New Instrumentation: MOLLER

Mark Dalton for the MOLLER Collaboration

Outline

Motivation Experimental Overview Recent Developments Spectrometer magnet design Simulation Detector design and tests

Hall A Meeting: MOLLER

13 June 2013 2 of 35

The Standard Model

of particle physics

Quantum field theory framework

Forces						
		Gravity	Weak	Electromagnetic	Strong	
	mediator	(not found)	W+, W⁻, Z ⁰	Y	gluons	
	acts on	all	quarks and leptons	Electrically charged	quarks and gluons	
	Strength at 3x10 ⁻¹⁷ m	10-41	10-4	1	60	

UNIVERSITY VIRGINIA

Mark Dalton

Hall A Meeting: MOLLER

13 June 2013 3 of 35

Should there be new physics?

Open SM Questions (a small subset)

What is dark matter? What is dark energy, and what is the nature of the dark sector ? Where is the anti-matter?

4 of 35

13 June 2013

Ramsey-Musolf's list

What is the origin of matter (both visible and dark) ?

What is the dark energy and what is the nature of the dark sector ?

What is the origin of the dimensionful parameters of the SM ($m_{q,v}$, G_F , Λ_{QCD} ,...) and why are they stable against quantum corrections ?

What are the discrete symmetries of the early universe (P, CP, T, B, L,...)?

When and how were they broken ? i.e. where is the anti-matter ?

Hall A Meeting: MOLLER

Physics beyond the SM

Two lines of attack

Tevatron and Large Hadron Collider

Iooking for tiny deviations from SM predictions or at phenomena that are highly-suppressed or forbidden by SM symmetries

Pattern of deviations: guidance into nature of new physics

examples: See SUSY particles see additional neutral Z'

examples: Electric Dipole Moments neutrino-less double beta decay (0vββ) Baryon number or lepton flavor violation **Parity-Violating Electron Scattering**

Hall A Meeting: MOLLER

13 June 2013 5 of 35

Neutral Current Beyond the SM

Many new physics models require new, heavy, neutral current interactions

$$\mathcal{L} = \mathcal{L}_{\texttt{SM}} + \mathcal{L}_{\texttt{new}}$$

Heavy Z's and neutrinos, technicolor, compositeness, extra dimensions, SUSY...

Low energy WNC interactions ($Q^2 << M_Z^2$)

$$\mathcal{L}_{f_1 f_2} = \sum_{i,j=L,R} \frac{(g_{ij}^{12})^2}{\Lambda_{ij}^2} \bar{f}_{1i} \gamma_\mu f_{1i} \bar{f}_{2j} \gamma_\mu f_{2j}$$

Eichten, Lane and Peskin, PRL50 (1983)

mass scale Λ , coupling g for each *fermion* and *handedness* combination

Sensitivity to TeV-scale contact interactions if:

- Precision neutrino scattering
- PV couplings through interference with EM
- opposite-parity transitions in heavy atomsparity-violating electron scattering

Physics Reach for MOLLER

best contact interaction reach for leptons at low OR high energy

To do better for a 4-lepton contact interaction would require: Giga-Z factory, linear collider, neutrino factory or muon collider

Running of weak mixing angle

Hall A Meeting: MOLLER

13 June 2013

8 of 35

Parity Violating Electron Scattering

$$\sigma \propto |A_{\gamma} + A_{\rm weak}|^2$$

$$\sim |A_{\gamma}|^2 + 2A_{\gamma}A_{\text{weak}}^*$$

interference between neutral weak and electromagnetic amplitudes

Change helicity of beam equivalent to changing parity

Mark Dalton

PVES Experiments

PVES Experiments

13 June 2013 11 of 35

MOLLER

MOLLER Technical

Order of magnitude more precise than current state of the art.

Polarized Beam

unprecedented polarized luminosity unprecedented beam stability helicity flip at 2 kHz

Liquid Hydrogen Target

5 kW dissipated power (2 X QWeak) computational fluid dynamics

Toroidal Spectrometer

Novel 7 "hybrid coil" design warm magnets, aggressive cooling

Integrating Detectors

build on QWeak and PREX intricate support & shielding radiation hardness and low noise

Hall A Meeting: MOLLER

13 June 2013 13 of 35

iversity Ma Virginia Ma

Mark Dalton

Hall A Meeting: MOLLER

13 June 2013 14 of 35

Hall A Meeting: MOLLER

13 June 2013 15 of 35

MOLLER Status

Director's Review chaired by C. Prescott: strong, positive endorsement

Technical Challenges

- ~ 150 GHz scattered electron rate
 - Design to flip Pockels cell ~ 2 kHz
 - 80 ppm pulse-to-pulse statistical fluctuations

• 1 nm control of beam centroid on target

- Improved methods of "slow helicity reversal"
- > 10 gm/cm² liquid hydrogen target
 - 1.5 m: ~ 5 kW @ 85 μA
- Full Azimuthal acceptance with θ_{lab} ~ 5 mrad
 - novel two-toroid spectrometer
 - radiation hard, highly segmented integrating detectors

Robust and Redundant 04% beam polarimetry

- Pursue both Compton and Atomic Hydrogen techniques

- MOLLER Collaboration
- ~ 100 authors, ~ 30 institutions
- Expertise from SAMPLE A4, HAPPEX, G0, PREX, Qweak, E158
- 4th generation JLab parity experiment

- 20M\$ proposal to DoE NP
- 3-4 years construction
- 2-3 years running

MOLLER Detectors

Auxiliary Detectors

- Tracking detectors
 - 3 planes of GEMs/Straws
 - Critical for systematics/ calibration/debugging

- Integrating Scanners

• quick checks on stability

CAP design in progress

optimized for robust background subtraction

Integrating Detectors:

- Moller and e-p Electrons:
 radial and azimuthal segmentation

 - quartz with air lightguides & PMTs
- pions and muons:
 - quartz sandwich behind shielding
- luminosity monitors

KK UMass

• beam & target density fluctuations

Spectrometer Magnet Design

Advisory Group Meeting – July 2013 Internal and External advisory groups in place.

