

Heavy Photon Search update

F.-X. Girod

JLab Hall-B

Hall-A collaboration meeting

Outline

2 Heavy Photon Search experiment

Dark matter

1/20

Jefferson Lab

Hidden photon constraints

2/20

Jefferson Lab

Unified DM

Can also explain muon g-2 anomaly

F.-X. Girod

JLab Hall-B

HPS update

Hall-A collaboration meeting

Fixed Target searches

F-X Girod

JLab Hall-B

HPS update

Hall-A collaboration meeting

4/20

Fixed Target searches

Fixed Target searches

Beam dump search limitations

F.-X. Girod

JLab Hall-B

Heavy Photon Search kinematics

Heavy Photon Search backgrounds

 σ_{B-H} very large $\gg \sigma_{Rad}$. But kinematically distinct \rightarrow Use clever trigger to separate.

F-X Girod

JLab Hall-B

Hall-A collaboration meeting

9/20

HPS detector

Hall-A collaboration meeting 10/20

HPS split design

• Both the Silicon Vertex Tracker (SVT) and the Ecal are split vertically, to avoid the "sheet of flame".

- The first layer of the SVT comes within 0.5 mm of the beam to allow acceptance at 15 mrad, so precision movers, working in vacuum, are needed to position it accurately w.r.t. the beam
- The beam passes between the upper and lower halves of the Ecal through the Ecal vacuum chamber, which accommodates the photons radiated at the target, the multiple scattered electron beam, and the "sheet of flame".

F-X Girod

II ah Hall-B

Hall-A collaboration meeting 11/20

SVT design

- Si microstrip sensors readout by CMS APV25's 40 MHz readout σ_x ≈ 6 μm; σ_t ≈ 2-3 ns
- Tracker has 6 (5 for test run) layers, each axial + stereo Measures track momentum and trajectory Placed inside Hall B pair spectrometer magnet Resides in vacuum to minimize beam backgrounds Split top and bottom to avoid beam and "wall of flame"

Hall-A collaboration meeting 12/20

ECal design

- Ecal consists of top and bottom modules, each arranged in 5 layers, with 442 leadtungstate (PbWO₄) crystals in all.
- Crystals are readout with APDs and preamplifier boards
- Data is recorded in 250 MHz JLAB FADC
- Thermal enclosure holds temperature constant to ~1° F to stabilize gains

F.-X. Girod

JLab Hall-B

Hall-A collaboration meeting 13/20

DAQ design

- SVT DAQ uses SLAC ATCA-based architecture
 - * Sensor hybrids pipeline data at 40 MHz and send trigger-selected data to COB for digitization, thresholds, and formatting. COB transfers formatted data to JI AB DAO
 - * Record data up to 16kHz in pipeline mode. Will push this up to 50 kHz with upgrades.
 - * One ATCA crate with 2 COBs handled the full HPS Test Run SVT (20 modules, ~10k channels).

Ecal DAQ and Trigger

F-X Girod

II ab Hall-B

- * Data recorded in 250 MHz JI AB FADC PH and time transferred every 8ns to Trigger Processors.
- Trigger sent to SVT DAQ and FADC for data transfer.
- * Ecal FADC and DAQ can trigger and record data up to 50 kHz.

Cluster on Board (COB)

14/20

Hall-A collaboration meeting

HPS location

		Distance	
		to first	
What	MyName	HPS dipole	Provenance
		(m)	
Vertical Corrector	MBC2H08V	2.5	New
Horizontal Corrector	MBC2H08H	2.35	New
Beam Position Monitor	IPM2H08	2.075	New
Drift			
Beam Viewer	ITV2H09	0.89	ITV2H01?
Wire Scanner	IHA2H09	0.69	IHA2H00
Beam Position Monitor	IPM2H09	0.5	New
Center of HPS 1 st Dipole	MBX2H90	0	Frascati

		Distance	Distance
		to first	to Tagger
What	MyName	HPS dipole	harp
		(m)	(m)
nA Beam Position Monitor	IPM2H01	27.505	12.914
Beam Position Monitor?	IPM2H02	27.255	13.164
Quadrupole	MQA2H02	26.905	13.514
Quadrupole	MQR2H03	26.305	14.114
Quadrupole	MQA2H04	25.705	14.714
Vertical Corrector	MBC2H04V	25.180	15.239
Horizontal Corrector	MBC2H04H	24.98	15.439
Beam Position Monitor	IPM2H04	24.905	15.514
CLAS Target	ETACLAS	15.415	25.004
Center of HPS 1 st Dipole	MBX2H90	0	40.419

Beam optics

HPS test run configuration

Hall-A collaboration meeting 17/20

HPS test run vs MC

HPS test run

JLab Hall-B

HPS update

Hall-A collaboration meeting

HPS reach

