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Abstract

We present here a model of the water signal shape that can be used to fit the water
data in order to calibrate the NMR polarization measurement system.
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The Bloch Equations

The Bloch equations describe the time evolution of the water sample nuclear magnetization
M, defined as the magnetic momentum of the sample per unit of volume (IS unit : Ampere

per meter). The Bloch equations in the rotating frame (z,7,2), when a d.c. field H is applied
along the 2 axis, and a r.f. field H, always aligned in the direction of the Z axis and rotating
around the 2 axis, are written as :

dM, (Mx_XOHl)

= WMe T X0 A
dt T, +owiy
dM, 1

= —AwM, — =M, — w M,
dt v T, v
M, (M, — M)

= M, — 2 )
dt W1y T

using the definitions of [1] and assuming H and H; are of the same order of magnitude.
In our case, these equations can be applied to the water sample macroscopic polarization
vector P which is unitless :

Do) = — P +lHO) - BP0 + 1y
%(t) = —q[H(t) — Ho]P,(t) — T%Py(t) +rHP(1)
dCJ;z () = —HPy(1) - Tilpz(t) + Tilxﬂ(t)

with the following definitions, using Gauss (G) instead of Tesla (T) for the magnetic field

unit :

15 : transverse relaxation time, in s
7 : gyromagnetic ratio of the proton, v = 2.67515255.10* s~ G~1

H : component along z of the effective holding field H;f f

Hy : resonance field, Hy = 27 f /vy = 21.37 G, where the RF frequency is f = 91 kHz

« : ramping speed of the holding field along the Z axis, a = 1.2 G.s7! and H(t) =

H0+Oét

X : ratio p, m,0/kT , where p, i,0 = 1.4106089.1072° JT~! is the magnetic momentum
of protons in water, k is the Boltzman constant (in JK~!) and 7 is the temperature (in
K). Note that the thermal polarization of water is given by : P = tanh(xH) ~ yH.

Numerically, x = 3.4616068.1071° G~! at 22 °C
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e H,: RF field at f = 91 kHz, in G. Then, in the rotating frame, H,; = Hy i+ (H—Hy)?.
For our setup, we have measured H; = 72.83 mG.

e T} : longitudinal relaxation time, in s

2 Numerical Integration

It is not possible to find an analytical solution to the previous differential system. However,
we can find a numerical solution, using for example the Mathematica 3.0\ software. For
the results shown below, we have assumed 1} = 15 = 2 s. The d.c. field H generated by
the Helmholtz coils is swept from 18 G to 25 G, along the Z axis. To solve numerically the
first order differential equations, we need to specify the initial value of each of the three
components of the polarization when the sweep starts, at the time ¢;. To calculate these
three values, we simply solve the Bloch system, requiring each first derivative to be zero at
ti .

dP, 1 1
“t=t) = 0= —P,(t; t|P,(t;) + —xH 7
=) TPA(6) + ot ) + xH; g
dp, 1
— t=t) = 0=—qlati]Pu(ti) — By (ts) + vH1 P (t:) (8)
t T,
dP, 1 1
‘t=t) = 0=—vH,P,(t;) — —P.(t;) + —x[H, t; 9
=) VHIP,(8) = -P.(6) + -l Ho + ot )
The initial time ¢; is negative : t; = —(Hpaz — Hpin) /200 >~ —2.92 s and corresponds

to H = H,,;,, = 18 G ; the 2 component H — Hy is negative. The resonance is assumed
to occur at ¢t = 0, where H = Hy and H,.;; = H;, and the sweep stops at ¢ty = —t;, when
H=H,,,, =25 G ; the Z component H — Hy is positive.

Mathematica 3.0© gives us the numerical solutions :

P.(t;) = -1.28653.10"1° (10)
P,(t;) = 8.21656.107'° (11)
P,(t;) = 6.18269.10 7 (12)

With those initial conditions, we can integrate numerically the system of differential
equations. To compare with the following section we have chosen 1} =15, = 2 s.

3 Analytical Solution

It is possible to reduce the system to one equation only, assuming the equality 77 = 75. In
that case, the polarization of the sample remains always aligned with the effective holding
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Figure 1: Modulus of the polarization P as a function of time. The modulus goes clearly to
zero after the resonance.
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Figure 2: Component P, of the polarization P as a function of time. This curve is the shape
of the water signal detected by the pick-up coils. Note the strong asymmetry of the shape
of the water signal.
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Figure 3: Component P, of the polarization P as a function of time. The y component is
much smaller than the two other components P, and P,.
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Figure 4: Component P, of the polarization P as a function of time. When the sweep starts,
the magnetization of the water is directed toward the positive direction of the Z axis. The
Z component is zero at the resonance and is flipped shortly after. The spins are in the high
energy state, then they immediately start to flip back to the low energy state. At the end
of the sweep, their orientation is close to the one they had before the sweep.



field H;ff in the rotating frame, [1]. For that purpose, we define the effective polarization
of the water sample, P,ss, which represents the component of the polarization along the
H,% + (H — H,)z direction :

Perp = ky\/ P} + P} + P? (13)
where £ = 1. Using :

dP.;;  P,P,+ P,P,+ PP,

14
dt Peff ( )
we get the first order differential equation :
dPeff 1
t) = —[P.;+(t) — Pyt 15
L) = 7-[Puys(t) = Puglt) (15)

where P,,(t) is defined by :

H? + at(Hy + ot
Py(t) = Lt oty + o) (16)

and where we have used the following relation, as illustrated on the animation (Figure

9) :
P, H
= 1 (17)
Pepp \JHE + o212
P, t
= (18)

Pegr \[H? + a2t?

