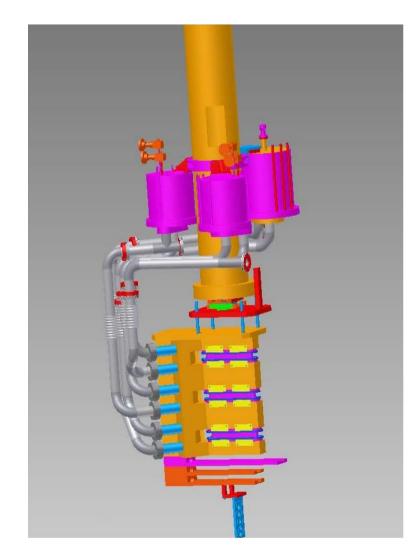
E12-07-108: (GMp) Precision Measurement of the Proton Elastic Cross Section at High Q²

Kalyan Allada, MIT

(for the E12-07-108 Collaboration)

Hall A Collaboration Meeting 16th December 2013

Goals for GMp Experiment

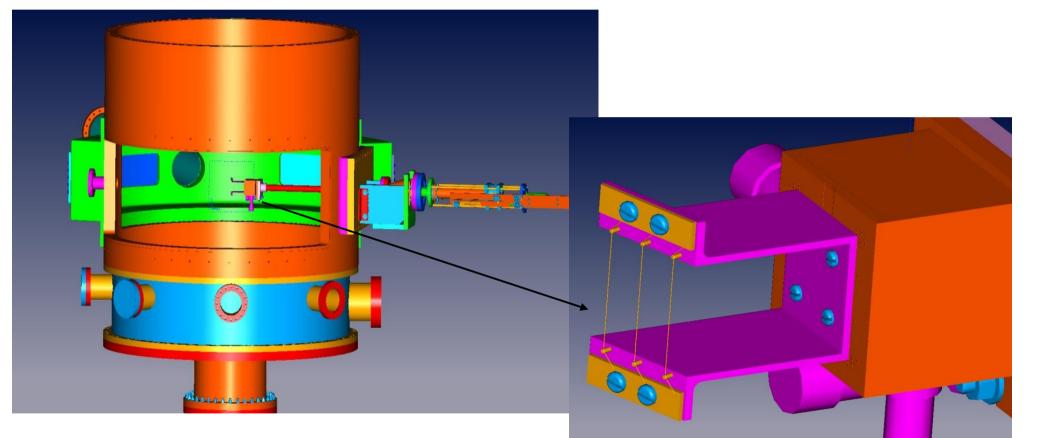

- Accurately measure e-p elastic cross section in kinematics similar to other JLab form factor measurements ($Q^2 = 7 14 \text{ GeV}^2$)
- Improve accuracy of the cross section by as much as a factor of 5 (< 2%) over previous measurements
- Key input to all form factor experiments, and many of other experiments where elastic scattering is used for normalization
- Approved for 24 PAC days

$$\frac{d\sigma}{d\Omega} = \sigma_{\text{Mott}} \frac{\epsilon (G_E^p)^2 + \tau (G_M^p)^2}{\epsilon (1+\tau)}, \qquad \sigma_{\text{Mott}} = \left(\frac{\alpha}{2E} \frac{\cos \frac{\theta}{2}}{\sin^2 \frac{\theta}{2}}\right)^2 \frac{E'}{E}$$

$$au = Q^2/4M_{p}$$
 and $\epsilon = [1+2(1+ au) an^2 heta/2]^{-1}$

Cryo Target Configuration

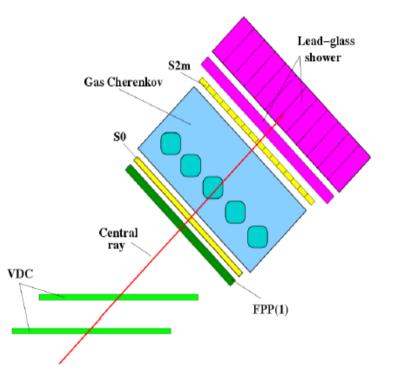
- 15 cm LH2
 - Large 3 inch cell
 - Vertical flow
 - Reduce density fluctuation
- Large vertical acceptance requirement for DVCS (20 degrees)
- Solid targets
 - less than 2% radiation length for March running
 - Standard dummy target (Al foil)
 - Standard optics target (5 foils)
 - Empty



