Nucleon Momentum Distributions in Asymmetric Nuclei A Comparison of <sup>3</sup>He(*e,e'p*) and <sup>3</sup>H(*e,e'p*) PR12-13-012

Lawrence Weinstein Old Dominion University Co-Spokespersons: Werner Boeglin (FIU), Shalev Gilad (MIT), Or Hen (Tel Aviv)

### Outline

- Overview
- Short range correlations in nuclei
- Nucleon momentum distributions in asymmetric nuclei
- Calculated ground state momentum distributions in A=3 nuclei

2

- Avoiding the problems of previous measurements
- The proposed experiment
- The expected results

6/12/13

#### Overview

- Measure the quasielastic (e,e'p) reaction on <sup>3</sup>H, <sup>3</sup>He, and *d* 
  - First measurement of <sup>3</sup>H(*e*,*e'p*)

6/12/13

- Choose kinematics where FSI are small
- Measure cross sections sensitive to ground state momentum distributions
- Measure ratios of cross sections so residual FSI cancel
- Simple picture: Map the transition as  $\sigma({}^{3}\text{He})/\sigma({}^{3}\text{H})$ changes from 2 at small  $p_{\text{miss}}$  due to proton counting to 1 at large  $p_{\text{miss}}$  due to *np* pair counting
- Quantitative picture: compare to calculations with exact ground states and eikonal approximation FSI



#### Short Range Correlations in Nuclei

- Almost all nucleons with p > 275 MeV/c belong to a short range correlated (SRC) *NN* pair with small cm momentum and large relative momentum.
- 90% of these pairs in  ${}^{12}C$  are *pn* pairs.
- The proportion of nucleons belonging to SRC *NN* pairs is about 5% in *d* and 10% in <sup>3</sup>He.
- The strength of the EMC effect in a nucleus is closely correlated with the number of SRC pairs in that nucleus.



# Nucleon momentum distributions in asymmetric nuclei

5

n

D

 $\vec{p}_m = -\vec{p}_i$ 

Dominated by independent (mean-field) nucleons

• If there are fewer protons than neutrons then the protons should have higher average momentum and kinetic energy

n(k)

 $n_n(k)$ 

 $n_p(k)$ 

• If there are fewer boys than girls at a dance, the average boy will dance more than the average girl (assuming *bg*-pair dominance).





A(e,e'p) kinematics

7

![](_page_6_Figure_1.jpeg)

![](_page_6_Picture_2.jpeg)

 $\vec{p}_m \approx \vec{p}_{init}$ 

6/12/13

Spectral function  $S(E_m, p_m)$ : probability of finding a nucleon in the nucleus with momentum  $p_m$  and separation energy  $E_m$ 

 $\rho(p_m) = \int S(E_m, p_m) dE_m$  Nuclear momentum distribution

 $\frac{d^{6}\sigma}{d\omega d\Omega_{e}dE_{m}d\Omega_{p}} = \kappa\sigma_{ep}S(E_{m},p_{m}) \qquad \begin{array}{l} \kappa \text{ is a known kinematic factor} \\ \sigma_{ep} \text{ is the half-off-shell electron-proton} \end{array}$ elementary cross section

We measure: 
$$\sigma_{red}(E_m, p_m) = \left[\frac{d^6\sigma}{d\omega d\Omega_e dE_m d\Omega_p}\right] / [\kappa\sigma_{ep}]$$

In the absence of Final State Interactions [FSI] this becomes:

$$S(E_m, p_m) = \sigma_{red}(E_m, p_m)$$

#### Previous <sup>3</sup>H(e,e'p) measurements

![](_page_8_Figure_1.jpeg)

FIG. 2. The energy spectrum of protons at  $51.5^{\circ}$  in coincidence with 441-MeV electrons at  $51.7^{\circ}$  from H<sup>3</sup> (e,e'p).

![](_page_8_Figure_3.jpeg)

FIG. 4. The coincidence cross section of reaction (C) as a function of proton angle. The curve is explained in Sec. VI of the text.

