Measurement of the Coulomb quadrupole amplitude in the $\gamma^* p \rightarrow \Delta(1232)$ reaction in the low momentum transfer region

(E08-010)

Adam J. Sarty

(co-spokesperson; Saint Mary's University

Other Spokespeople

<u>Nikos Sparveris</u>(Temple U; <u>contact</u> person) **Doug Higinbotham** (Jefferson Lab)

Shalev Gilad (MIT)

Postdocs + Students

Michael Paolone (Temple, postdoc) David Anez(SMU & Dalhousie U., PhD student) Adam Blomberg (Temple U; PhD student)

Talking with a CQM view of a nucleon wave-function:

- Dominant M_{1+} is a "spin-flip" transition; N and Δ both "spherical"...L=0 between 3 quarks
- BUT, the Quadrupole transitions (E₁₊, S₁₊) "sample" the "not L=0" parts of the wavefunctions.
- Consider writing wavefunctions like so:

 $|N(939)\rangle = a_{S} |(S = \frac{1}{2}, L = 0)J^{\pi} = \frac{1}{2}^{+}\rangle + a_{D} |(S = \frac{3}{2}, L = 2)J^{\pi} = \frac{1}{2}^{+}\rangle$ $|\Delta(1232)\rangle = b_{S} |(S = \frac{3}{2}, L = 0)J^{\pi} = \frac{3}{2}^{+}\rangle + b_{D} |(S = \frac{1}{2}, L = 2)J^{\pi} = \frac{3}{2}^{+}\rangle$

then,

we can view the quadrupole tx as...

 These Quadrupole transitions thus give insight into small L=2 part of wf.

Phys. Rev. C63, 63 (2000)

 $\hat{Q}_{[1]} = \sqrt{\frac{16\pi}{5}} \sum_{i=1}^{3} e_i r_i^2 Y_0^2(\vec{r}_i) = \sum_{i=1}^{3} e_i \left(3z_i^2 - r_i^2\right)$

- These Quadrupole transitions thus give insight into small L=2 part of wf.
- Such L=2 parts arise from "colour hyperfine interactions" between quarks

IF the assumption is a "one-body interaction":

Phys. Rev. C63, 63 (2000)

- These Quadrupole transitions thus give insight into small L=2 part of wf.
- <u>BUT</u> L=2 transitions can also arise via interactions with virtual exchanged pions (the "pion cloud"):

$$\hat{Q}_{[2]} = B \sum_{i \neq j=1}^{3} e_i \left(3\sigma_{iz} \sigma_{jz} - \vec{\sigma}_i \cdot \vec{\sigma}_j \right)$$

Goal of THIS "N $\rightarrow \Delta$ " Experiment: FOCUS ON LOW Q² WHERE PION CLOUD DOMINATES

Δ

- At low momentum transfer: the Pion Cloud dominates the "structure" of wavefunctions
- These pion dynamics dictate the long-range non-spherical structure of the nucleon ... and that is where we focus.

Where our Planned Results Fit (from proposal)

focus on: CMR ~ C2/M1 ratio at lowest Q²

$p(\vec{e}, e'\vec{p})\pi^0$ Responses

-5

18 Response Functions: Each with their own Unique/Independent combination of contributing Multipole transition amplitudes

$$\frac{d^{\sigma}\sigma}{d\varepsilon_{f}d\Omega_{e}d\Omega_{cm}} = \frac{p_{cm}}{k_{\gamma cm}}\Gamma_{\gamma} \ \bar{\sigma}_{0} \left[1 + hA + \boldsymbol{\mathcal{S}} \cdot (\boldsymbol{P} + h\boldsymbol{P}')\right]$$

$$\bar{\sigma}_{0} = \nu_{L}R_{L} + \nu_{T}R_{T} + \nu_{LT}R_{LT}\cos\phi + \nu_{TT}R_{TT}\cos 2\phi$$

$$A\bar{\sigma}_{0} = \nu'_{LT}R'_{LT}\sin\phi$$

$$P_{N}\bar{\sigma}_{0} = \left[\nu_{L}R_{L}^{N} + \nu_{T}R_{T}^{N} + \nu_{LT}R_{LT}^{N}\cos\phi + \nu_{TT}R_{TT}^{N}\cos 2\phi\right]$$

$$P_{m}\bar{\sigma}_{0} = \left[\nu_{LT}R_{LT}^{m}\sin\phi + \nu_{TT}R_{TT}^{m}\sin 2\phi\right] \quad (m \in \{L, S\})$$

$$P'_{M}\bar{\sigma}_{0} = \nu'_{LT}R'_{LT}\sin\phi$$

$$P'_{m}\bar{\sigma}_{0} = \left[\nu'_{LT}R'_{LT}m\cos\phi + \nu'_{TT}R'_{TT}m\right] \quad (m \in \{L, S\})$$

• We will extract just (R_{LT}) by left/right measurements) – and σ_0 - since LT term is very sensitive to size of L_{1+} (see next slide...)

