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Gas dynamics in high-luminosity polarized 3He targets using diffusion and convection
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The dynamics of the movement of gas is discussed for two-chambered polarized 3He target cells of the sort that
have been used successfully for many electron-scattering experiments. A detailed analysis is presented showing
that diffusion is a limiting factor in target performance, particularly as these targets are run at increasingly high
luminosities. Measurements are presented on a new prototype polarized 3He target cell in which the movement of
gas is due largely to convection instead of diffusion. Nuclear magnetic resonance tagging techniques have been
used to visualize the gas flow, showing velocities along a cylindrically shaped target of between 5 and 80 cm/min.
The new target design addresses one of the principle obstacles to running polarized 3He targets at substantially
higher luminosities while simultaneously providing new flexibility in target geometry.
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I. INTRODUCTION

Nuclear-polarized 3He has proven to be useful in a number
of different areas of research. In electron scattering, polarized
3He provides a means for studying spin-dependent interactions
involving neutrons. This is because, to first approximation,
a 3He nucleus is composed of two protons whose spins are
paired, and a single neutron that accounts for most of the
nuclear spin [1]. An important early example of the use of
polarized 3He in electron scattering came during an experiment
to measure the internal spin structure of the neutron at the Stan-
ford Linear Accelerator Center (SLAC), E142 [2]. Polarized
3He has also been used to measure the electric form factor
of the neutron Gn

E , including a recent experiment at Jefferson
Laboratory (JLab) in Newport News, Virginia [3]. Important
applications of polarized 3He have also included its use as a
neutron polarizer [4] and, together with polarized 129Xe, as a
source of signal for magnetic resonance imaging [5,6].

There are two predominant techniques by which high
levels of nuclear polarization are produced in 3He. In one
technique, often known as metastability exchange optical
pumping (MEOP), metastable states of 3He are optically
pumped directly and subsequently transfer their polarization to
other ground-state 3He nuclei during metastability-exchange
collisions [7,8]. In a second technique, known as spin-
exchange optical pumping (SEOP), a vapor of alkali-metal
atoms is optically pumped and subsequently transfers its
polarization to 3He nuclei via a hyperfine interaction during
spin-exchange collisions [9–11]. An important difference
between the two techniques is that MEOP is performed at
pressures that are quite low, around a few Torr, whereas SEOP
is often done at pressures as high as roughly 10 atmospheres.
When a high-density is required, a target based on MEOP
inevitably involves a compressor of some sort. In contrast,
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high-density targets based on SEOP typically utilize a sealed
glass cell with no moving parts and, hence, have an advantage
from the perspective of simplicity. In considering relative
merits, however, one also needs to consider the speed with
which the gas is polarized. Here targets based on MEOP have
done quite well, with a recent target at the Mainz Microtron
reporting a polarization rate of 2 bar-liters per hour [12]. In
short, both techniques for polarizing 3He have been quite
successful and have complimentary advantages.

For electron-scattering experiments in which 3He is polar-
ized using SEOP, the targets typically utilize a sealed glass cell
with two distinct chambers: a “pumping chamber” in which
the gas is polarized, and a “target chamber” through which
the electron beam passes (see Fig. 1). This design ensures
that ionization due to the electron beam does not adversely
affect the optical pumping process, as well as providing in
the pumping chamber a geometry that lends itself well to
illumination with lasers. The two chambers are connected by
a “transfer tube,” and gas that is polarized in the pumping
chamber migrates into the target chamber largely by diffusion.

Several conditions need to be met in targets with designs
such as that shown in Fig. 1 in order to maintain high
polarization. First, the rate at which the 3He is polarized must
be relatively fast compared to the rate at which the 3He is
depolarized. While this is true in all work involving SEOP, it
is of particular significance when considering depolarization
of the 3He due to an electron beam. There are also issues
having to do with polarization dynamics that are unique to the
two-chamber design. As has been pointed out by Chupp et al.
[13], it is important that diffusion between the two chambers
is rapid compared to other 3He-related time constants in
the system. As we will show in detail, a matter of special
importance is maximizing the ratio of the diffusion rate to
the relaxation rate that is specific to the target chamber. Put
differently, it is critical that the polarized gas in the target
chamber is replenished much faster than it is depleted through
depolarization mechanisms such as, for example, ionization
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FIG. 1. (Color online) Shown is the geometry of a two-chambered
glass cell used for polarized 3He targets. The dimensions shown are
typical of those used in a recent JLab experiment to measure the
electric form factor of the neutron [3].

from the electron beam. A failure to replenish the polarized
gas quickly enough will result in a lower polarization in the
target chamber than is the case in the pumping chamber, a
condition we refer to herein as a polarization gradient.

Until relatively recently, polarization gradients in two-
chambered cells have been, at most, a few percent relative.
Advances in SEOP, however, have made it possible to run
polarized 3He targets at increasingly high luminosities. During
SLAC E142, where luminosities were in the range of 0.42–
1.70 × 1035 cm−2 s−1, the polarization gradients were on
the order of 1% (relative). During recent experiments at
JLab, however, with luminosities in the range of 0.6 − 1.0 ×
1036 cm−2 s−1, polarization gradients were as high as nearly
9% (relative). For future experiments with luminosities in
the range of 1037 cm−2 s−1, polarization gradients well in
excess of 10% are likely if no changes are made to the basic
target-cell design. Polarization gradients can also be difficult
to quantify accurately, an issue that can lead to uncertainties
in polarimetry.

The fact that polarized 3He targets are being run at
increasingly high luminosities is due largely to advances in
SEOP. One example is the use of hybrid mixtures of alkali
metals (typically potassium and rubidium) instead of a single
alkali metal (typically rubidium) [14,15]. This technique, often
known as alkali-hybrid SEOP, greatly improves the efficiency
with which the 3He is polarized. Another important advance
has followed from the availability of commercial spectrally
narrowed high-power diode-laser arrays. These new lasers
result in significantly higher optical pumping rates for a given
amount of light. Collectively, these advances have made it
possible to significantly increase the rate at which the 3He
is polarized. It has, thus, become possible to achieve higher
polarizations even when using higher beam currents and
thicker targets. Higher currents, however, make it necessary to
replenish the polarized gas in the target chamber more quickly.
If the advances in SEOP are to be fully exploited, it is essential
that the designs of polarized 3He targets evolve.

We report here on the successful implementation of a new
design for polarized 3He target cells based on SEOP. The
design incorporates the ability to circulate the gas between the
pumping chamber and the target chamber using convection
instead of diffusion, an idea discussed by Wojtsekhowski

in Ref. [16] in anticipation of both advances in SEOP as
well as the need for higher luminosities. The convection is
achieved by maintaining a temperature differential between
different parts of the target cell and does not involve pumps
or other moving parts. We have shown that the velocity of
the gas moving through the target chamber can be varied
between 5 and 80 cm/min in a simple controllable manner.
The advent of a means to circulate a polarized noble gas in a
sealed vessel without the use of pumps has great potential for
high-luminosity polarized 3He targets. The simplicity of the
approach has advantages from the perspective of reliability,
and fast transport of gas between the two chambers makes it
possible to greatly increase the electron beam current without
causing a polarization gradient. Convection-based target cells
also open the possibility of physically separating the pumping
chamber and the target chamber by much larger distances than
was previously possible, something that offers several practical
advantages.