#### A. Johansson (by himself!), PR136 (1964) 1030B.

9

![](_page_9_Figure_0.jpeg)

![](_page_10_Figure_0.jpeg)

# Minimizing <sup>3</sup>He(*e*,*e'p*) FSI choosing kinematics

Ratio of FSI to PWIA calculations <sup>3</sup>  $He(e,ep)np E_m = 40 MeV$  $^{6}$   $^{3}\text{He}(e,e'p)np_{p_{\text{miss}}} = 0.5 \text{ GeV/c}$ 5 0.4 GeV/cير 3 0.2 GeV/d 1 0 100 120 140 0 60 y 80 20 40  $oldsymbol{ heta}_{
m rq}$ 

Conclusions: (from both *d* and <sup>3</sup>He(*e*,*e'p*): Measure at  $\theta_{rq} \approx 30^{\circ}$ 

The angle between the recoil momentum and q

6/12/13

#### Minimizing FSI: taking ratios at $p_{\rm m} = 0.5 \text{ GeV/c}$

![](_page_12_Figure_1.jpeg)

![](_page_13_Figure_0.jpeg)

6/13/13

# The experiment

- $Q^2 \approx 2 \ GeV^2$ 
  - Reduces non-nucleonic currents (MEC, IC)
  - Proton energies high enough for eikonal FSI calculations
- $x = Q^2/2m\omega > 1$  to minimize non-nucleonic currents
- $\theta_{\rm rq} < 40^{\rm o}$  to minimize FSI
- $E_{\text{beam}} = 4.4 \text{ GeV}$ 
  - Maximum beam energy for HRSe
  - Maximizes the cross section
- $0 < p_{\rm miss} < 500 \, {\rm MeV/c}$ 
  - Covers the region where the  ${}^{3}\text{He}/{}^{3}\text{H}$  ratio decreases from 2 to 1
- HRS<sup>2</sup> with standard electron and proton detection packages

![](_page_15_Figure_0.jpeg)

#### d(e,e'p) Backgrounds and Rates

![](_page_16_Figure_1.jpeg)

### The Marathon Target

18

• Identical 25-cm sealed-cell gas target cells for H<sub>2</sub>, D<sub>2</sub>, T<sub>2</sub>, <sup>3</sup>He

#### • $I_{\text{beam}} \leq 25 \ \mu \text{ A}$

| Cell            | Thickness<br>(mg/cm <sup>2</sup> ) | Pressure<br>(psi) | Number<br>density |
|-----------------|------------------------------------|-------------------|-------------------|
| $H_2$           | 55                                 | 400               | 2                 |
| $D_2$           | 111                                | 400               | 2                 |
| $T_2$           | 82                                 | 200               | 1                 |
| <sup>3</sup> He | 82                                 | 400               | 1                 |

NB: Pressure is at room temperature. Cells will be cooled during target operation.

![](_page_17_Picture_5.jpeg)

### The Marathon Target

![](_page_18_Picture_1.jpeg)

- Open cell design allows a wide range of scattering angles
- Wall thickness 0.018" Al (120 mg/cm<sup>2</sup>)
- Entrance and exit windows: 0.010" Al (65 mg/cm<sup>2</sup>)
- The proton HRS will not see the cell windows

#### Count Rate Estimates

- MCEEP
  - Automatically includes all spectrometer acceptances
  - *R*-function cuts
- Deuteron PWIA cross section including electron radiation
  - $I_{\text{beam}} = 25 \ \mu \text{ A}$
  - $t = 75 \text{ mg/cm}^2$  deuterium (actually 111 mg/cm<sup>2</sup>)
- Used deuterium count rates for  $D_2$ ,  $T_2$  and <sup>3</sup>He
  - Ratio of number densities  $D_2:T_2:^3He = 2:1:1$
  - Ratio of high  $p_{\text{miss}}$  cross sections: 1:2:2
- Factor of 111 / 75 = 1.5 to account for
  - More restrictive acceptance cuts
  - Spectrometer efficiencies (about 15% each)

![](_page_20_Figure_0.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

## Summary

- Goal: understand nucleon momentum distributions in asymmetric nuclei
- Measure d, <sup>3</sup>H, and <sup>3</sup>He(e,e'p)
  - $Q^2 = 2 \text{ GeV}^2$  and x > 1 to minimize MEC and IC
  - $\theta_{rq} = 30^{\circ}$  to minimize FSI
  - Calculate <sup>3</sup>He/<sup>3</sup>H ratio to cancel residual FSI
- Measure the mean-field to SRC transition in the <sup>3</sup>He/<sup>3</sup>H ratio from 2 at low  $p_{\rm miss}$  to 1 at high  $p_{\rm miss}$
- Measure absolute cross sections and ratios to deuterium to constrain detailed calculations
- Unique opportunity to measure <sup>3</sup>H(*e*,*e*'*p*)

24

![](_page_23_Figure_9.jpeg)

![](_page_23_Figure_10.jpeg)

6/13/13