JLAB POLARIZED ³He TARGET STATUS

Jie Liu

University of Virginia

On Behalf of the Polarized ³He Target Group

Hall A Collaboration Meeting

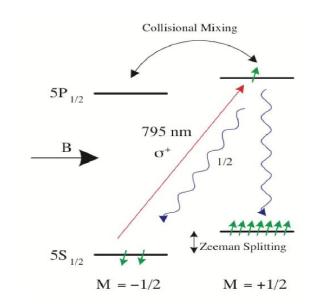
June 13, 2013

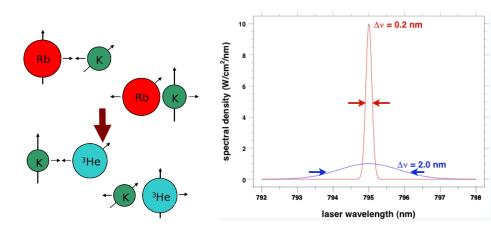
Outline

- Introduction
- 12 GeV Upgrade Plan
- 12 GeV System Progress
- Summary

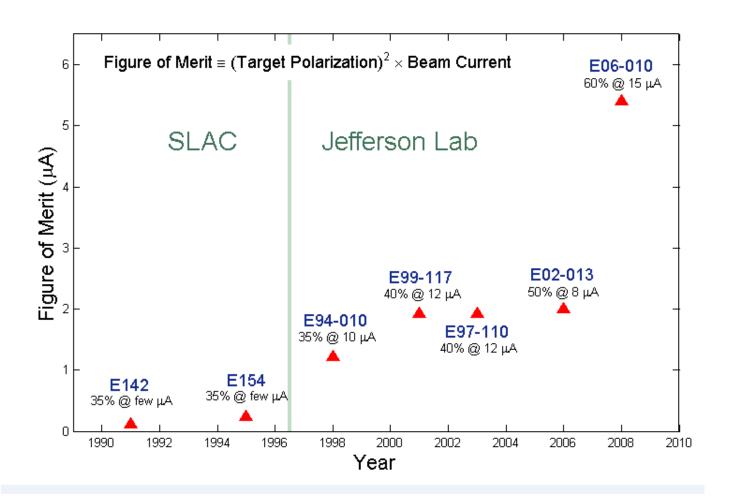
³He Target Introduction

➤ How to polarize ³He Target


- Spin-exchange optical pumping (SEOP),
 - Polarize the alkali metal atoms
 - Exchange spin with ³He


> Improvements in the SEOP:

- The change from Rb to Rb-K mixture (hybrid cell)
- The use of spectrally-narrowed diode lasers


> Performance

- Spin up time shorten: 10 hours \rightarrow about 5 hours
- In-beam target polarization: 40% → 50% (GEN) → 60% (Transversity)

Figure-of-Merit history for high luminosity polarized ³He Target

12 GeV ³He Target Requirement

Experiment	Density	Length	Pol.	Current	Lumi	Polarimetry	
A1n-A : 23 days, A-, I	BigBite, thir	window/co	ollimation, E	BB field shie	eld/compen	sation	
proposed	10 amg	60 cm	65%	30 uA	3x10 ³⁶	3%	
should	10 amg	40 cm	55%	30 uA	2x10 ³⁶	3%	
acceptable	10 amg	40 cm	55%	15 uA	1x10 ³⁶	3%	
GENII-A: 50 days, A-, BigBite/SBS, thin window/coll., BB/SBS field shield/comp.							
proposed	10 amg	60 cm	65%	60 uA	6x10 ³⁶	3%	
acceptable	5/8 FOM						
SIDIS-A: 64 days, A-, BigBite/SBS, vertical polarization and fast spin flip (2 min)							
proposed	10 amg	60 cm	65%	40 uA	4x10 ³⁶	3%	
acceptable	5/8 FOM						
d2n-C: 29 days, A-, HMS/SHMS							
proposed	10 amg	60 cm	55%	30 uA	3x10 ³⁶	3%	
acceptable	10 amg	40 cm	55%	15 uA	1x10 ³⁶	3%	
A1n-C: 36 days, A, HMS/SHMS							
proposed	10 amg	60 cm	60%	60 uA	6x 10 ³⁶	3%	
acceptable	10 amg	60 cm	60%	40 uA	4x10 ³⁶	3%	

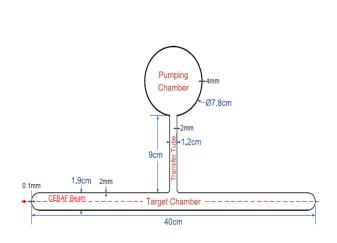
Note: Another two approved experiment E12-10-006 and E12-11-007 (both related to SOLIDS), requirements for ³He Target already achieved in 6 Gev era.

