# E08-010 (N $\rightarrow \Delta$ ) Analysis Update

Adam Blomberg



June 14, 2013

## Spokespersons and analysis group

- Temple University
  - ▶ N. Sparveris<sup>1</sup>, M. Paolone, A. Blomberg<sup>2</sup>
- St. Mary's University
  - A.J. Sarty, D. Anez<sup>2</sup>
- Thomas Jefferson National Accelerator Facility
  - D. Higinbotham
- Massachusetts Institute of Technology
  - S. Gilad
- <sup>1</sup> Contact person
- Graduate Student



# Outline

- Motivation
- Methodology
- Experimental Overview
- Completed Work
- Preliminary Results
- Future Work



## **Motivation**

- $\Delta$  Resonance  $\rightarrow$  H(e,e'p) $\pi^0$
- Nucleon Dynamics
- Quadrupole transition  $\rightarrow$  non-spherical components
- Quark-gluon and Mesonic DOF
- Low  $Q^2 \rightarrow Pion$  cloud dominates



Sato Lee

40  $10^{-3}/m_{\pi}$ 

20

0

Pion Cloud

 $Im[M_{1+}^{3/2}]$ 

2

 $Q^2 (GeV/c)^2$ 

3

# Methodology

 $egin{array}{l} {\sf N} 
ightarrow \Delta \ {\sf H}({\sf e},{\sf e}'{\sf p})\pi^0 \end{array}$ 



$$\sigma = J_{\Omega} \Gamma_{\nu} \frac{\rho_{cm}}{k_{cm}} (R_T + \epsilon_L R_L + \epsilon R_{TT} \cos 2\phi_{X_{\gamma}} + \nu_{LT} R_{LT} \cos \phi_{X_{\gamma}})$$

measure multiple azimuthal angles  $\phi$  for fixed  $\theta$  to extract  $R_T, R_L, R_{TT}, R_{LT} = f(amplitudes(W,Q^2),g(\theta))$ 

Fit  $R_i$  vs.  $\theta$  to get amplitudes(W,Q<sup>2</sup>)

# Methodology



$$\sigma = J_{\Omega} \Gamma_{\nu} \frac{\rho_{cm}}{k_{cm}} (R_T + \epsilon_L R_L + \epsilon R_{TT} \cos 2\phi_{X_{\gamma}} + \nu_{LT} R_{LT} \cos \phi_{X_{\gamma}})$$

Two in-plane measurements at  $\phi = 0^{\circ}$  and  $\phi = 180^{\circ}$  allows extraction of resonant amplitudes

 $\sigma_{LT} = f(R_{LT}, \theta_{CM})$ 

 $\sigma_0 + \epsilon \sigma_{TT} = g(R_T, R_L, R_{TT}, \theta_{CM})$ 



#### Signal and BG Sensitivities

 $\begin{array}{l} R_{TT} = 3 \sin^2 \theta \quad ( \quad \text{E2} \cdot \text{M1} + (\text{M1})^2 + \dots \sum (\text{background}) \quad ) \\ R_{LT} = -6 \cos \theta \sin \theta \quad ( \quad \text{C2} \cdot \text{M1} + \dots \sum (\text{background}) \quad ) \\ R_T + R_L = (\text{M1})^2 + \dots \sum (\text{background}) \end{array}$ 

 $R_{TT} \rightarrow \text{sensitivity to EMR}$  $R_{LT} \rightarrow \text{sensitivity to CMR}$  $R_T + R_L \rightarrow \text{sensitivity to M1}$ 

$$CMR = \frac{C2}{M1}$$



Tails of higher resonances



A. Blomberg (Temple Uniersity)

 $N \rightarrow \Delta$  Analysis Update

# The experiment

- Data taken Feb-Mar 2011
- H(e,e'p)π<sup>0</sup>
  - $N \rightarrow \Delta$
  - $\pi^0$  channel
- Two HRSs in coincidence
- 4 and 15 cm  $LH_2$  targets
- Beam energy = 1.16 GeV
- 14 Kinematics
- $Q^2 = 0.04 0.125 \; (GeV/c)^2$
- W = 1.17 1.232 GeV





# The Detectors

#### Vertical Drift Chamber (VDC)

Define Particle Tracks Particle Momentum  $\vec{p}$ 

#### Scintillators

DAQ Trigger Coincident Timing

#### Particle Identification

Cherenkov Lead Glass Showers Scintillators



# Completed Work

#### Calibrations

BCM BPM and Raster VDCs Mispointing cTOF PID

#### Efficiencies

Live time Multi-hit Events

Target Corrections

Thermal Contraction Window Thickness Beam Offset + End Cap Curvature Target Boiling





BCM





• BPM,Raster





A. Blomberg (Temple Uniersity)

June 2013 9 / 19



VDCs After



LHRS: 48° RHRS: 22°

Z vertex from each arm







PMT # vs. L.prl1.a\_c[#]

• Pion Rejection Layers



### Efficiencies

#### Live time

 $LT\approx90\%$ 

#### Multi-hit Events

Single Track cut  $\approx$  70-80% Correlate VDC Tracks to s2 hits Multi-track analysis  $\approx$  90-95% 15% boost to statistics



# Target Length



# Target Boiling Test



# Coincidence Time of Flight



## Missing Mass



## Missing Mass











## Future Work

- Finalize  $\sigma$  for all kinematics
- Study systematic uncertainties
- Extract resonant amplitudes
- Publication in Fall



#### Back up Slides

Extra Slides Beyond this point



A. Blomberg (Temple Uniersity)

# Multi Track Events

| Percentage of events with specified tracks |    |       |      |      |      |  |
|--------------------------------------------|----|-------|------|------|------|--|
| Number of                                  |    | L arm |      |      |      |  |
| tracks in                                  |    | 1     | 2    | 3    | >3   |  |
| R arm                                      |    |       |      |      |      |  |
|                                            | 1  | 72.24 | 7.68 | 1.99 | 0.22 |  |
|                                            | 2  | 10.54 | 1.11 | 0.28 | 0.03 |  |
|                                            | 3  | 4.38  | 0.44 | 0.09 | 0.01 |  |
|                                            | >3 | 0.87  | 0.09 | 0.02 | 0.00 |  |

Totals:72.24%25.69%2.07%correlateVDC tracks with S2 TDC hitsBreaks when multipleVDC tracks hit the same S2 paddle25.69% $\longrightarrow$ 18.25%+Final MultiTrack scaling:90.49%

# Calculating Cross Sections

Average cross section per bin:

$$\frac{d\bar{\sigma}}{d\Omega} = \frac{(N_{det} - N_{bg}) \cdot \epsilon}{N_{PS}} \left(\frac{Y_N}{Y_R}\right)_{model}$$

Scale to central point using model:

$$\frac{d\sigma}{d\Omega} = \frac{d\bar{\sigma}}{d\Omega} \cdot \left(\frac{\sigma_{\text{pt}}}{\sigma_{\text{avg}}}\right)_{\text{model}}$$

 $\epsilon$  includes efficiency scaling factors such as MT, LT, and cut efficiencies  $N_{PS}$  is calculated using MCEEP, normalized for luminosity