Updates from D. Meekins

Wire Target for Pointing/Angle

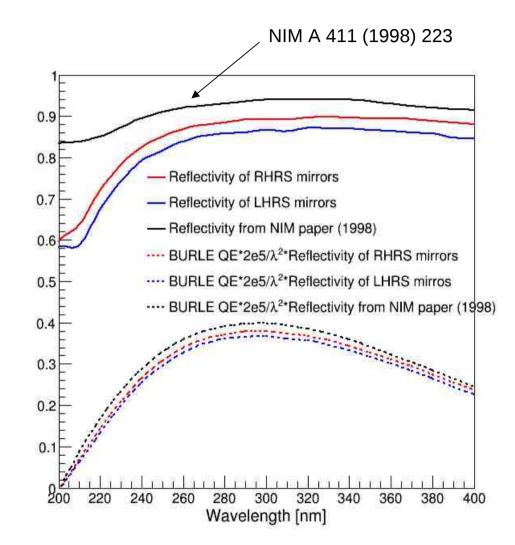
Wires:


- 0.5" apart along the beamline
- 1/16" (~1.6 mm) apart transverse to beam

Wire target, reproducibility of 100 microns sufficient Design completed, parts ordered, assembly in progress

HRS Detector Stack

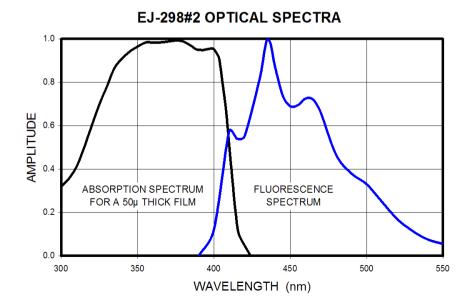
- Standard detector stack
- Replace old VDC disc. cards with new MAD cards (done)
- Install one straw chamber in each spectrometer (done)
 - Determine reconstruction efficiency to 0.5%
- Replace aging PMTs in Gas Cerenkov with new 5" Tubes (in progress)
- Use wavelength shifter (WLS) for Gas Cerenkov PMTs (WLS tests done)

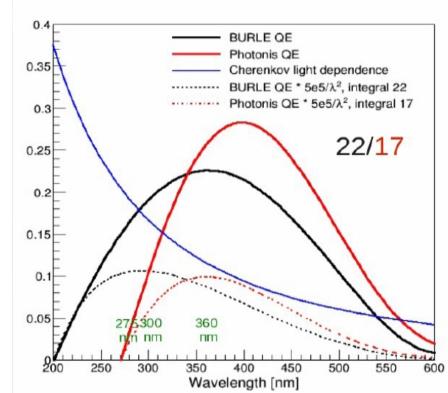

FPP Updates

- Straw chamber installed in both spectrometers
- All cables connected, signals to FASTBUS TDCs
- HV distribution is operational
- Left HRS gas flow is operational, need gas line in Right HRS
- Signals checkout with cosmics (in progress)

Gas Cerenkov Updates: Mirror Reflectivity

- Mirror Reflectivity tests done
- Deterioration in reflectivity was observed for all tested mirrors
 - ~ 30% near 200 nm
 - ~ 6% around 300 nm
- Reduction of combined efficiency due to drop in reflectivity:
 - For BURLE : ~ 8 %
 - For ET Tubes : ~ 7%
- Mirror alignment finished
- GC installed in HRS stack, no PMTs yet