II. POLARIZATION DYNAMICS AND GRADIENTS IN
TWO-CHAMBERED CELLS

A. The single-chambered cell

Before considering the formalism for target cells with two
chambers, we begin by considering the simpler example of a
single-chambered cell, where the equation describing the time
evolution of the polarization is given by

ṖHe = γsePA − (γse + �)PHe, (1)

where PHe is the 3He polarization, PA is the polarization of the
alkali vapor, γse is the rate at which the 3He is polarized due
to spin exchange, and � is the spin-relaxation rate of the 3He
due to all other processes. The solution to Eq. (1) is given by

PHe(t) = P0e
−(γse+�)t + PA

γse

γse + �

[
1 − e−(γse+�)t

]
, (2)

where P0 is the 3He polarization at t = 0. It has been shown by
Babcock et al. that one of the components of � is a relaxation
rate that empirically appears to be proportional to γse [17].
One can accordingly write that � = �′ + γseX, where X is
a proportionality constant. We can thus write the saturation
polarization associated with Eq. (2) as

PHe(t = ∞) = PA
γse

γse(1 + X) + �′ , (3)

where we note that the denominator of Eq. (3) is also the
rate that characterizes the buildup of polarization in Eq. (2),
rewritten in terms of �′ and X. The existence of a relaxation
mechanism proportional to γse is unfortunate, as it implies
that, even with a 100% polarized alkali vapor, in the limit that
γse → ∞, PHe → 1/(1 + X). While not well understood, the
existence of this additional relaxation is now well established
and is important for understanding the overall polarization
achieved.

It is straightforward to project the performance of a target
at an arbitrary range of beam currents if we know how it
performed at a particular beam current I0 (true even if I0 = 0).
Let us assume that we have data describing polarization as
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a function of time while polarizing a target from an initial
polarization of zero. A plot of data of this sort is something we
refer to herein as a “spin-up curve” and can be fit to yield the
“spin-up rate” that appears in the denominator of Eq. (3) [as
well as the exponent in Eq. (2), γse + �]. In keeping with the
notation introduced above with respect to Eq. (3), we define a
quantity γ 0

su that characterizes the spin-up rate at a particular
current I0:

γ 0
su ≡ γse(1 + X) + �′(I0). (4)

Let us further define P ∞
He(I0) as the equilibrium polarization

associated with that spin-up. Using Eqs. (3) and (4), we find

P ∞
He(I ) = P ∞

He(I0) γ 0
su

γ 0
su − �′(I0) + �′(I )

. (5)

The quantities P ∞
He(I0) and γ 0

su can be determined by fitting
data from a spin-up, and the quantity �′(I ) = �cold

wall + �dipole +
�beam, where the three terms are spin-relaxation rates due to
wall collisions (at room temperature), dipole interactions due
to 3He-3He collisions, and ionization of the electron beam,
respectively. The sum of the first two terms is essentially
the target’s room-temperature spin-relaxation rate in the
absence of beam, a quantity that is quite easy to measure.
We note, however, that �dipole under operating conditions is
slightly different than at room temperature due to the higher
pumping chamber temperature and the related changes in
the chamber densities. This correction is easily calculated
using the calculation of Newbury et al. from Ref. [18]. The
contribution �beam is also easily computed [19,20]. We note
that calculations of �beam have shown good agreement with
experiment at a level of roughly 10% or better [21]. We can
thus use Eq. (5) to project the performance of a particular target
at an arbitrary beam current.

It is instructive to investigate how different targets that have
been used during past experiments would fare at significantly
increased current, for example, at 100 μA. Here we ignore
the effect of polarization gradients. The first time liter-type
quantities of polarized 3He were used in a target was the afore-
mentioned experiment at SLAC, E142 [2]. In the presence of
3.3 μA of electron beam, the 3He polarization averaged about
33%, with values for (γ 0

su)−1 of about 15–20 h. If this same
target were instead exposed to 100 μA of electron beam,
Eq. (5) suggests that the 3He polarization would drop to just
over 10%. In contrast, during the more recent experiment at
JLab that measured Gn

E [3], the cell-averaged polarizations
were around 50% with 8 μA of beam and (γ 0

su)−1 was in
the range of 5–6 h. Here Eq. (5) suggests that at 100 μA
the resulting 3He polarization would be around 37–38%. The
improved projected performance is due to the shorter values for
(γ 0

su)−1, as well as the fact that the target cells were significantly
larger, making them more resistant to depolarization from
the electron beam. We note, however, that even though the
cell-averaged polarization would be fairly reasonable, the
polarization that one would have in the target chamber would
be much lower because of polarization gradients.

B. Time evolution in a double-chambered cell

For a full description of a double-chambered cell, the polar-
ization buildup must be described by the coupled differential
equations first described in Ref. [13]:

Ṗpc = γse(PA − Ppc) − �pcPpc − dpc(Ppc − Ptc), (6)

Ṗtc = −�tcPtc + dtc(Ppc − Ptc), (7)

where Ppc (Ptc) is the 3He polarization in the pumping (target)
chamber, γse is the spin-exchange rate in the pumping chamber,
and �pc and �tc are the 3He spin-relaxation rates due to all other
processes in the pumping and target chambers, respectively.
The transfer rate dtc (dpc) is the probability per unit time per
nucleus that a nucleus will exit the target (pumping) chamber
and enter the pumping (target) chamber. We note that we do not
include the transfer tube as a separate volume in this analysis.
The transfer rates are related by

fpcdpc = ftcdtc (8)

where fpc(ftc) is the fraction of atoms in the pumping (target)
chamber and fpc + ftc = 1. For the dynamic studies reported
in Ref. [13], the authors were able to neglect terms involving
γse and � relative to terms involving dpc and dtc. For the
discussion here, however, we must retain these terms, requiring
an analysis essentially identical to that considered by Jones
et al. [22] and later by Kominis [23]. We refer the reader to
those two references for details. We find that the solutions to
Eqs. (6) and (7) are given by

Ppc(t) = Cpce
−�f t + (

P 0
pc − P ∞

pc − Cpc
)
e−�st + P ∞

pc (9)

and

Ptc(t) = Ctce
−�f t + (

P 0
tc − P ∞

tc − Ctc
)
e−�st + P ∞

tc , (10)

where P 0
pc and P 0

tc are the initial polarizations in the pumping
and target chambers, respectively,

P ∞
pc = γse fpc PA

γse fpc + �pc fpc + �tc ftc
(
1 + �tc

dtc

)−1 (11)

and

P ∞
tc = P ∞

pc
1

1 + �tc
dtc

. (12)

We have chosen to write Eq. (11) in the form shown to
emphasize that

lim
(�tc/dtc)→0

P ∞
tc = lim

(�tc/dtc)→0
P ∞

pc = PA 〈γse〉
〈γse〉 + 〈�〉 , (13)

where 〈γse〉 is the spin-exchange rate averaged throughout
the double-chambered cell (〈γse〉 = fpcγse, since the spin-
exchange rate is γse in the pumping chamber and is zero in
the target chamber), and 〈�〉 = fpc�pc + ftc�tc is the spin-
relaxation rate averaged throughout the cell. Equation (13) has
the same form as the saturation polarization of Eq. (2), as we
would expect in the limit of infinitely fast transfer.

The coefficients Cpc and Ctc are given by

Cpc = �s
(
P ∞

pc − P 0
pc

) − aP 0
pc − bP 0

tc − γsePA

�f − �s

. (14)
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and

Ctc = �s
(
P ∞

tc − P 0
tc

) − cP 0
pc − dP 0

tc

�f − �s
, (15)

where a = −(γse + �pc + dpc), b = dpc, c = dtc, and d =
−(�tc + dtc). We note that in the fast-transfer limit, the
quantities Cpc and Ctc are given by

Cpc = ftc
(
P 0

pc − P 0
tc

)
(16)

and

Ctc = fpc
(
P 0

tc − P 0
pc

)
. (17)

The constants �s and �f represent slow and fast rates,
respectively, that govern the time evolution of the polarization.
It is useful to write �s in the form

�s = 〈γse〉 + 〈�〉 − δ�, (18)

where the quantity δ� is generally small and goes to zero in
the limit of infinitely fast transfer between the two chambers.
We can see that the limiting form of �s has the same form as
the time constant that appears in Eq. (2) (γse + �). It can be
shown that

δ� = dpc + dtc

2

[√
1 − 2uδf + u2 − 1 + uδf

]
, (19)

where δf = fpc − ftc and

u = γse + �pc − �tc

dpc + dtc
. (20)

For most of the situations we would normally consider, the
quantity u is fairly small. This is due to two things. First, the
spin-exchange rate γse is typically slow compared to the sum of
the two transfer rates dpc and dtc and, second, both �pc and �tc

must be relatively small compared to γse, or the polarization of
the target would not be high. It is, thus, reasonable to expand
δ� in a Taylor series in u:

δ� ≈ fpcftc(dpc + dtc)u2 + higher-order terms. (21)

Last, we consider �f which can be written as

�f = (dpc + dtc) + (γse − 〈γse〉) + (�pc + �tc − 〈�〉) + δ�.