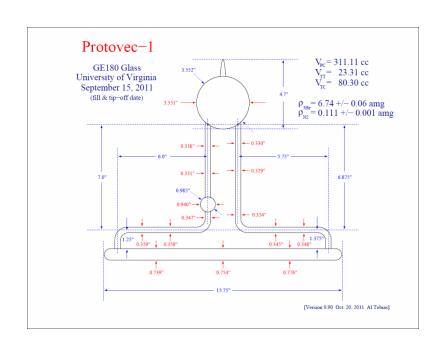

³He Target Upgrade Plan

>Two steps:

- * Firstly upgrade to a 40cm target with 30uA beam current and reaching ~60% polarization
- Most parts will be used form Transversity experiment
- *Using cells with convection flow*
- *Using a single pumping chamber with 3.5" diameter sphere*
- Shielding pumping chambers from radiation damage
- Using pulsed NMR, calibrated with EPR and water NMR
- Necessary to measure EPR calibration constant k_0 to higher temperature range covering the hybrid cell operation temperature (user responsibility)
- Metal end-windows desirable (optional for 30 uA, must for higher current).
- First running of polarized ³He experiment is expected to be in 2016
- **Secondly upgrade to meet the need for A₁ⁿ in Hall C and GENII in Hall A**

06/13/2013

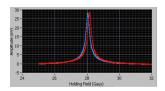

Mechanical Design



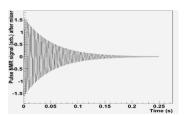
Diffusion Cell to Convection Cell

> New convection style cell (single pumping chamber)

- "Protovec-I" tested at Uva, transferred to JLab a few months ago
- 3D measurement of the cell, CAD model
- Made customized mount and oven bottom piece
- testing ongoing at JLab now



³He Target Polarimetry

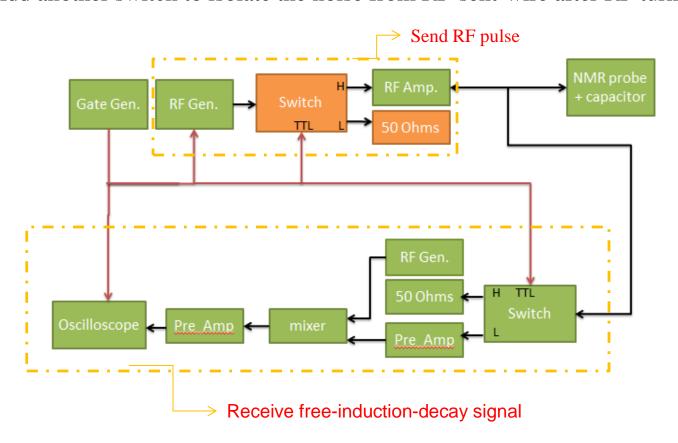

> Adiabatic Fast Passage (AFP) - NMR

- AFP-NMR will be only used for calibration
- If use hybrid glass/metal cells
- Work for both ³He and water

$|\vec{M}_Z|$

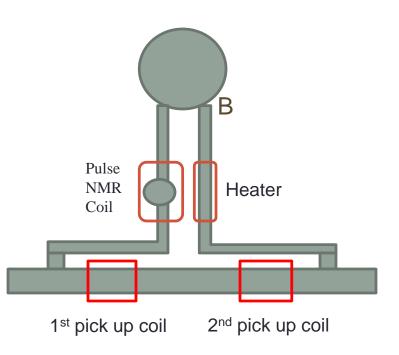
> Electron Paramagnetic Resonance (EPR)

EPR will still work

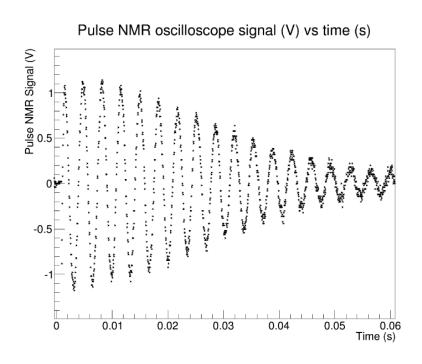

>Pulse NMR

- Send a pulse tuned at Larmor Frequency
- Spin presses tipping from holding field
- $\theta_{tip} = \frac{1}{2} \gamma H_1 t_{pulse}$
- Spin components orthogonal to holding field,
- Have free-induction-decay, Amplitude $\propto M_z \sin(\theta_{tip})$

AFP-NMR will not be suitable for measurement on target chamber of glass/metal cell. Pulse NMR can work on transfer tube