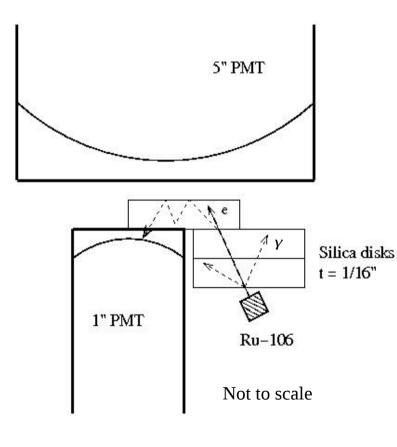


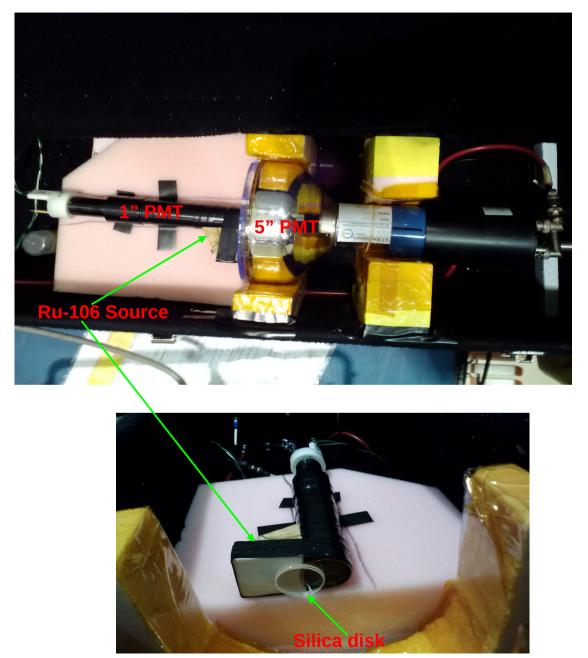

Plot by Longwu Ou

Wavelength Shifter (WLS) for PMTs

- Will use new PMTs (ET Enterprises, model: 9390KB)
- Test wavelength shifter (WLS) to increase efficiency
 - Goal : at least 10 PE in experiment
- Tested four different WLS samples using a bench setup

WLS EJ-298#2 paint (Eljen Technology)





Cerenkov Test Setup

Cerenkov spectrum using beta source (Ru-106) and fused silica disks

Trigger on 1" PMT and integrate pulse from 5" tube (coincidences)

Evaluation of WLS Samples

• Tested four different WLS paint samples:

- EJ-289 #2 (commercially available)
- EJ-299-31A –
- EJ-299-31C ≻
- Evaluation samples specially developed by Eljen Technologies
- EJ-299-31E J

• Sample EJ-299-31E gave the best gain improvement

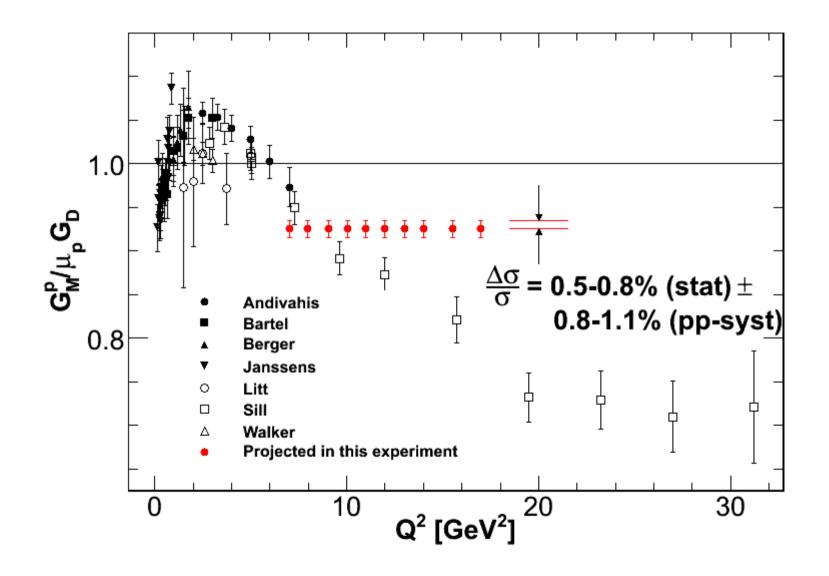
Setup #	painted(y/n)?	# of PE	% increase in gain
A	no	10.8	-
B	no	10.1	-
C	no	6.13	-
A	yes	14.3	32
B	yes	13.8	37
C	yes	8.63	41