(22)

In the fast-transfer limit, �f → ∞; under these conditions,
Eqs. (9) and (10) reduce to the form of Eq. (2).

Data illustrating the time evolution of polarization (what
we referred to earlier as a spin-up) are shown in Fig. 2 for both
the pumping and target chambers of a double-chambered cell
we refer to herein as “Brady.” The polarization was measured
every 3 min using the nuclear magnetic resonance (NMR)
technique of adiabatic fast passage (AFP) [24]. We note
that under normal operating conditions, NMR measurements
would be made only once every few hours, in part because each
measurement results in a small loss (< 1%) of polarization.
The frequent measurements shown in Fig. 2 strongly limit the
saturation polarization because of accumulating losses. Also
shown in Fig. 2, but obscured beneath the many data points,
is a fit to the data using double-exponential functions of the
form given in Eqs. (9) and (10). The fit clearly describes the
data quite well.

Finally, we note that in the context of the types of cells
that have been used in electron-scattering experiments (see
Fig. 1), the mechanism behind the transfer rates dtc and dpc is,
overwhelmingly, diffusion.

C. Initial polarization evolution

Some of the parameters discussed earlier can be readily
determined by studying spin-up curves of the sort shown in
Fig. 2. To extract values for the transfer rates dpc and dtc, it
is particularly valuable to examine the spin-up curves for the
initial time period during which the polarization is growing.
For small values of the time t , it is readily apparent from Fig. 2
that the nature of the time evolution in the two chambers differs
markedly. Under the assumption that the time t < 1/�f (in this
case, 1/�f ≈ 0.75 h), we can expand Eqs. (9) and (10) in a
Taylor series. To second order, for the case of P 0

pc = P 0
tc = 0,

this expansion simplifies to

Ppc(t) = γsePAt − 1
2γsePA(γse + �pc + dpc)t2 (23)

and

Ptc(t) = 1
2γsePAdtct

2. (24)

In Fig. 3, we show only the first 24 min of the data shown in
Fig. 2. It can be seen that the initial shape of the spin-up curve
appears to be linear in the pumping chamber and quadratic
in the target chamber, in agreement with expectations from
Eqs. (23) and (24).

To empirically determine dtc, we note, first, that the slope of
the nearly linear polarization buildup in the pumping chamber
is equal to the product PAγse. With a fit to this slope, along with
a fit to the coefficient characterizing the quadratic polarization
buildup in the target chamber, we can extract a value for the
transfer rate dtc = (0.72 ± 0.10) h−1. As will be discussed
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FIG. 2. (Color online) The 3He polarization is shown as a function
of time for both the pumping chamber (upper curve) and target
chamber (lower curve) of the target cell “Brady.” In this case the
lasers were turned on immediately before data taking to ensure an
initial polarization of zero. Also shown are fits to Eqs. (9) and (10).
We refer to curves of this sort as spin-up curves. AFP measurements
were made rapidly (every 3 min).
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FIG. 3. (Color online) Early time behavior of the Brady spin-up
shown in Fig. 2.

in the next subsection, a value for dtc can also be computed
from first principles given the dimensions of the cell. The
comparison of empirically determined and calculated values
for dtc provides insight into our understanding of the diffusion
processes taking place in our cells.

D. Transfer rates under diffusion

Using gas kinetic theory, the dimensions of the target cell,
the density of 3He and other gases when the cell was filled, the
operating temperatures of the pumping and target chambers,
and the assumption that the temperature gradient along the
transfer tube is linear, it possible to compute dpc and dtc

from first principles. We begin similarly to the discussion in
Ref. [13] with an equation describing the net polarization flux
Jtt through the transfer tube as follows:

Jtt = −n(z) D(z)
dP (z)

dz
, (25)

where n(z), D(z), and P (z) are the 3He number density, self-
diffusion constant and polarization, respectively, all shown as
a function of position z along the transfer tube. As discussed
by Romalis [25] and later by Zheng [26], using data on
the self-diffusion constant of 4He by Kestin et al. [27], the
self-diffusion constant for 3He is well approximated by the
expression

D(z) = D0

[
T (z)

T0

]m−1 [
n0

n(z)

]
, (26)

where D0 = 2.789 cm2/s, T0 = 353.14 K, m = 1.705, and
n0 = 0.7733 amg (1 amg = 2.687 × 1019 cm−3). The assump-
tion of a linear temperature gradient along the transfer tube
between the pumping and target chambers, as was assumed
in Refs. [25,26], allows us to express T (z) and hence n(z)
explicitly. With this assumption, and substituting Eq. (26) into
Eq. (25), we can solve for Jtt to find

Jtt = −(Ppc − Ptc)D0
n0 (2 − m)(Tpc − Ttc)

Ltt
(
T m−1

0

)(
T 2−m

pc − T 2−m
tc

) , (27)

where Jtt is the total rate of polarization transfer per unit area,
whereas we want the rate per atom. Here Ltt is the length of the
transfer tube. Multiplying by the transfer tube cross-sectional
area Att, dividing by the number of particles in each chamber,
and, finally, dividing by (Ppc − Ptc), we have

dtc(pc) = Att D0

Vtc(pc)Ltt

n0 (2 − m)(Tpc − Ttc)

ntc(pc)
(
T m−1

0

)(
T 2−m

pc − T 2−m
tc

) . (28)

Of specific interest here is the value for dtc implied by
Eq. (28) for the target cell Brady. For Brady, Att = 0.667 cm2,
Ltt = 9.07 cm, Vtc = 74.6 cm3, and ntc = 11.5 amg. Using
temperatures that correspond to the tests illustrated in Figs. 2
and 3, we find dtc = 0.72 h−1, a value that agrees fortuitously
with the value found by fitting the polarization buildup curves.

E. Polarization gradients

An issue of considerable practical importance for polarized
3He targets is the polarization gradient between the pumping
and target chambers. Dividing both sides of Eq. (12) by P ∞

pc ,
we find

P ∞
tc

P ∞
pc

= 1

1 + �tc/dtc
. (29)

It is also useful to define the quantity �, the amount by which
the polarization in the target chamber is lower than that of
the pumping chamber. Here we express this difference as a
fraction of the pumping chamber polarization as follows:

� ≡ P ∞
pc − P ∞

tc

P ∞
pc

= 1

1 + dtc/�tc
. (30)

We can see that � approaches 0 for cells in which �tc is quite
slow and dtc is quite fast. The fact that it is �tc and not the
cell-averaged relaxation rate 〈�〉 that appears in this expression
is quite important. When a target is subjected to high electron-
beam currents, the overall cell-averaged relaxation rate 〈�〉
may not be strongly affected even though the local relaxation
rate in the target chamber �tc is. As stated earlier, what is
important is that the polarized gas in the target chamber is
replenished at a rate that is much faster than the rate at which
the gas is depolarized in the target chamber.

