Hall A Compton Polarimeter

Sirish K. Nanda Jefferson Lab

Hall A Collaboration Meeting June 13, 2013

Thomas Jefferson National Accelerator Facility

Compton Polarimetry Basics

High precision, non-intrusive, real-time electron beam polarimetry

- -> Accuracy improves with higher electron and photon energies
 - Figure-of-Merit ~ $\sigma x A^2 ~ k^2 x E^2$

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Hall A Compton Polarimeter

High Power Fabry-Perot Cavity

Jefferson Lab

Green: Twice the Analyzing power of IR cavity Increased Figure-of-Merit

Infrared: Offers higher power than Green Better suited for higher energies/poor beam background

Electron Detector

- High resolution silicon micro-strips
- 240 µm pitch/768 chan/4 planes
- Movable in vertical plane

Photon Detector

- GSO detector for low energy
- PbWO for higher energies
- Counting and integrating capabilities

Data Acquisition

- Integrating photon DAQ operational
- High speed counting (1 MHz@1kHz spin-flip) DAQ in development

Participating Institutions: Clermont-Ferrand, CMU, Syracuse, UVA, Duke, Manitoba, MSU, and Jlab

Thomas Jefferson National Accelerator Facility

Photon Source

Jefferson Lab

Present Status:

Infrared pump: 4 W Green laser power: 1 W Incident on cavity: 0.8 W

Power in cavity: 10kW Mirror finesse: 26,825 Cavity Gain: ~ 12,000

Striving to achieve >10kW in Compton laser lab test setup©

Thomas Jefferson National Accelerator Facility

Green Fabry-Perot Cavity

Installed in Hall A

Under tests in Compton Lab

• Scope

- 768 ch 240 μm pitch, 0.5mm thick silicon μstrips
- 4 Planes, 192 strips/plane, 1 cm spacing between planes
- 120 mm vertical motion allows coverage of Compton edge from 0.8-11 GeV

Inside view

Thomas Jefferson National Accelerator Facility

E-detector Status

Compton spectrum obtained at 3 GeV in Hall A©

- But, poor signal-to-noise ratio => low detection efficiency
- Thicker silicon strips to improve signal under study, cosmic ray studies in progress in Hall A following Clermont-Ferrand tests
- Test setup in preparation at Manitoba to improve electronics

Si strip signal with radioactive source Vertical mount for cosmic studies Ready for commissioning with beam in Spring 2014 Jefferson Lab ______ Thomas Jefferson National Accelerator Facility

• Calorimeter

- Single crystal GSO, 6 ϕ x15 cm cylinder supplied by Hitachi Chemicals
- High light output, fast decay time (less than 60 ns)
- Triggered counting as well as continuous integration.
- Operational in Hall A since 2009
- PbWO4 calorimeter for 11 GeV in development

Thomas Jefferson National Accelerator Facility

GSO Calorimeter High Energy Performance

GSO calorimeter has been tested up to 6 GeV

Central Crystal 10⁴ Signal+Bgk Bkg 10³ 10² 10 γ ADC channels Compton Scattering asymmetries Asym in ADC bins ounting Rates

Compton Scattering cross-section

E_e = 5.9 GeV ٠

Jefferson Lab

- E_γ = 0.2 0.8 GeV ٠
- P_γ = 450 W@1064 nm ٠

Ready for commissioning with beam in Spring 2014

Thomas Jefferson National Accelerator Facility

Compton DAQ Upgrade

Bob Michaels, Kalyan Allada, Alexandre Camsonne, and DAQ Group

Thomas Jefferson National Accelerator Facility

Synchrotron Radiation Background

Quinn et al...

At 11 GeV synchrotron radiation background overwhelms the photon calorimeter But, it can be suppressed with simple fringe field modifications ©

Fringe field extension plates

Long field plates

Long plates installed on all four dipole magnets

Thomas Jefferson National Accelerator Facility

Magnetic Field Measurements

Goal: - Map only D3, Both integral and differential

- Verify field plate design for beam transport
- 3D map of D3 to improve e-arm analysis
- 3 Maps: Basic dipole, +P1, and +P2
- Integral (Bagget, Pena, Meyers)
 - Stretched wire technique
 - 2 m coverage (1 m EFL)
 - 0-400-0 A, 25A step loop, 1.5T Max
 - ~0.5x10⁻⁴ accuracy for integral

Jefferson Lab

• Differential 3D (Jones, Paschke, Zhang)

- Hall Probe with NMR Cross calibration
- 2x4x80 cm coverage
- 0-400-0 A, 100A step loop
- ~10⁻³ accuracy per point

Both mapping results are in excellent agreement with Tosca simulations

Thomas Jefferson National Accelerator Facility

Dipole #3 Field Map Staging

- D3 rolled downstream on temporary support (Folts)
- Field plates installed, ready for field measurements

Jefferson Lab

∫ Bdl Measurements

Integral field measurements with stretched wire technique

- Agree well with previous Saclay measurements
- Validate Tosca calculations at 10⁻³ level

Jefferson Lab

Thomas Jefferson National Accelerator Facility

New Compton Laser Lab

Thanks to: Walt Akers, Jack Segal, Ed Folts and many others

Jefferson Lab

We have a new Laser Lab Expected to be operational in July

Thomas Jefferson National Accelerator Facility

Compton Upgrade Status

- Engineering ٠
 - **Designs** done
 - All major components fabricated, delivered to Hall A

Installation .

- D2, D3, Optics table raised •
- Magnet power/LCW restored
- Field measurements completed ٠
- Beam line installation in progress

Optics

- Optics table 'boxed up' to facilitate beamline work (Hafez)
- New Compton Laser Lab coming online soon ٠
- Optics restoration to commence thereafter: Collaboration help needed! ٠
- **Detectors**
 - Photon and electron detectors installed, checkout in progress ٠
 - DAQ in development •

Ready for commissioning with beam in Spring 2014