- Different setups corresponds to changes in the location of silica disks
- Results are reproducible with different PMTs and after 7-10 days of re-testing
- EJ-299-31E paint ordered, WLS application on 20 PMTs in early Jan 2014

Evaluation of WLS Samples

- Tested four different WLS paint samples:
 - EJ-289 #2 (commercially available)
 - EJ-299-31A
 - EJ-299-31C – EJ-299-31E
- Evaluation samples specially developed by Eljen Technologies
- Sample EJ-299-31E gave the best gain improve

Setup #	painted(y/n)?	# of PE	
A	no	10.8	
B	no	10.1	
C	no	6.13	
A	yes	14.3	
B	yes	13.8	
C	yes	8.63	


- Different setups corresponds to changes in the location
- Results are reproducible with different PMTs and a
- EJ-299-31E paint ordered, WLS application on 20

Painted surface turns opaque after 3-4 days But does not affect the improvement in gain

HRS Data Acquisition and Detector Checkout

- Three FASTBUS crates in the configuration
- Cosmic trigger from s0 and s2m coincidence
- Right HRS
 - VDC checkouts done
 - Need to check other detectors (GC, Straw chamber, Shower+preshower)
- Left HRS
 - VDC was checkout done
 - Currently checking pion rejector, gain matching (in progress)
- Online software to check detectors
 - VDC, s0, s2m, pion rejector (done)
 - Working on straw chamber software

Expected Precision

Expected Systematic Uncertainties

Source	$\Delta\sigma/\sigma$ (%)
Point to point uncertainties	
Incident Energy	<0.3
Scattering Angle	0.1-0.3
Incident Beam Angle	0.1-0.2
Radiative Corrections*	0.3
Beam Charge	0.3
Target Density Fluctuations	0.2
Spectrometer Acceptance	0.4-0.8
Endcap Subtraction	0.1
Detector efficiencies and dead time	0.3
Sum in quadrature	0.8–1.1
* Not including TPE	

Expected Systematic Uncertainties

Source	$\Delta\sigma/\sigma$ (%)
Normalization uncertainties	
Beam Charge	0.4
Target Thickness/Density	0.5
Radiative Corrections*	0.4
Spectrometer Acceptance	0.6-1.0
Endcap Subtraction	0.1
Detector efficiencies and dead time	0.4
Sum in quadrature	1.0–1.3
Statistics	0.5–0.8
Total (Scale+Rand.+Stat.)	1.2–1.7
* Not including TPE	

Manpower

Spokespeople:

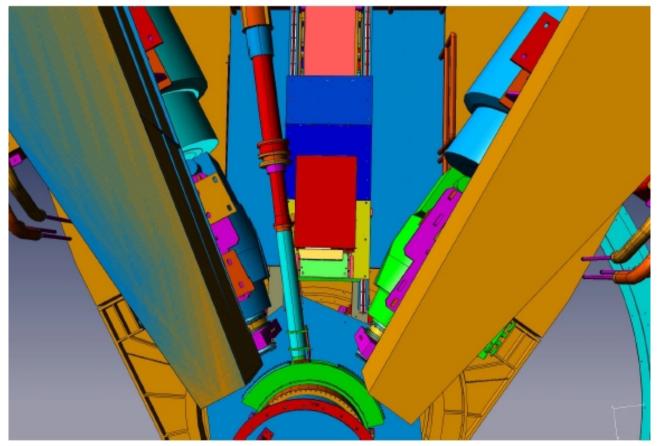
J. Arrington, E. Christy, S. Gilad, B. Moffit, V. Sulkosky, B. Wojtsekhowski