Looking at specific examples, we find that the targets used
during E142 at SLAC had polarization gradients of just over
1% with no beam current and would hypothetically have had
polarization gradients of around 13% at 100 μA. For the targets
used to measure Gn

E at JLab, the gradients were worse, a little
over 6% with no beam current, and we project they would
be about 21% at 100 μA. The larger gradients in the case of
the Gn

E cells were mostly due to faster intrinsic cell-relaxation
rates but also to having longer transfer tubes, something that
is difficult to avoid with a cell that has a larger overall size.
We will return to the question of what can be done to better
minimize polarization gradients when using a single transfer
tube.
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1. Quantifying polarization gradients

Regardless of the magnitude of the polarization gradient, it
is also difficult to quantify accurately because of uncertainty in
the quantity �tc. When characterizing a target cell, the quantity
that is most straightforward to measure is the cell-averaged
room-temperature spin-relaxation rate 〈�〉, which is typically
due to three primary contributions:

〈�〉 = �w + �d + �b, (31)

where �w is the spin relaxation rate due to wall collisions, �d

is spin relaxation due to dipolar interactions during 3He-3He
collisions and �b is the spin relaxation due to the electron
beam, which can be taken to be zero if the cell’s spin-relaxation
rate is measured in the absence of an electron beam. Here we
ignore relaxation due to magnetic field inhomogeneities which,
with some care, can be made quite small. The wall-relaxation
rate will be the sum of the wall-relaxation rates in the target
and pumping chambers, respectively, weighted by the fraction
of 3He atoms that are in each chamber:

�w = ftc�
w
tc + fpc�

w
pc. (32)

For the purposes of this discussion, it is convenient to introduce
a parameter R, representing the ratio of �w

tc to �w
pc, so

�w
tc = R �w

pc. (33)

From Eqs. (31)–(33), taking �b = 0, we find the following
expression for �w

tc :

�w
tc = R(〈�〉 − �d )

ftc R + fpc
. (34)

Unfortunately, we have no direct measurement of R, and
wall-relaxation rates are notoriously variable. One plausible
assumption is that �w

tc = �w
pc, in which case R = 1, and Eq.

(34) simplifies to �w
tc = �w

pc = 〈�〉 − �d . This is, in fact, the
assumption that has been made in polarized 3He experiments
(those using the basic design shown in Fig. 1) prior to the
aforementioned Gn

E experiment. Several authors have shown,
however, that for uniform wall relaxation per unit area, overall
wall relaxation is proportional to the surface-to-volume (S/V )
ratio of the vessel containing the gas [28,29]. This dependence
was recently mentioned by Anger et al., who successfully
constructed storage cells for polarized 129Xe with unusually
long, perhaps unprecedented, relaxation times [30]. If wall
relaxation were uniform throughout a target, we would expect
R to be the ratio of the S/V ratios of the pumping and
target chambers, respectively, a quantity we will refer to here
as Rmax. A conservative approach, then, might be to take
R = (1 + Rmax)/2, with an error on � that includes the full
range of 1 < R < Rmax.

The uncertainties in �tc, and, consequently, �, can, in
some situations, translate into a systematic uncertainty in
polarimetry. One of the best techniques for determining the
absolute polarization of 3He is the method of measuring
shifts in the electron paramagnetic resonance frequencies of
the alkali-metal atoms due to the effective magnetic field
caused by the polarized 3He [31]. This can be performed
only in the pumping chamber (where significant alkali-metal
vapor is present), despite the fact that the quantity of interest

in an electron-scattering experiment is the polarization in
the target chamber. Thus, it is often the case that NMR
measurements are made directly on the target chamber but
are calibrated against frequency shift measurements in the
pumping chamber. When this is done, the calibration requires
a knowledge of �. For the case of the targets used in the Gn

E

experiment discussed earlier, the uncertainty in �, following
the prescription described earlier, translated into a 1–2%
(relative) uncertainty in polarimetery. While not catastrophic,
such systematic uncertainties would be nice to avoid.

2. Limitations from using a single transfer tube

Two points emerge regarding polarization gradients: (a)
they limit target polarization at high beam currents and
(b) they are somewhat uncertain in their size, which, in
some circumstances, results in systematic uncertainties in
polarimetry. If we want to make polarization gradients smaller
while retaining the basic cell design illustrated in Fig. 1, there
are two things that can be considered: increasing the cross-
sectional area of the transfer tube and decreasing the length of
the transfer tube. We note that with the large-volume cells that
are more resistant to beam current, design constraints make it
difficult to significantly shorten the transfer tube, and they are
currently at most 50% longer than the shortest lengths used in
early two-chambered targets such as those employed during
E142. We will, thus, focus here on the cross-sectional area.

To better understand the limitations of single transfer-tube
configurations for future targets, we consider a hypothetical
target design for an approved experiment at JLab (E12-06-
016) that will measure Gn

E up to Q2 = 10 GeV2 [32]. The
experiment will run at 60 μA with a target length of 60 cm
instead of 40 cm, a luminosity equivalent to running 90 μA
into the target of Fig. 1. Here we will assume a single transfer
tube is employed instead of the convection-based design that
is actually specified in the proposal.

The single best way to make a target less susceptible to
beam current is to make the cell larger and use more lasers,
thus making relaxation from the beam a smaller perturbation
to the target as a whole. The proposal for E12-06-016 calls for
a target containing roughly 7 STP L of gas, in contrast to the
roughly 3 STP L contained in the targets illustrated by Fig. 1.
Using Fig. 1 as a starting point, we will assume a transfer
tube diameter equal to the diameter of the target chamber
(about as large as is practically realizable). We, further, assume
the transfer tube has the same length as before and that the
pumping chamber is larger (around 12.5 cm) to satisfy the
criterion of having the target contain 7 STP L of gas. Such
a cell would have a polarization gradient of around 12% in
60 μA of beam. If the cell-averaged polarization were around
70% with no beam (more on this in Sec. IV), and 62% in
beam, the polarization in the target chamber would be about
55%. In addition to the reduction of the in-beam polarization,
the gradients would also have the potential of introducing
uncertainties in polarimetry at the level of 2–4%. In short, this
hypothetical design falls well short of optimized performance.
And while we have assumed here the same transfer-tube length
as shown in Fig. 1, as will be discussed further in Sec. IV, there
are compelling reasons to increase the distance between the
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pumping and target chambers. This would naturally require a
longer transfer tube, something that would further aggravate
the problem of polarization gradients.

III. CONVECTION DRIVEN CELLS

We describe next a variant of the target cell geometry
depicted in Fig. 1. There are still two chambers, a pumping
chamber and a target chamber, but the two chambers are
connected by two transfer tubes instead of one. With this
design, it is possible to induce convection, thus causing rapid
transfer of gas between the two chambers. Furthermore, all that
is required to induce convection is to maintain a temperature
differential between the vertical segments of the two transfer
tubes. By controlling the temperature differential, the speed
of the convection can be adjusted. With rapid mixing of gas
between the two chambers, the aforementioned polarization
gradients can be made negligible, even if the distance between
the pumping and target chambers is substantially increased.

A. Experimental setup

To demonstrate the feasibility of convection-driven polar-
ized 3He target cells, we have constructed a prototype with
the geometry and dimensions illustrated in Fig. 4. The cell
was constructed entirely from aluminosilicate glass (GE 180)
and was sealed after being filled with 7.2 amg of 3He and
a 0.11 amg of N2. The pumping chamber also contained
several tens of milligrams of a hybrid mixture of potassium and
rubidium.

The 3He gas in the new prototype was polarized in the same
manner as in our other target cells. The pumping chamber was
surrounded by a forced-hot-air oven, constructed largely from
ceramic and glass. While polarizing the 3He, the oven was
maintained at temperatures that were typically between 200 ◦

Transfer Tubes (TT)

8.9 cm

1.2 cm

12 cm

40 cm

1.9cm

5.1cm

1 2 3 4

h

NMR Pickup Coils

Zapper
Coil

Convec�on
Heater

Pumping
Chamber

(PC)

FIG. 4. (Color online) Prototype convection-based target cell.
The pumping chamber is placed inside an optical pumping oven. The
right transfer tube is heated while the left transfer tube is kept at room
temperature. The two transfer tubes have different densities which
creates a counterclockwise convection current in the cell. The zapper
coil is used to depolarize a slug of gas. This slug is then monitored as
it travels through the pickup coils on the target chamber. We note that
a small horizontal portion of the transfer tube was also heated but, for
clarity, is not shown, since it did not contribute to driving convection.

and 235 ◦C, resulting in a vapor pressure of alkali-metal atoms
corresponding to a number density on the order of 1015 cm−3.
The rubidium atoms were optically pumped using laser light
from high-power diode-laser arrays with a wavelength of
795 nm, and, as described in Refs. [14] and [15], quickly
shared their polarization with the potassium atoms that were
also present. Subsequent spin-exchange collisions with the
3He atoms resulted in the buildup of substantial nuclear
polarization.