Pulse NMR @JLab

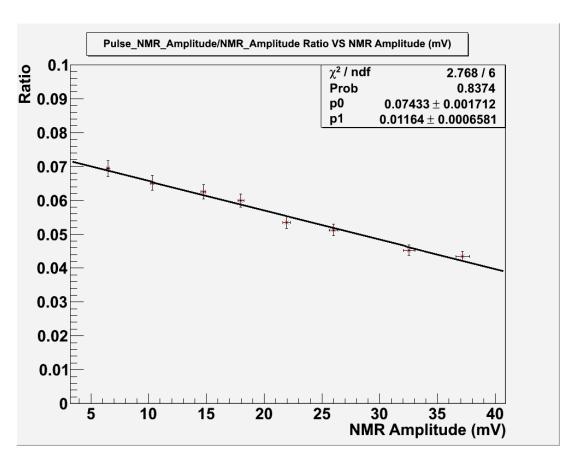
Add another switch to isolate the noise from RF-sent-wire after RF turned off



Pulse NMR Update

> Pulse NMR on convection cell

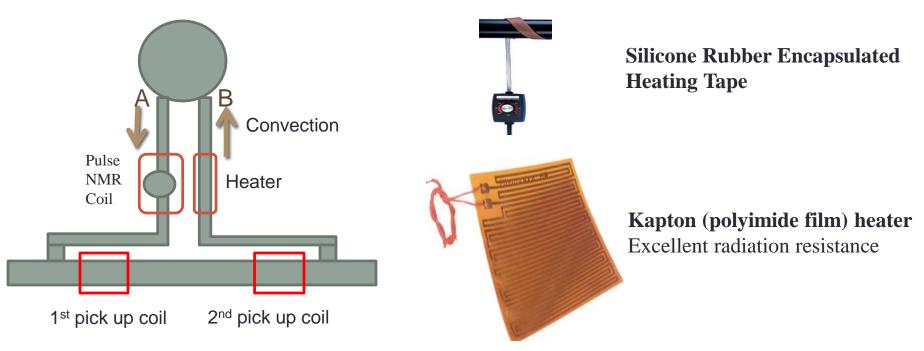
Pulse NMR monitor polarization locally around the 1-inch bulb



Challenge: to improve S/N

06/13/2013

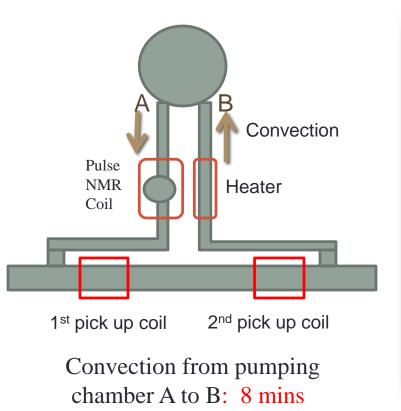
Pulse NMR


> Pulse NMR compared with regular NMR

Systematic study continuing

³He Convection Heater

> Heater choice and effects study

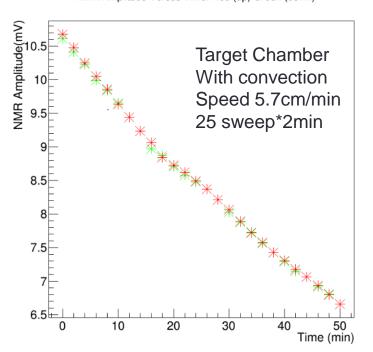

Heater instead of convection oven?

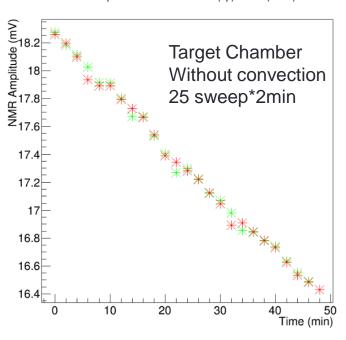

Advantage:

Reduce oven design labor More convenient to replace cell... Problem: Affect AFP?

³He Convection Speed Test

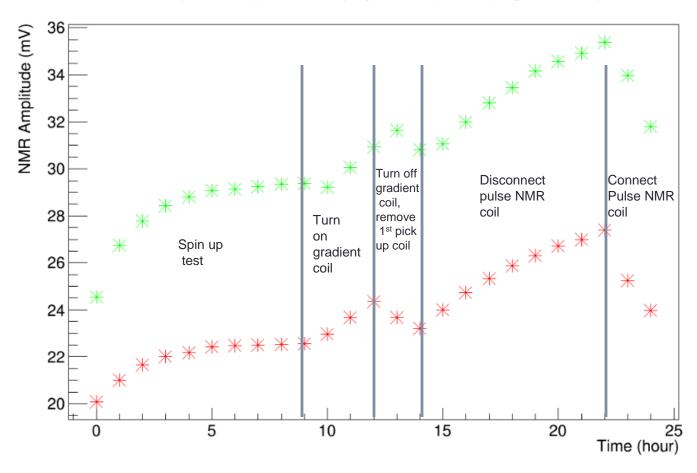
➤ Convection can be much faster than diffusion (~40min)