Graduate Students:

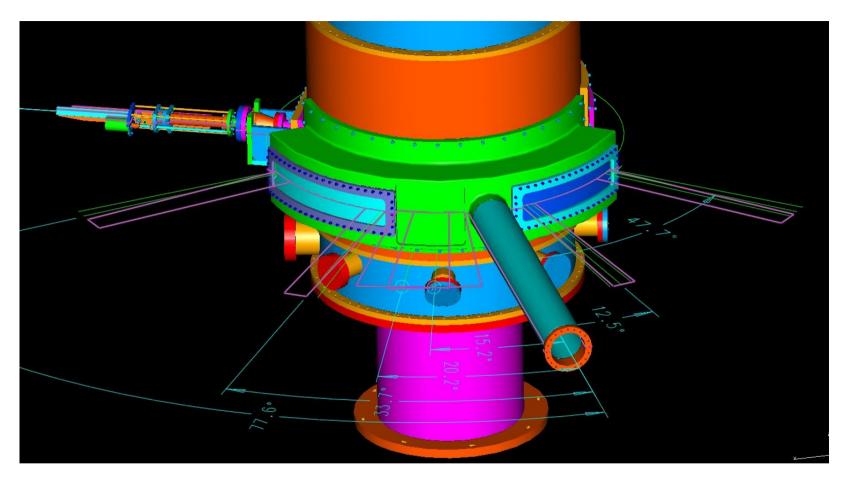
Longwu Ou (MIT) Yang Wang (W&M) Gautam Thir Narayan (Hampton Univ) Barak Schmookler (MIT) (potential student)

Manpower

- HRS detectors/DAQ:
 - Longwu Ou, Barak Schmookler, Kalyan Allada (MIT)
 - Yang Wang (W&M)
 - Daniel Kirby (CMU)
 - Igor Rachek (Budhker)
 - Vincent Sulkosky (Longwood Univ)
 - Sergey Abrahamyan, Karen Ohanyan, Galust Sargsyan, Albert Shahinyan (YerPhy)
 - Alexandre Camsonne, Bogdan Wojtsekhowski, Robert Michaels, Bill Gunning, Jack Segal, Susan Esp, Chris Cuevas (JLab)
- Online/offline Software
 - Longwu Ou, Barak Schmookler, Kalyan Allada (MIT)
 - Yang Wang (W&M)
 - Ole Hansen (JLab support)
- Target
 - JLab Target group (D. Meekins et al.)
 - Jian-Ping Chen (JLab)
- Simulations:
 - Eric Christy (Hampton)
 - Gautam Thir Narayan (Hampton)
 - Longwu Ou and Barak Schmookler (MIT)


Summary

- Precise e-p elastic cross-section measurement at $Q^2\,up$ to $14\;GeV^2$
- Progress made in preparing for the experiment:
 - Target design complete
 - New VDC cards installed
 - Straw chamber installed
 - Refurbishing GC (Mirror reflectivity, alignment, support, WLS on PMTs)
 - Detector checkout in progress
 - Angle measurement, survey plans, floor marks (plates)
- Getting ready for Hall commissioning run in March, 2014
- Full production run in Fall 2014!


Spare Slides

New Narrow DVCS Support Stand

DVCS: -8.5° and 2.0 m from target center HRS-L: 20.2° HRS-R: -43.0°

Angle Restrictions

Restrictions from scattering chamber design:

- LHRS: 12.50 to < 480 (> 180 with calorimeter)
- ➢ RHRS: -33.70 to < -780 (> 450 with calorimeter)
- DVCS calorimeter: < -200</p>