The temperature differential used to induce convection
was maintained by using a second forced-hot-air “convection
heater,” installed on one of the transfer tubes as illustrated
on Fig. 4 (we note that, in reality, the convection heater
also covered much of the horizontal portion of the transfer
tube, but that this portion contributed negligibly to the speed
of the convection). With a portion of one of the transfer
tubes at an elevated temperature, the gas contained therein
had a lower density than the corresponding gas in the other
transfer tube and, thus, experienced a small buoyant force
which induced convection. By controlling the temperature of
the convection heater, the gas flow could be controlled in a
stable and reproducible fashion.

The flow of the gas was monitored using an NMR tagging
technique. A “slug” of gas within a small section of one of the
transfer tubes was depolarized by subjecting it to a pulse of rf
tuned to the Larmor frequency of the 3He nuclei. The rf was
delivered using a small coil (labeled in Fig. 4 as the “Zapper
coil”) wrapped directly around one of the transfer tubes. NMR
signals were then detected at each of four locations along the
target chamber as indicated on Fig. 4 using small “pickup
coils.” The movement of the slug of gas could then be tracked
by monitoring NMR signals from each of the four pickup
coils. Signals from the pickup coils were obtained once every
2 s using the NMR technique of AFP [24]. Representative
examples of such signals are plotted in Fig. 5 as a function of
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FIG. 5. (Color online) Data used to visualize gas flow are shown
in which the NMR signal from four pickup coils are plotted versus
time. The oven temperature was 215 ◦C, and the transfer tubes were
24 ◦C and 50 ◦C, respectively. The data indicate a gas flow velocity of
20 cm/min in the target chamber.
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time. Time zero in this plot corresponds to the moment when
a slug of gas was tagged.

It is readily apparent from Fig. 5 that a transient dip occurs
in each of the signals from the four pickup coils. This dip
corresponds to the passage of the depolarized slug of gas, and
it can be seen that the transient occurs at successively later
times for each of coils 1–4. Given the known positions of the
regularly spaced pickup coils, the difference in time between
the transients associated with each of the four pickup coils
provides a measure of the speed with which the tagged slug
of gas was moving. The measurement illustrated in Fig. 5
corresponds to a target-chamber gas velocity of 20 cm/min.

Also apparent from Fig. 5 is the fact that each successive dip
becomes wider and more shallow. This is due in part to the fact
that the gas flow within the cell is characterized by the classic
parabolic Hagen-Pouiselle velocity distribution. That is, the
velocity as a function of the distance r from the middle of the
tube has the functional form v(r) = vmax(1 − r2/R2). Hence,
the slug of gas, which is initially fairly localized to the region
around the “zapper coil,” becomes increasingly spread out as
it moves through the target chamber. Additional spreading
also occurs because of diffusion. We note also that the NMR
signal decreases as a function of time. This is due largely
to polarization losses that occur with each AFP measurement.
While the loss from each individual measurement is quite small
(on the order of 1%), the accumulation of many such losses
is quite substantial. We note that in the normal operation of
a polarized 3He target measurements are typically made not
every 2 s but, rather, every 2 to 4 h.

B. Temperature dependence of the gas velocity

Hagen-Pouiselle flow occurs whenever a pressure differ-
ential between two ends of a pipe causes the laminar flow
of a viscous gas or fluid [33,34]. In equilibrium, the driving
force from the pressure differential Fdriving must be equal to
the retarding force Fretarding from the viscosity as follows:

Fdriving = Fretarding. (35)

For the case of a pipe that is circular in cross section, Eq. (35)
must be satisfied for each annular ring of fluid of thickness dr ,
a condition which leads to the equation

�P 2πrdr = −2πηl
d

dr

(
r
dv

dr

)
dr, (36)

where �P is the pressure differential, η is the viscosity of the
fluid, and l is the length of the pipe. Imposing the boundary
condition that the velocity of flow must go to zero at the
perimeter of the pipe, the solution to this differential equation
is

v(r) = 1

4

�P (r2 − R2)

ηl
, (37)

where R is the radius of the pipe. It is the velocity distribution
given by Eq. (37) that is often referred to as Hagen-Pouiselle
flow.

In the case of our convection cell the driving force is due
to the small buoyancy force that results from maintaining a

vertical portion of one transfer tube at a higher temperature
than the corresponding section of the other transfer tube:

Fbuoyancy = �ρ Vt g, (38)

where Vt is the volume of the vertical portion of the transfer
tube that is being heated, �ρ is the difference between the
average densities of the heated and unheated portions of the
transfer tubes, and g is the acceleration due to gravity. We can
express �ρ as follows:

�ρ = ρ TC

(
1

TC

− 1

TH

)
, (39)

where ρ is the density of the gas in those portions of the cell
that are not heated, TC is the temperature of those portions
of the cell that are not heated, and TH is the temperature
of the portion of the transfer tube that is being heated (both
temperatures are in Kelvin). For the case being discussed here,
the pressure differential that appears in the left-hand side of
Eq. (36) is thus given by

�P = Fbuoyancy/At = �ρ h g, (40)

where At is the cross-sectional area of the transfer tube and h

is the length of the portion of the transfer tube that is heated.
If our convection cell could be treated as a long straight tube,

we could simply substitute Eqs. (39) and (40) into Eq. (37) to
obtain an expression for the velocity. Our convection cells are
more complex, however, which complicates the expression
that appears on the right-hand side of Eq. (36). There are
multiple sections of tubing, each with its own radius, as well
as bends, and so on. The velocity of the gas will differ in
each section, and even the viscosity will differ depending on
the temperature. Luckily, however, as will be shown in the
appendix, the continuity equation ensures that the velocity
in each section is related in a simple linear fashion to the
velocity in the other sections, so it is still possible to solve
Eq. (36) exactly. In essence, the quantity ηl that appears on
the right-hand side of Eq. (36) must be replaced by a single
quantity kηL, which still has the dimensions of viscosity times
length but incorporates the full complexity of the cell. The
solution can accordingly be written in the form

v(r, TH ) = (r2 − R2)

4 kηL
ρ h g TC

(
1

TC

− 1

TH

)
, (41)

where r is the radial coordinate in the target chamber and R is
the radius of the target chamber. The temperature dependence
of v is largely dominated by the factor ( 1

TC
− 1

TH
). The quantity

kηL, however, is also dependent on temperature, although for
the range of values of TH that we consider, the temperature
dependence of kηL on TH is relatively weak.

It is important to understand the relationship between
the observed velocity of the gas, vobs, as indicated by data
of the sort shown in Fig. 5, and the velocity distribution
given by Eq. (41). The natural way to compute vobs is to
take the physical separation of adjacent pickup coils and to
divide by the separation in time between the minima of the
corresponding transients. If we consider the limit in which
the distance between the zapper coil and the pickup coils is
long compared to the length of the zapper coil itself, it is
straightforward to show that, to a good approximation, the
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FIG. 6. (Color online) The velocity of the gas in the target
chamber of the convection-based cell is shown as a function of the
temperature T of the heated transfer tube. The oven temperature was
215 ◦C and the unheated transfer tube was at 24 ◦C.

above method of computing vobs corresponds to the maximum
value of the velocity given by Eq. (41), vmax, which results
from setting r = 0. To a good approximation, we can express
vmax in the simplified form

vmax = A
1 + β1�T

(
1

TC

− 1

TH

)
, (42)

where all quantities not dependent on TH have been absorbed
into the constant A, and the temperature dependence of kηL is
accounted for by the factor 1 + β1�T , where �T = TH − TC .
For the conditions we have considered, β1 is on the order of
10−3 per degree centigrade.