$p(\vec{e}, e'\vec{p})\pi^0$ Responses

18 Response Functions:

Each with their own Unique/Independent combination of contributing Multipole transition amplitudes

For Example: decomp of 5 R's (Drechsel & Tiator)

$$R_{L} = \left| L_{0*} \right|^{2} + 4 \left| L_{1*} \right|^{2} + \left| L_{1-} \right|^{2} - 4 \operatorname{Re} \left\{ L_{1*}^{*} L_{1-} \right\} + 2 \cos \theta \operatorname{Re} \left\{ L_{0*}^{*} \left(4 L_{1*} + L_{1-} \right) \right\} + 12 \cos^{2} \theta \left(\left| L_{1*} \right|^{2} + \operatorname{Re} \left\{ L_{1*}^{*} L_{1-} \right\} \right)$$

$$R_{T} = \left| E_{0+} \right|^{2} + \frac{1}{2} \left| 2 M_{1+} + M_{1-} \right|^{2} + \frac{1}{2} \left| 3 E_{1+} - M_{1+} + M_{1-} \right|^{2} + 2 \cos \theta \operatorname{Re} \left\{ E_{0+}^{*} \left(3 E_{1+} + M_{1+} - M_{1-} \right) \right\} + \cos^{2} \theta \left(\left| 3 E_{1+} + M_{1+} - M_{1-} \right|^{2} - \frac{1}{2} \left| 2 M_{1+} + M_{1-} \right|^{2} - \frac{1}{2} \left| 3 E_{1+} - M_{1+} - M_{1-} \right|^{2} \right)$$

$$R_{TL} = -\sin\theta \operatorname{Re}\left\{L_{0+}^{*}\left(3E_{1+} - M_{1+} + M_{1-}\right) - \left(2L_{1+}^{*} - L_{1-}^{*}\right)E_{0+} + 6\cos\theta\left(\frac{L_{1+}^{*}}{L_{1+}}\left(E_{1+} - \frac{M_{1+}}{L_{1+}} + M_{1-}\right) + L_{1-}^{*}E_{1+}\right)\right\}$$

$$R_{TT} = 3\sin^2\theta \left(\frac{3}{2} |E_{1+}|^2 - \frac{1}{2} |M_{1+}|^2 - \operatorname{Re}\left(\frac{E_{1+}^*}{M_{1+}} - M_{1-}\right) + M_{1+}^* M_{1-}\right)\right)$$

$$R_{TL'} = \sin\theta \operatorname{Im} \left\{ L_{0+}^* \left(3E_{1+} - M_{1+} + M_{1-} \right) - \left(2L_{1+}^* - L_{1-}^* \right) E_{0+} + 6\cos\theta \left(\frac{L_{1+}^*}{L_{1+}^*} \left(E_{1+} - \frac{M_{1+}}{L_{1+}} + M_{1-} \right) + L_{1-}^* E_{1+} \right) \right\}$$

Completed Measurements

- Jefferson Lab, Hall A
- Feb 27th Mar 8th, 2011
- 1160 MeV *e*⁻ beam
- 4 & 15 cm LH_2 target
- Two high resolution spectrometers
 - HRSe and HRSh

- Vertical drift chambers
 - Particle tracking
- Scintillators
 - Timing information
 - Triggering DAQ
- Gas Cerenkov detectors
 Particle identification
- Lead glass showers– Particle identification

