
Je�erson LabE94010 Technical Note 10November 1998
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AbstractWe present here a model of the water signal shape that can be used to �t the waterdata in order to calibrate the NMR polarization measurement system.
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1 The Bloch EquationsThe Bloch equations describe the time evolution of the water sample nuclear magnetization~M , de�ned as the magnetic momentum of the sample per unit of volume (IS unit : Ampereper meter). The Bloch equations in the rotating frame (x̂,ŷ,ẑ), when a d.c. �eld ~H is appliedalong the ẑ axis, and a r.f. �eld ~H1 always aligned in the direction of the x̂ axis and rotatingaround the ẑ axis, are written as :dMxdt = �(Mx � �0H1)T2 +�!My (1)dMydt = ��!Mx � 1T2My � !1Mz (2)dMzdt = �!1My � (Mz �M0)T1 (3)using the de�nitions of [1] and assuming H and H1 are of the same order of magnitude.In our case, these equations can be applied to the water sample macroscopic polarizationvector ~P which is unitless :dPxdt (t) = � 1T2Px(t) + 
[H(t)�H0]Py(t) + 1T2�H1 (4)dPydt (t) = �
[H(t)�H0]Px(t)� 1T2Py(t) + 
H1Pz(t) (5)dPzdt (t) = �
H1Py(t)� 1T1Pz(t) + 1T1�H(t) (6)with the following de�nitions, using Gauss (G) instead of Tesla (T) for the magnetic �eldunit :� T2 : transverse relaxation time, in s� 
 : gyromagnetic ratio of the proton, 
 = 2:67515255:104 s�1 G�1� H : component along ẑ of the e�ective holding �eld ~Heff� H0 : resonance �eld, H0 = 2�f=
 = 21:37 G, where the RF frequency is f = 91 kHz� � : ramping speed of the holding �eld along the ẑ axis, � = 1:2 G.s�1 and H(t) =H0 + �t� � : ratio �p;H2O=kT , where �p;H2O = 1:4106089:10�26 JT�1 is the magnetic momentumof protons in water, k is the Boltzman constant (in JK�1) and T is the temperature (inK). Note that the thermal polarization of water is given by : P = tanh(�H) ' �H.Numerically, � = 3:4616068:10�10 G�1 at 22 oC2



� H1 : RF �eld at f = 91 kHz, in G. Then, in the rotating frame, ~Heff = H1x̂+(H�H0)ẑ.For our setup, we have measured H1 = 72:83 mG.� T1 : longitudinal relaxation time, in s2 Numerical IntegrationIt is not possible to �nd an analytical solution to the previous di�erential system. However,we can �nd a numerical solution, using for example the Mathematica 3:0 c
 software. Forthe results shown below, we have assumed T1 = T2 = 2 s. The d.c. �eld H generated bythe Helmholtz coils is swept from 18 G to 25 G, along the ẑ axis. To solve numerically the�rst order di�erential equations, we need to specify the initial value of each of the threecomponents of the polarization when the sweep starts, at the time ti. To calculate thesethree values, we simply solve the Bloch system, requiring each �rst derivative to be zero atti : dPxdt (t = ti) = 0 = � 1T2Px(ti) + 
[�ti]Py(ti) + 1T2�H1 (7)dPydt (t = ti) = 0 = �
[�ti]Px(ti)� 1T2Py(ti) + 
H1Pz(ti) (8)dPzdt (t = ti) = 0 = �
H1Py(ti)� 1T1Pz(ti) + 1T1�[H0 + �ti] (9)The initial time ti is negative : ti = �(Hmax � Hmin)=2� ' �2:92 s and correspondsto H = Hmin = 18 G ; the ẑ component H � H0 is negative. The resonance is assumedto occur at t = 0, where H = H0 and Heff = H1, and the sweep stops at tf = �ti, whenH = Hmax = 25 G ; the ẑ component H �H0 is positive.Mathematica 3:0 c
 gives us the numerical solutions :Px(ti) = �1:28653:10�10 (10)Py(ti) = 8:21656:10�16 (11)Pz(ti) = 6:18269:10�9 (12)With those initial conditions, we can integrate numerically the system of di�erentialequations. To compare with the following section we have chosen T1 = T2 = 2 s.3 Analytical SolutionIt is possible to reduce the system to one equation only, assuming the equality T1 = T2. Inthat case, the polarization of the sample remains always aligned with the e�ective holding3