In Fig. 6 we have plotted vobs as a function of TH for a range
of temperatures. For each point, the velocity was computed
using data such as those shown in Fig. 5. We also show in Fig. 6,
with a solid black line, a fit of the data to a function of the form
of Eq. (42). The quality of the fit is clearly quite good and yields
the values A = 7.47(22) × 104 K cm/min, Tcold = 24.3(8),
and β1 = −0.2(2) × 10−3/◦C. For comparison, using our best
knowledge of the cell geometry and densities, with Tcold =
24.5◦C, we compute A = 9.14 × 104 K cm/min and β1 =
1.03 × 10−3/◦C (see Appendix A). Given the uncertainties of
some of the quantities with which we are working, particularly
in describing the retarding forces associated with our relatively
complicated cell geometry, this agreement is quite reasonable.
More importantly, the agreement is more than sufficient to
suggest that we have an acceptable quantitative understanding
of the parameters influencing the convective flow from a
practical perspective.

C. Convection transfer rates and the elimination of polarization
gradients

Ultimately, the value of a convection-driven target cell is
measured by the degree to which polarization gradients can be
avoided between the pumping chamber and the target chamber.
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FIG. 7. (Color online) The ratio of the polarizations of the target
chamber and the pumping chamber, Ptc/Ppc, is shown versus time for
three spin-ups corresponding to different convection velocities.

It is critical that, as gas is depolarized by an electron beam,
freshly polarized gas is delivered from the pumping chamber
sufficiently quickly. Ideally, one would like the ratio of the
polarizations of the two chambers to be as close to unity
as possible. Fortunately, when convection is used to transfer
gas between chambers, the polarization gradient is suppressed
because the transfer rates are quite high.

For the range of velocities measured in Fig. 6, we find
values for dtc in the range of 4.9–81 h−1. Even with relatively
fast relaxation in the target chamber (for example, consider
�tc = 1/10 h−1), the polarization gradient [Eq. (30)] will be
very small in the presence of such fast transfer rates (� � 0.02
or Ptc/Ppc � 0.98).

In Fig. 2, the 3He polarization in both chambers of a
traditional target cell is plotted as a function of time. The ratio
of target chamber to pumping chamber polarization for this
plot begins at zero and gradually climbs to a value significantly
less than unity, reflecting a substantial polarization gradient. In
Fig. 7, we plot this ratio for a convection-driven cell for three
different operating conditions. In all cases, the temperature
of the oven was held at 215 ◦C. The three curves correspond
to different temperatures TH of the heated transfer tube. For
the data shown with the open squares, the transfer-tube set
temperature was 24◦C, the same as the other (unheated)
transfer tube. This case corresponds to no driven convection
and is associated with a polarization gradient of 18%. For
the data shown with the filled triangles and the filled circles,
the set temperatures were 50 ◦ and 100 ◦C, respectively. These
two conditions corresponded to target-chamber gas velocities
of approximately 19.9 cm/min and 48.5 cm/min. In both
of these cases, the ratio of the polarizations of the target
chamber and the pumping chamber quickly reached a value
approaching unity. It is notable that there is very little
difference between these last two curves despite substantially
different gas velocities. In short, as soon as convection rather
than diffusion is responsible for the gas transfer between the
two chambers, polarization is relatively uniform throughout
the cell.
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IV. OUTLOOK FOR FUTURE TARGETS

With advances in SEOP, it is now possible to run polarized
3He targets at significantly higher luminosities. Using a single
transfer tube, however, even currently approved experiments
would suffer polarization gradients of 12% or worse, and
subsequent experiments at even higher luminosities would be
even more limited. The work described here demonstrates that
with only minor changes to current designs, convection-based
cells can be built in which polarization gradients are extremely
small.

In many ways, however, the most compelling reason to
adopt convection-based cells is the enormous flexibility that
is gained in being able to choose the distance between the
pumping and target chambers. Experience has shown that the
probability of a cell rupturing goes up markedly after 4–6
weeks exposure to something on the order of 12 μA of beam.
Most commonly, the part of the cell that breaks is the pumping
chamber. Stress in a sphere goes up linearly with the radius.
This makes the relatively large pumping chamber particularly
vulnerable to radiation damage. With convection-based cells
the distance between the pumping chamber and the target
chamber can be greatly increased with minimal implications
for performance. Among other things, it becomes practical to
incorporate radiation shielding for the pumping chamber.

There are at least two additional reasons that flexibility
in the configuration of target cells is highly desirable. As
discussed earlier, the primary way to make targets more
tolerant of beam is to make them larger. The more gas that
is being polarized per unit time, the less relevant it is that some
small portion of that gas is being depolarized by the beam.
It is not practical, however, to make the pumping chamber
arbitrarily large. As the stress in the glass walls increases,
the cell becomes more prone to rupturing, even if the wall
thickness is increased. Furthermore, the intensity of the optical
pumping radiation goes like total power over the square of
the radius while the volume goes like the cube of the radius.
Hence, since the required laser power scales with volume,
the required intensity of light scales linearly with radius. We
have had several experiences with existing cells in which laser
intensity was higher than usual, after which we observed a
degradation of cell performance. While not conclusive, these
observations make us hesitant to move to a design that requires
larger pumping chambers and, hence, higher laser intensity. If
multiple pumping chambers were used instead of one, it would
become possible to limit both laser intensity and the size of
each individual pumping chamber. If diffusion were the only
mechanism for moving polarized gas inside the target, the
implementation of multiple pumping chambers would be quite
challenging.

We close by citing a concrete example that underscores
the desirability of adopting convection-based target cells. We
show in Fig. 8 results from a bench test of the cell “Brady”
(discussed earlier) in which the primary goal was to achieve the
highest polarization possible. Brady, like the targets used for
the Gn

E measurements [3], contained an alkali-hybrid mixture
of K and Rb. Unlike during the Gn

E experiment, however, the
results shown in Fig. 8 were obtained using diode-laser arrays
that were spectrally narrowed such that their linewidths were
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FIG. 8. (Color online) Shown is polarization as a function of
time for the cell “Brady.” A polarization of 70% was ultimately
reached. The set of tests giving rise to these data established the
highest polarizations observed to date among large polarized 3He
target cells intended for electron scattering.

about 10 times narrower than their broadband counterparts.
The polarization in this test saturated at just over 70%. Brady
was one of two target cells used to collect data on single-spin
asymmetries in semi-inclusive deep inelastic scattering and
was similar in design, although slightly smaller than, the
configuration shown in Fig. 1. During the experiment, the
in-beam polarization of the 3He averaged around 55% [35],
despite the fact that the cell-averaged polarization, averaged
over the entire experiment, was over 60%. If the targets used
for this experiment had had convection-based gas mixing
(which was just being explored at the time), significant gains
in performance would have resulted.

In conclusion, with the advances in target performance
brought about by a combination of alkali-hybrid spin-exchange
optical pumping and spectrally narrowed diode-laser arrays,
the point has been reached when it is desirable to explore
target-cell geometries that go beyond that shown in Fig. 1. We
suggest that the convection-based gas mixing demonstrated
in this work can play an important role in implementing
high-luminosity polarized 3He targets in the future. Not only
will the use of convection reduce polarization gradients, it
will also make possible greater flexibility in the placement
of the pumping chamber with respect to the target chamber.
Among other things, this flexibility will enable the use of
radiation shielding and even the use of multiple pumping
chambers. Convection-based polarized 3He target cells open
new possibilities that collectively address several of the impor-
tant challenges facing the next generation of high-luminosity
polarized 3He targets.
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APPENDIX A: ESTIMATE OF THE MAGNITUDE OF FLOW
IN THE CONVECTION CELLS.

Here we formulate estimates for the parameters that appear
in Eq. (42).