Completed Measurements

				ELEFT ARM Electron Settings		RIGHT ARM Proton Settings					
#	$Q^2 (\text{GeV}/c)^2$	W(MeV)	θ _{pq}	θ _e	(MeV/ <i>c</i>)	θ _p	(MeV/c)	I (µA)	L (cm)	Q (mC)	Time (hrs)
1	0.045	1221	0	12.5	805	25.5	552	15	4	636	19
2	0.045	1221	33	12.5	805	12.5	528	15	4	849	18
3	0.045	1221	33	12.5	805	38.5	528	20	4	1416	17
4	0.045	1200	U	15	133	22	010	50	4	Ū	0
5	0.090	1230	0	18	770	30	626	80	4	642	3
6	0.090	1230	45	18	770	13.5	576	40	4	1296	10
7	0.090	1230	45	18	770	46	576	80	4	1861	8
8	0.125	1232	0	22	750	31.5	670	80/40	4/15	914	5
9	0.125	1232	30	22	750	21	646	30	15	652	6
10	0.125	1232	30	22	750	41.5	646	50	15	758	5
11	0.125	1232	50	22	750	14.5	606	55	4	1436	8
12	0.125	1232	50	22	750	48	606	80	4	1365	6
13	0.125	1170	0	20.5	826	37.5	574	35	15	285	3
14	0.125	1200	0	21	789	34.5	621	35	15	220	2

Status of Analysis

To access goal of "CMR" requires:

- Extraction <u>of absolute differential cross sections</u> for all 13 kinematic settings used
- Will then allow comparison of both cross section (σ_0) and the left-right Responses (R_{LT}) and Asymmetries (A_{LT}) to available theories plus model-dependent CMR extraction

Method:

- Two PhD students (Anez, Blomberg) have been working on independent analyses
- Both have worked through long list of calibrations and checks so far (will quickly show on next slides)
 SAINT MARY'S
- Trying now to firm up H-elastic normalization

- BCM
- BPM, Raster
- Target Corrections:
 - Length Corrections: Thermal Contraction Window Thickness Beam Offset & End-Cap Curvature

Effect: 15 cm → 14.8 ± 0.02 cm 4 cm → 3.86 ± 0.004 cm

- BCM
- BPM, Raster
- Target Corrections:
 - Length Corrections:
 - Boiling Tests

- BCM
- BPM, Raster
- Target Corrections
- VDCs (timing vs wire #)

- BCM
- BPM, Raster
- Target Corrections
- VDCs
- HRS Mispointing
- Particle ID Pion Rejection

- BCM
- BPM, Raster
- Target Corrections
- VDCs
- HRS Mispointing
- Particle ID Pion Re
- Coincidence Timing
 - that took a lot of work
 - Had an annoying
 "double peak" problem(s): S1 miswire in LHRS,
 S2 miswire in RHRS (solution shown last year)
 - Plus standard offset & pathlength corrections

- BCM
- BPM, Raster
- Target Corrections
- VDCs
- HRS Mispointing
- Particle ID Pion Rejection
- Coincidence Timing
- Efficiencies:
 - Live time ≈ 90%
 - Handling Multi-Hit Events: Single-track cut ≈ 70-80%
 - Multi-Track Analysis correlate VDC tracks to S2 hits give Improved Efficiency ≈ 90-95%

Before Energy Loss,

with BG subtraction

After Energy Loss, with BG subtraction

π⁰ PDG Mass

0.05

counts 00000

5000

0.00

- BCM
- BPM, Raster
- Target Corrections
- VDCs
- HRS Mispointing
- Particle ID Pion
- Coincidence Timir
- Efficiencies
- Energy-loss corrections

Background-subtracted Missing-Mass Spectrum: shows good π_0 mass obtained w/ eloss corrections

0.15

0.10

0.20

Missing Mass (GeV/c²)

0.25

This gave us early Prelim Results (shown by Blomberg at last June Collab meeting)

What we've been working on (and where we are now)

- Making sure handling all Radiative Effects properly for the production data
 - using MCEEP as our simulation tool.
 - we think this is under control; last checks to ensure agreement between the 2 independent analyses when comparing radiatively-corrected distributions

Sample (we have lots of these distributions!):

What we've been working on (and where we are now)

- CURRENT JOB (maybe the last remaining one!): Understanding our overall Normalization to H elastic data
 - need to understand handling of Radiation for elastics in MCEEP...
 - Two different radiation models available in MCEEP ... one equivalent to what is used for production data (w/ multiphoton contributions), one unique to elastic (includes "full angular distribution" of radiation...)
 - We get data BELOW elastic for one rad-model, and ABOVE for the other!
 - IF ANYONE IN COLLAB HAS DONE THIS CONTACT US $\ensuremath{\textcircled{}}$

CONCLUSION:

- We are converging!
- We think the elastics Normalization issue is the last remaining hurdle to overcome
- Within next 6 months, our plan:
 - Get confirmed agreement between 2 analyses "freeze" extracted cross section results
 - Proceed to form R_{LT} response functions and extract CMR for our 3 Q²s