-3 -2 -1 1 2 3
t

1·10-9

2·10-9

3·10-9

4·10-9

5·10-9

6·10-9

Modulus of P

Figure 1: Modulus of the polarization P as a function of time. The modulus goes clearly tozero after the resonance.
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Figure 2: Component Px of the polarization P as a function of time. This curve is the shapeof the water signal detected by the pick-up coils. Note the strong asymmetry of the shapeof the water signal.
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Figure 3: Component Py of the polarization P as a function of time. The y component ismuch smaller than the two other components Px and Pz.
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Figure 4: Component Pz of the polarization P as a function of time. When the sweep starts,the magnetization of the water is directed toward the positive direction of the ẑ axis. Theẑ component is zero at the resonance and is 
ipped shortly after. The spins are in the highenergy state, then they immediately start to 
ip back to the low energy state. At the endof the sweep, their orientation is close to the one they had before the sweep.
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�eld ~Heff in the rotating frame, [1]. For that purpose, we de�ne the e�ective polarizationof the water sample, Peff , which represents the component of the polarization along theH1x̂ + (H �H0)ẑ direction : Peff = kqP 2x + P 2y + P 2z (13)where k = �1. Using : dPeffdt = Px _Px + Py _Py + Pz _PzPeff (14)we get the �rst order di�erential equation :dPeffdt (t) = 1T1 [Peff(t)� Peq(t)] (15)where Peq(t) is de�ned by : Peq(t) = �H21 + �t(H0 + �t)qH21 + �2t2 (16)and where we have used the following relation, as illustrated on the animation (Figure9) : PxPeff = H1qH21 + �2t2 (17)PzPeff = �tqH21 + �2t2 (18)This di�erential equation can be integrated numerically. The initial condition requiredis simply given by assuming dPeffdt (t = ti) = 0, which leads to : Peff (ti) = Peq(ti).The solution of the di�erential equation in the integral form is given by :Peff (t) = e�(t�ti)=T1 �Peq(ti) + 1T1 Z tti e(u�ti)=T1Peq(u)du� (19)The graphical representation of the solution is shown below.Unfortunately, the integral has no analytical representation. However, we can �nd ananalytical representation of Peff(t) by replacing the exponential and the square root withinthe integral by their Taylor expansion up to the third term in the Maple V c
 program(in annex) and up to the second term in the Mathematica 3:0 c
 program (in annex), inthe appropriate regions. For further detailed work on the analytical solution, see the MapleV c
 annex. The expansion must be limited to avoid the use of unconvenient exponentialintegrals in the analytical result. 8
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Figure 5: Evolution of Peq as a function of time.
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Figure 6: Evolution of Peff as a function of time. When the sweep starts, ~Peff is anti-aligned with the e�ective holding �eld which is pointing mainly toward the negative valuesof z. After the sweep, they are both pointing in the same direction, toward the positivevalues of z. Peff goes to zero after the resonance.
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Figure 7: Evolution of the absolute value of Peff as a function of time. This graph is expectedto be the same as the modulus of P , obtained by numerical integration of the three Blochequations.
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Figure 8: Evolution of Peff as a function of time, obtained by plotting the solution of thedi�erential equation.
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Figure 9: Animation representing the evolution of ~Heff = H1x̂ + (H �H0)ẑ and ~Peff as afunction of time, in the rotating frame, in rotation around the ẑ axis at the angular frequencyf = 91 kHz. The picture is not drawn in scale.13
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Figure 10: Plot as a function of time of the analytical solution and of the numerical solutionof the di�erential equation satis�ed by Peff .
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Figure 11: Di�erence as a function of time between the analytical solution and the numericalsolution of the di�erential equations satis�ed by Peff . The values of ta and tb are chosen tominimize the residual at the resonance (at t = 0).
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� if ti � t < ta, �jtj >> H1 then we can approximate the square root contained in theexpression of Peq(t) :H21 +H0�u+ �2u2qH21 + �2u2 ' �H0�u+ �2u2�u 1q1 + H21�2u2 ' �(H0 + �u) (20)The solution in that region is :Peff(t) ' e�(t�ti)=T1 �Peq(ti)� �T1 Z tti e(u�ti)=T1(H0 + �u)du� (21)� if ta � t < tb, juj << T1 then we can expand the exponential contained in the integral: e(u�ti)=T1 ' e(�ti=T1)  1 + uT1 + u22T 21 ! (22)The solution in that region is then :Peff(t) ' e�(t�ti)=T1 [Peq(ti) � �T1 Z tati e(u�ti)=T1(H0 + �u)du+ �T1 e�ti=T1 Z tta(1 + uT1 + u22T 21 )H21 +H0�u+ �2u2qH21 + �2u2 du](23)� if tb � t < tf , �jtj >> H1 we approximate the square root contained in the expressionof Peq(t) : H21 +H0�u+ �2u2qH21 + �2u2 ' H0�u+ �2u2�u 1q1 + H21�2u2 ' H0 + �u (24)The solution in that region is :Peff (t) ' e�(t�ti)=T1 [Peq(ti) � �T1 Z tati e(u�ti)=T1(H0 + �u)du+ �T1 e�ti=T1 Z tbta (1 + uT1 + u22T 21 )H21 +H0�u+ �2u2qH21 + �2u2 du+ �T1 Z ttb e(u�ti)=T1(H0 + �u)du] (25)16



4 Analytical Function to Fit the Water DataWe give below the analytical expression of the function f(H) that should be used to �t thewater data, assuming T1 = T2 :f(H) = ag(H �Hres)g(0) H1q[H �Hres]2 +H21 + b[H �Hres] + c (26)with :� if ti � t < ta, that is Hmin � H < Ha:g(x) = F1(x)� if ta � t < tb, that is Ha � H < Hb and Ha � Hres < Hb:g(x) = F2(x) and g(0) = F2(0)� if tb � t < tf , that is Hb � H < Hmax:g(x) = F3(x)where� Ha = (Hres + �ta)� Hb = (Hres + �tb)� the functions F1, F2 and F3 are given in a Fortran form in the Mathematica 3:0 c
output.H is simply the �eld value on the ẑ axis saved in the NMR data �les. The �ve unknownparameters to be found by the �tting program are : a; b; c;Hres, and H1.The optimal values of ta and tb have been calculated to minimize the di�erence betweenthe numerical integration of the di�erential equations satis�ed by Peff and the Taylor ex-pansions of the solution. We suggest :ta = �tb = �0:6s (27)estimated for T1 = T2 = 2 s and using the numerical parameters introduced in the �rstsection (
, f , H0, �, �p;H2O, k, the temperature T and H1). Therefore,� Ha = (Hres + �ta)� Hb = (Hres � �ta)A water signal �t is shown below on Figure 12.17
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Figure 12: Fit of a sample of averaged water data using the analytical expression of theshape presented in this document, for a sweep from H = 18 G to H = 25 G. The �t hasbeen performed with PAW c
 and gives a reduced �2 of �2=f = 0:39.18
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