Development focus areas:

Conductor size and water hole size Negative conductor bend angles Coils in vacuum versus coils in air versus helium bag. Potential 3 coil configuration.

Tosca Magnet Model

Realistic, realizable magnet design in progress.

Mark Dalton

Hall A Meeting: MOLLER

13 June 2013 19 of 35

Field Strength

UNIVERSITY VIRGINIA

Mark Dalton

Hall A Meeting: MOLLER

13 June 2013 20 of 35

Magnet Design

UNIVERSITY VIRGINIA Mark Dalton

Hall A Meeting: MOLLER

13 June 2013 21 of 35

Conductors

 Hollow Cu conductors are available in a variety of standard sizes. I'm using data from Luvata; <u>http://www.luvata.com/en/Products--Markets/Products/Hollow-Conductors/</u>

From original TOSCA design

Cond	uctor Style and Result	Flow Properties assuming 4 average-length turns / cooling circuit; 45 deg C deltaT			
Part #	Current Density [A/cm ²]	Toroid Voltage Drop [V]	Toroid power [kW]	Velocity (4 turns in parallel) [m/s]	Pressure Drop (avg) [atm]
6093	2358	2377	913	3.04	14
8674	1748	1762	677	2.68	13
8339	1553	1566	601	3.03	17
8204	1996	2012	773	1.95	5

2013-06-12

Шiī

J. Bessuille - MOLLER Spectrometer Group Review

Coils in Vacuum

Full assembly, Exploded .

Mark Dalton

Hall A Meeting: MOLLER

13 June 2013 23 of 35

Coils in Air

• Collimated beams pass through 8 distinct volumes, comprising the "Tulip Pipe".

2013-06-12

J. Bessuille - MOLLER Spectrometer Group Review

24

Hall A Meeting: MOLLER

Simulation Developments

New simulation framework.

Improved readability, streamlined output; version, parameter and input tracking; uniform generators for Moller, ep elastic and ep inelastic (Christy/Bosted)

Study "phi-sculpting" collimation to block photons while preserving FOM. New 2D photon bounce code for rapid prototyping.

Hyperon background generator in development.

Target window studies in progress.

Recent rate map

Moller and ep electrons (GHz/cm²)

Geant 4 used to simulate effects of radiation and background physics processes.

JNIVERSITY VIRGINIA

Mark Dalton

Hall A Meeting: MOLLER

13 June 2013 26 of 35

Sculpted Collimators

Target Length and Position

Study the effect of changing target geometry.

Mark Dalton

Hall A Meeting: MOLLER

Conceptual detector tile layout

Multiple detectors allow the separation of signal by kinematics and production process.

Necessary to disentangle background processes.

FOM must ultimately be calculated from yields and asymmetries in detectors.

UNIVERSITY VIRGINIA

Hall A Meeting: MOLLER

13 June 2013 29 of 35

Detector Development

Basic design is 1.5 cm thick quartz, 3" PMT and air-core light guide.

Independent detector simulation of individual detectors and full detector rings used to optimize detector geometry and study background and interference.

Trying to find: Best geometry of quartz, lightguide and shielding to maximize signal per electron and minimize background. Best procedures for low wavelength photons. Best material for lightguide.

Detector test stands now exist at Manitoba, UMass and Idaho. In beam detector tests being planned at Mainz.

Potential Detector Design Favorable Model

Bottom wedge cut:

 Allowing the Cerenkov light to escape easily from quartz with specific direction, and to reduce the loss due to bouncing in quartz

Tilting light guide towards beam:

- Matching the angle of escaping Cerenkov light from quartz (green), so as to minimize the loss due to bouncing on light guide inner surface
- Directing the Cerenkov light in air (blue) to the opposite side of PMT, so that these interferences can be reduced by bouncing in light guide

31 of 35

13 June 2013

Hall A Meeting: MOLLER

Detector Simulation Implementation

Implemented in the independent detector simulation package:

Mark Dalton

Configuration:

- Quartz thickness: 1.5 cm
- Length of e-e ring light guide : 34 cm

Peiqing Wang

13 June 2013

8

32 of 35

- Light guide mateial: Anolux-UVS
- PMT: 3" round quartz window

#PE yield of e-e ring detector:

- ~37 PE
- rms: 8.7

Hall A Meeting: MOLLER

To see the the background/interference, an implementation in the full MOLLER simulation environment is needed (not done yet)

Detector Tests

Prototype detectors being prepared for beam tests at Mainz.

Mark Dalton

Hall A Meeting: MOLLER

13 June 2013 33 of 35

Cosmic Tests

QADC16 QADC16 Entries 79892 137.1 Mean RMS 173.1 Cosmic tests already 10³ giving expected results. 10² 10 500 1000 1500 2500 2000

PREX detector testing with cosmic rays at UMass

Mark Dalton

Hall A Meeting: MOLLER

13 June 2013 34 of 35

Conclusion

MOLLER is a Hall A experiment with New Physics discovery potential.

Experiment design has made significant advancements since the last Hall A meeting.

A proposal has been delivered to DOE and is awaiting action. A writing group is working on updating relevant sections in anticipation of a Fall science review.