1. The viscosity of 3He

Since our temperatures are in the classical regime (T 

3 K), the viscosity ηHe3 of 3He can be calculated from the
viscosity ηHe4 of 4He using [36]:

ηHe3 =
√

mHe3

mHe4
ηHe4 (A1)

= 0.8681ηHe4. (A2)

We parametrize the 4He viscosity in the range of 0 ◦–300 ◦C
following Kestin et al. [37],

ηHe4 = A + B × T + C × T 2, (A3)

where T is in units of ◦C and

A = 18.82(2) μPa · s, (A4)

B = 0.0456(2) μPa · s/◦C, (A5)

and C = −13.8(6) pPa · s/(◦C)2. (A6)

At 20 ◦C, ηHe3 = 17.12 μPa · s.
The flow in a pipe is laminar if the Reynold’s number is

below ∼2000 [38]. The Reynolds number is defined as

Re = 2Rρv

η
, (A7)

where ρ is the density of the fluid. A 1.2-cm-wide pipe that is
filled with eight amagats 3He will have laminar flow at 20◦C
(ρ ≈ 1 kg/m3) provided v � 20 000 cm/min.

2. Flow in the convection cell

The flow in the convection cell arises from a forced
density difference between the two transfer tubes; one tube
is maintained at room temperature while the other is heated
(see Fig. 4). We modeled the convection cell as five contiguous
pipes as illustrated in Fig. 9. Equation (36) becomes

�ρgh2πrdr = −2π

5∑
i

ηi li
d

dri

(
ri

dvi

dri

)
dri, (A8)

where h is the vertical length of transfer tube that is held at
an elevated temperature. In this model we approximate the
pumping chamber as a cylinder with transfer tubes entering
axially and identify five distinct regions in the cell as is
indicated in Fig. 9. Each region is identified as a pipe of
length li , radius Ri , cross sectional area Ai , and temperature Ti .
We further assume that T1 = T4, T3 = T5, and R1 = R2 = R3.
Finally, we identify TC ≡ T1 and TH ≡ T2. We note that
both the density and viscosity of the gas are temperature
dependent.

h 
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FIG. 9. (Color online) Diagram indicating the different tempera-
ture regions used to describe the convection cell.

The continuity equation, ρjAjvj = ρiAivi and some dis-
tance rescaling provide further simplification as follows:

vi = ρ1R
2
1

ρiR
2
i

v1, (A9)

ri = Ri

R1
r1, (A10)

and
d

dri

= R1

Ri

d

dr1
. (A11)

Since vi and ri have been expressed in terms of v1 and r1,
we will drop their subscripts. Finally,

v(r) = 1

4

�ρgh
(
r2 − R2

1

)
η1

(
l1 + l4

R2
1

R2
4

)
+ η2l2

ρ1R
2
1

ρ2R
2
2

+ η3
ρ1

ρ3

(
l3

R2
1

R2
3

+ l5
R2

1

R2
5

) ,

(A12)

where v(r) is the velocity in region 1.
Equation (A12) assumes that there are no “minor losses”

in the system, where a minor loss represents a pressure drop
due to a sudden change in flow from a pipe fitting or a pipe
expansion or contraction; the term “minor loss” refers to a
loss that is small relative to the overall length of pipe under
consideration [33,39]. In our case, due to the relatively short
length of the cell, the minor losses are actually significant. The
actual cell, as illustrated in Fig. 4, consists of four elbow bends,
two tees, and four expansions/contractions. The retarding
forces these losses exert on the gas can be approximated by
considering instead an equivalent length of straight pipe.

The expansions/contractions have a relatively small loss,
which is equivalent in magnitude to the loss that would be
incurred passing through a pipe of length [39]

Lequivalent = 2RK

f
, (A13)

where R is the tube radius, f is the friction factor (f = 64/Re
for laminar flow), and K is the fluid-independant resistance
coefficient. For sudden expansions/contractions,

Kexpansion =
(

1 − r2
small

r2
large

)2

, (A14)

and Kcontraction = 1

2

(
1 − r2

small

r2
large

)2

. (A15)

Gas flowing through the transfer tube/target chamber junction
has Kcontraction ≈ 0.18, Kexpansion ≈ 0.35. At v = 60 cm/min
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TABLE I. Best guesses for convection cell dimensions (cm).

R1 R2 R3 R4 R5 h l1 l2 l3 l4 l5

0.498 0.521 0.502 0.806 4.034 4.76 24.99 20.87 15.18 40.32 5.6

(Re ≈ 10), this gives a negligible Lequivalent ≈ 0.1 cm, and gas
flowing between the pumping chamber and the transfer tube
will have an even smaller Lequivalent.

The losses in the bends, however, are much greater. We
model the loss coefficient in the bends using the 3-K method
of Darby [40],

K = K1

Re
+ Ki

(
1 + Kd

D0.3

)
, (A16)

where D is the diameter of the pipe (in inches) and K1,Ki,Kd

are geometry-dependent loss coefficients. We approximate our
glass bends as flanged, welded bends with rb/D = 2 (here, rb

is the radius of the bend); such bends have K1 = 800,Ki =
0.056,Kd = 3.9. For laminar flow, the 3-K method gives

Lequivalent = 2R

64

[
K1 + ReKi

(
1 + Kd

D0.3

)]
. (A17)

We treat the transfer tube/target chamber tee junctions as
elbows (effectively ignoring the dead-end branch of the tee).
The system, therefore, has five bends in temperature region 1
(which have a total equivalent length of approximately 63 cm)
and one bend in temperature region 2 (which has an equivalent
length of approximately 13 cm). Finally, using Eq. (39) for
�ρ, we find

v(r) =
1
4

(
r2 − R2

1

)
ρhgTC

(
1
TC

− 1
TH

)
η1

(
l′1 + l4

R2
1

R2
4

)
+ η2l

′
2
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2
1

ρ2R
2
2

+ η3
T3
T1

(
l3

R2
1

R3
3

+ l5
R2

1

R2
5

) ,

(A18)

where

l′1 = l1 + 5 × 2R1

64

[
K1 + Re1Ki

(
1 + Kd

D0.3
1

)]
, (A19)

l′2 = l2 + 2R2

64

[
K1 + Re2Ki

(
1 + Kd

D0.3
2

)]
. (A20)

Note that the Reynold’s number is dependent on the velocity
of the gas.

Table I lists values for R and l. Measurements of R (which
is the inner diameter of the tube) require a knowledge of the
thickness of the glass tube. We measured the thickness of
the glass by observing interference patterns using a scannable
single-frequency laser. Using this information, Eq. (A18)

predicts velocities that agree within 20% of the measured value
(see Fig. 6).

The maximum velocity in Eq. (A18) (corresponding to
r=0) can be written as

vmax =
A′

(
1

Tcoldtt
− 1

Thottt

)
1 + β(�T )

, (A21)

where

�T = TH − TC, (A22)

A′ = R2
1ρhgTC

4 kηL
, (A23)

β = β1�T + β2(�T )2 + β3(�T )3, (A24)
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+ η2l
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2
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2

+ η3
T3

T1

(
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1

R2
3

+ l5
R2

1

R2
5

)
,

(A25)

�T = T2 − T1, (A26)

β1 = l′2
R2

1

R2
2

{
η1

T1
+ 0.8681[B + 2C(T1 − 273)]

}
, (A27)

β2 = 0.8681l′2
R2

1

R2
2

[
B + 2C(T1 − 273)

T1
+ C

]
, (A28)

and (A29)

β3 = 0.8681l′2
R2

1

R2
2

[
C

T1

]
. (A30)

In the above equations, all temperatures are in Kelvin. To
describe the velocity in region 4 (the target chamber) instead of

in region 1, we use Eq. (A9) and replace A′ with A = (R2
1

R2
4
)A′.

This is the quantity that appears in Eq. (42) that characterizes
the magnitude of the gas velocities shown in Fig. 6.

Evaluating the above equations in terms of our best guesses
for cell dimensions and temperatures, with TC = 24.5◦C gives
A = 9.14 × 104 K cm/min, β1 = 1.03 × 10−3, β2 = 1.26 ×
10−6, and β3 = −4.26 × 10−10. It is clear from these values
that it is quite reasonable to neglect the terms involving β2 and
β3, which results in Eq. (42) from Sec. III B.