This differential equation can be integrated numerically. The initial condition required
is simply given by assuming %ﬁ(t =t;) = 0, which leads to : Porr(t;) = Pey(ti).

The solution of the differential equation in the integral form is given by :

1

Poip(t) = e~ tt)/M —
) =e 7

t
P.,(t) /t TP, (u)du (19)

The graphical representation of the solution is shown below.

Unfortunately, the integral has no analytical representation. However, we can find an
analytical representation of P.sf(t) by replacing the exponential and the square root within
the integral by their Taylor expansion up to the third term in the Maple V © program
(in annex) and up to the second term in the Mathematica 3.0%Y program (in annex), in
the appropriate regions. For further detailed work on the analytical solution, see the Maple
\Y annex. The expansion must be limited to avoid the use of unconvenient exponential
integrals in the analytical result.
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Figure 5: Evolution of P, as a function of time.
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Figure 6: Evolution of P.f; as a function of time. When the sweep starts, Pe_}f is anti-
aligned with the effective holding field which is pointing mainly toward the negative values
of z. After the sweep, they are both pointing in the same direction, toward the positive
values of z. P.rs goes to zero after the resonance.
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Figure 7: Evolution of the absolute value of P, as a function of time. This graph is expected
to be the same as the modulus of P, obtained by numerical integration of the three Bloch
equations.
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Figure 8: Evolution of P.ss as a function of time, obtained by plotting the solution of the
differential equation.
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Figure 9: Animation representing the evolution of Hsz = H,&+ (H — Hy)Zz and P;ff as a
function of time, in the rotating frame, in rotation around the 2 axis at the angular frequency
f =91 kHz. The picture is not drawn in scale.
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Figure 10: Plot as a function of time of the analytical solution and of the numerical solution
of the differential equation satisfied by P.y;.

14



Resi dual

Figure 11: Difference as a function of time between the analytical solution and the numerical
solution of the differential equations satisfied by P.r;. The values of ¢, and ¢, are chosen to
minimize the residual at the resonance (at t = 0).
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e ift; <t <t, alt| >> H; then we can approximate the square root contained in the

expression of P,,(t) :

H? + Hyau + o?u? Hyau + o*u? 1
L 0 ~ 20 — =~ —(Hy + au) (20)
/H12 + a2y2 au 14+ 06211‘2
The solution in that region is :
t
Pupj(t) = e (t/T: [Peq(ti) . % (/T (g, au)du] (21)
17/t

e ift, <t <t |ul << T then we can expand the exponential contained in the integral

2
o—t)/Th ~ p(—ti/T) (1 vy “_>

(22)

T, " 217

The solution in that region is then :

Poys(t) = e M [Py () —

_|_

ta
X7 et/ (Hy + au)du

T]_ t;
2 2 2,2
X —em /t 14 u®  H{ + Hoau + o*u
p— + =+ 23
¢ W o) [H + oru? )

o if t, <t < ts, alt| >> H; we approximate the square root contained in the expression

of P.,(t) :

H? + Hyou + o?u? _ Hoou + a?u? 1

~ — ~ Hy+ au (24)
\H? + a?u? au 1+%
The solution in that region is :
ta
Pos(t) = e WP, (1) — % et (Hy + au)du
1Yt
2 2 2,2
ﬁtim/tbl u o u H1+H0au+aud
o a +T1+2T12) Tt e u
t
+ X[t (4 qu)du (25)

T 143
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4 Analytical Function to Fit the Water Data

We give below the analytical expression of the function f(H) that should be used to fit the
water data, assuming 7T} =T5 :

g(H - Hres) Hl
90) I~ B+ 1

f(H) = a T O[H — Hyo] +c (26)

with :

o ift; <t< ta, that is H,,;, < H < H,:
g(x) = Fi()

o ift, <t <ty thatis H, < H < Hy and H, < H,.s < Hy:
g(x) = Fy(x) and ¢(0) = F»(0)

o ift, <t< tf, that is Hy, < H < H,pyz:
g(x) = Fy(x)

where
® Ha - (Hres + ata)
b Hb - (Hres + atb)

e the functions F}, F, and Fj are given in a Fortran form in the Mathematica 3.()@
output.

H is simply the field value on the 2 axis saved in the NMR data files. The five unknown
parameters to be found by the fitting program are : a, b, c, H,.s, and H;.

The optimal values of ¢, and ¢, have been calculated to minimize the difference between
the numerical integration of the differential equations satisfied by P.;; and the Taylor ex-
pansions of the solution. We suggest :

ta = —tb = —0.6s (27)

estimated for 7} = 175 = 2 s and using the numerical parameters introduced in the first
section (v, f, Ho, @, fip m,0, k, the temperature 7" and H,). Therefore,

b Ha - (Hres + ata)
o )= (Hres - ata)

A water signal fit is shown below on Figure 12.
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Figure 12: Fit of a sample of averaged water data using the analytical expression of the
shape presented in this document, for a sweep from H = 18 G to H = 25 G. The fit has
been performed with PAW© and gives a reduced x? of x*/f = 0.39.
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