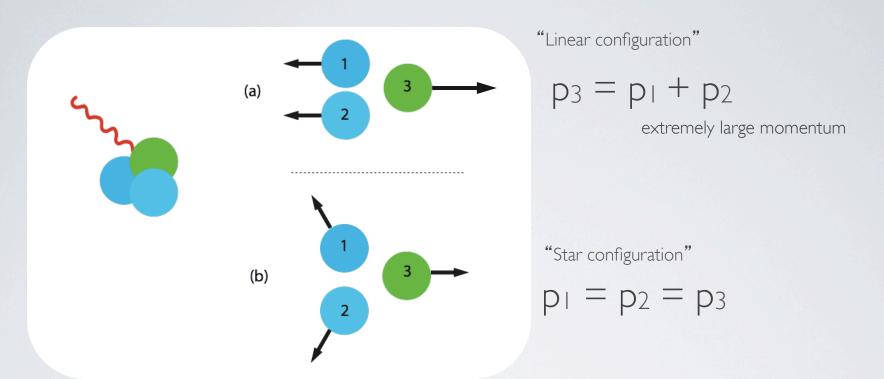
Worlds ³H OE data:

 $O^2 \leq 0.9 \text{ GeV}^2$

In PWIA, ³He/³H with 1.5% uncertainty corresponds to 3% on G_M^n

* Limited to $Q^2 \le 1$ GeV², where QE peak has minimal inelastic contribution

* This is the region with ~8% discrepancy between the Anklin, Kubon data and the CLAS ratio and Hall A polarized ³He extractions


Nuclear effects expected to be small, largely cancel in ratio

E08-014

E08-014: Finished data taking in April/May 2011

- Extract Q² dependence for ³He/²H, ⁴He/³He ratios
 - Precisely determine scaling regions for 2N, 3N-SRCs in light nuclei
 - Initial Q² dependence of ratios vs. different 3N scaling variables (α_{3N})
- Isospin (⁴⁰Ca/⁴⁸Ca)
 - Intrinsic sensitivity is roughly half of ³H/³He
 - Total uncertainty in R(T=1/T=0) about 12% (⁴⁰Ca target problems)

Momentum-isospin correlations

(a) yields R(³He/³H) ≈ 3.0 if nucleon #3 is always the doubly-occurring nucleon
(a) yields R(³He/³H) ≈ 0.3 if nucleon #3 is always the singly-occurring nucleon
(a) yields R(³He/³H) ≈ 1.4 if configuration is isospin-independent, as does (b)

 $R \neq 1.4$ implies isospin dependence AND non-symmetric momentum sharing