[1] J. l. Friar, B. F. Gibson, G. L. Payne, A. M. Bernstein, and T. E.
Chupp, Phys. Rev. C 42, 2310 (1990).

[2] P. L. Anthony et al., Phys. Rev. Lett. 71, 959 (1993).
[3] S. Riordan et al., Phys. Rev. Lett. 105, 262302

(2010).
[4] K. P. Coulter, T. E. Chupp, A. B. McDonald, C. D. Bowman,

J. D. Bowman, J. J. Szymanski, V. Yuan, G. D. Cates, D. R.
Benton, and E. D. Earle, Nucl. Instrum. Methods A 288, 463
(1990).

[5] M. S. Albert, G. D. Cates, B. Driehuys, W. Happer, B. Saam,
C. S. Springer, and A. Wishnia, Nature 370, 199
(1994).

[6] H. Middleton et al. Magn. Reson. Med. 33, 271 (1995).
[7] F. Colegrove, L. Schearer, and G. Walters, Phys. Rev. 132, 2561

(1963).
[8] P. Nacher and M. Leduc, J. Phys. 46, 2057 (1985).
[9] M. Bouchiat, T. Carver, and C. Varnum, Phys. Rev. Lett. 5, 373

(1960).

065201-12

http://dx.doi.org/10.1103/PhysRevC.42.2310
http://dx.doi.org/10.1103/PhysRevLett.71.959
http://dx.doi.org/10.1103/PhysRevLett.105.262302
http://dx.doi.org/10.1103/PhysRevLett.105.262302
http://dx.doi.org/10.1016/0168-9002(90)90139-W
http://dx.doi.org/10.1016/0168-9002(90)90139-W
http://dx.doi.org/10.1038/370199a0
http://dx.doi.org/10.1038/370199a0
http://dx.doi.org/10.1002/mrm.1910330219
http://dx.doi.org/10.1103/PhysRev.132.2561
http://dx.doi.org/10.1103/PhysRev.132.2561
http://dx.doi.org/10.1051/jphys:0198500460120205700
http://dx.doi.org/10.1103/PhysRevLett.5.373
http://dx.doi.org/10.1103/PhysRevLett.5.373


GAS DYNAMICS IN HIGH-LUMINOSITY POLARIZED . . . PHYSICAL REVIEW C 84, 065201 (2011)

[10] N. D. Bhaskar, W. Happer, and T. McClelland, Phys. Rev. Lett.
49, 25 (1982).

[11] T. E. Chupp, M. E. Wagshul, K. P. Coulter, A. B. McDonald,
and W. Happer, Phys. Rev. C 36, 2244 (1987).

[12] J. Krimmer, M. Distler, W. Heil, S. Karpuk, D. Kiselev, Z. Salhi,
and E. Otten, Nucl. Instrum. Methods A 611, 18 (2009).

[13] T. E. Chupp, R. A. Loveman, A. K. Thompson, A. M. Bernstein,
and D. R. Tieger, Phys. Rev. C 45, 915 (1992).

[14] W. Happer, G. Cates, M. Romalis, and C. Erickson, US Patent
No. 6,318,092 (20 November 2001).

[15] E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W.
Anderson, F. W. Hersman, and T. G. Walker, Phys. Rev. Lett.
91, 123003 (2003).

[16] B. Wojtsekhowski, in Proceedings of Exclusive Processes
At High Momentum Transfer (World Scientific, Singapore,
2002).

[17] E. Babcock, B. Chann, T. G. Walker, W. C. Chen, and T. R.
Gentile, Phys. Rev. Lett. 96, 083003 (2006).

[18] N. R. Newbury, A. S. Barton, G. D. Cates, W. Happer, and
H. Middleton, Phys. Rev. A 48, 4411 (1993).

[19] K. D. Bonin, T. G. Walker, and W. Happer, Phys. Rev. A 37,
3270 (1988).

[20] K. D. Bonin, D. P. Saltzberg, and W. Happer, Phys. Rev. A 38,
4481 (1988).

[21] K. P. Coulter, A. B. McDonald, G. D. Cates, W. Happer, and
T. E. Chupp, Nucl. Instrum. Methods A 276, 29 (1989).

[22] C. Jones and et al., Phys. Rev. C 47, 110 (1993).
[23] I. Kominis, Ph.D. thesis, Princeton University, 2001.

[24] A. Abragam, Principles of Nuclear Magnetism (Oxford
University Press, Oxford, UK, 1961).

[25] M. Romalis, Ph.D. thesis, Princeton University, 1997.
[26] X. Zheng, Ph.D. thesis, M.I.T., 2002.
[27] J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and

M. Waldman, J. Phys. Chem. Ref. Data 13, 229 (1984).
[28] R. L. Garwin and H. A. Reich, Phys. Rev. 115, 1478 (1959).
[29] W. Fitzsimmons, L. Tankersley, and G. Walters, Phys. Rev. 179,

156 (1969).
[30] B. C. Anger, G. Schrank, A. Schoeck, K. A. Butler, M. S. Solum,

R. J. Pugmire, and B. Saam, Phys. Rev. A 78, 043406 (2008).
[31] M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998).
[32] G. Cates, S. Riordan, and B. Wojtsekhowski, JLab experiment

E12-06-016 (unpublished, 2009).
[33] R. Dodge and M. Thompson, Fluid Mechanics (McGraw-Hill,

New York, 1937).
[34] D. J. Tritton, Physical Fluid Dynamics (Van Nostrand Reinhold,

New York, 1977).
[35] X. Qian et al., Phys. Rev. Lett. 107, 072003 (2011).
[36] W. E. Keller, Phys. Rev. 105, 41 (1957).
[37] J. Kestin, K. Knierim, E. Mason, B. Najafi, S. Ro, and

M. Waldman, J. Phys. Chem. Ref. Data 13, 229 (1984).
[38] O. Reynolds, Phil. Trans. R. Soc. 174, 935 (1883); B. Eckhardt,

Phil. Trans. R. Soc. A 367, 449 (2009).
[39] Flow of fluids through valves, fitting and pipe, Technical Paper

No. 410 (Crane Company, Stamford, CT, 2009).
[40] R. Darby, Chemical Engineering Fluid Mechanics (Marcel

Dekker, New York, 2001).

065201-13

http://dx.doi.org/10.1103/PhysRevLett.49.25
http://dx.doi.org/10.1103/PhysRevLett.49.25
http://dx.doi.org/10.1103/PhysRevC.36.2244
http://dx.doi.org/10.1016/j.nima.2009.09.064
http://dx.doi.org/10.1103/PhysRevC.45.915
http://dx.doi.org/10.1103/PhysRevLett.91.123003
http://dx.doi.org/10.1103/PhysRevLett.91.123003
http://dx.doi.org/10.1103/PhysRevLett.96.083003
http://dx.doi.org/10.1103/PhysRevA.48.4411
http://dx.doi.org/10.1103/PhysRevA.37.3270
http://dx.doi.org/10.1103/PhysRevA.37.3270
http://dx.doi.org/10.1103/PhysRevA.38.4481
http://dx.doi.org/10.1103/PhysRevA.38.4481
http://dx.doi.org/10.1016/0168-9002(89)90612-8
http://dx.doi.org/10.1103/PhysRevC.47.110
http://dx.doi.org/10.1063/1.555703
http://dx.doi.org/10.1103/PhysRev.115.1478
http://dx.doi.org/10.1103/PhysRev.179.156
http://dx.doi.org/10.1103/PhysRev.179.156
http://dx.doi.org/10.1103/PhysRevA.78.043406
http://dx.doi.org/10.1103/PhysRevA.58.3004
http://dx.doi.org/10.1103/PhysRevLett.107.072003
http://dx.doi.org/10.1103/PhysRev.105.41
http://dx.doi.org/10.1063/1.555703
http://dx.doi.org/10.1098/rstl.1883.0029
http://dx.doi.org/10.1098/rsta.2008.0217