06/13/2013

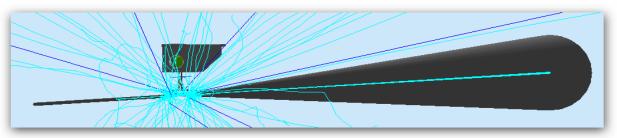
AFP Lost Study

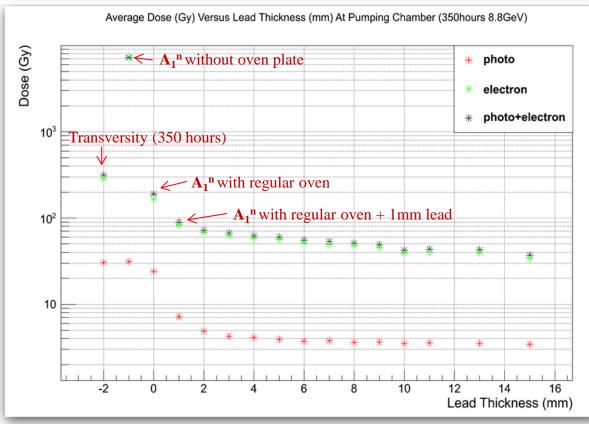
NMR Amplitude Versus Time: Red (up) Green (down)



AFP lost per sweep	Target Chamber (%)	Pumping Chamber (%)
AFP Without Convection	0.16%	0.72%
AFP With Convection	0.85%	0.87%

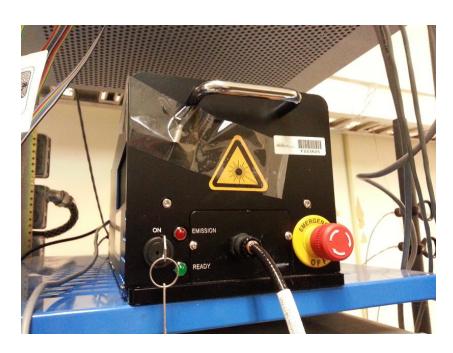
Masing Effect

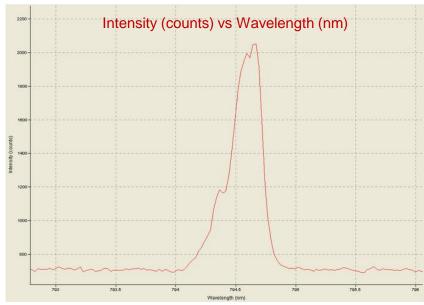

> Masing Effect: non-linear coupling between pick-up coil and spin


NMR amp vs Time(S): Red (Pumping chamber) Green (Target Chamber)

06/13/2013

³He Target Radiation Shielding Study


- Study the background shielding from pumping chamber to radiation damage
- Most of the radiation shielded by the oven
- A_1^n will not bring radiation to pumping chamber as much as Transversity


Lasers

>New lasers

06/13/2013

- The Comet laser (25W, 0.2nm width) production was discontinued
- Purchased one QPC Laser (Hall C, 25W, 0.27nm width) and doing test now
- Possibly upgrade Coherent lasers by Raytum

User Activity at University Polarized ³He Target Labs

>User Activity:

- ***University of Virginia (Gordon Cates's group)**
- Cell designs
- Convection cell test
- Pulse NMR

06/13/2013

- Magnetic field studies
- R&D metal end-windows test and others
- ***College of William and Mary (Todd Averett's group)**
- QPC laser test and others
- *Other groups (Temple U., U. of Kentucky, Duke U., Lanzhou U. ...)

Jie Liu < jie@jlab.org>

Summary

- > 12 GeV requirements and plan are set
- > 12 GeV R&D in progress
- > Future Plan
- Near term- summer:
 - Jie Liu and two summer students (Stacy Karthas and Joseph Newton) now
 - More will be here in July-August
 - Complete convection cell/heating/polarization loss study
 - Pulsed NMR systematic study

Longer term: ~6 month

- Full polarization test
- Goal by 2016: full system ready for A1n-A exepriment

Thanks!

>People @ Jlab

- **Zhiwen Zhao** (postdoc, UVa) part time
- Supervision: J.P. Chen and Patricia Solvignon
- Help from: Yi Qiang, Jin Huang, Yi Zhang, Yawei Zhang, Chunhua Chen, Vincent Sulkosky ...

> Collaborators @ University

- University of Virginia (Gordon Cates's group)
- College of William and Mary (Todd Averett's group)
- Other groups (Temple U., U. of Kentucky, Duke U., Lanzhou U...)