The DarkLight experiment

Jan C. Bernauer

APEX collaboration meeting, April 2015

Massachusetts Institute of Technology

DARKLIGHT Collaboration

R. Alarcon, D. Blyth, R. Dipert, L. Ice, G. Randall

Arizona State University, Phoenix, AZ

B. Dongwi, N. Kalantarians, M. Kohl, A. Liyanage, J. Nazeer

Hampton University, Hampton, VA

S. Benson, J. Boyce, D. Douglas, P. Evtushenko, C. Hernandez-Garcia, C. Keith,

C. Tennant, S. Zhang

Thomas Jefferson National Accelerator Facility, Newport News, VA

J. Balewski, J. Bernauer, J. Bessuille, R. Corliss, R. Cowan, C. Epstein, P. Fisher*, D. Hasell,

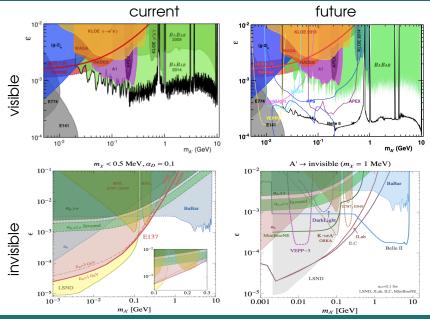
E. Ihloff, Y. Kahn, J. Kelsey, R. Milner*, S. Steadman, J. Thaler, C. Tschalär, C. Vidal

MIT, Cambridge, MA

M. Garçon

CEA Saclay, Gif-sur-Yvette, France

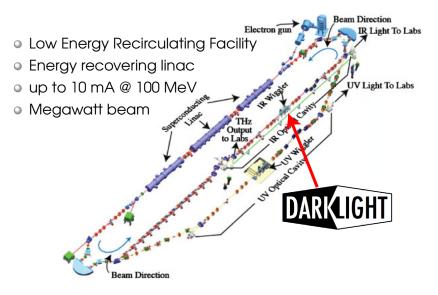
R. Cervantes, K. Dehmelt, A. Deshpande, N. Feege


Stony Brook University, Stony Brook, NY

B. Surrow

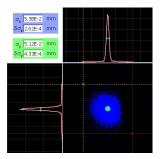
Temple University, Philadelphia, PA

To come: Johannes Gutenberg University, Mainz, Germany


Current and future exclusion limits

Design goals

- Measure $e^- + p \longrightarrow e^- + p + A' \longrightarrow e^- + p + (e^+ + e^-)$
- 100 MeV beam \implies below pion threshold, simple final state
- Complete reconstruction of final state: e⁺e⁻pair from decay, scattered electron, recoil proton
 Jargo accontanco
 - \Rightarrow large acceptance
 - \Rightarrow proton only has 1-5 MeV \Rightarrow gas target
- Resolution of reconstructed A' of 1-3 MeV
- Final state leptons 10-100 MeV \implies multiple scattering dominant \implies minimize material
- 0.5 Tesla solenoidal magnet for momentum measurement and to bottle up Møller electrons
- Definitive measurement in about 1 month: high luminosity: 10 mA @ 10¹⁹ Atoms/cm² ⇒ JLAB LERF world's only such accelerator

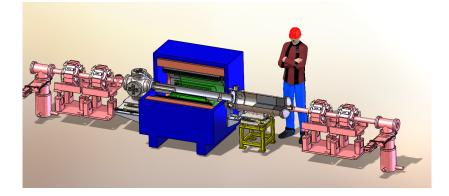

JLab LERF

Successful beam test July 2012

Target system designed and constructed at MIT-Bates R&E center

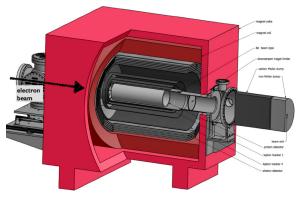
- 4.3 mA, 100 MeV (430 kWatt beam power) transmitted through 2 mm hole, 127 mm long
- Maximum loss of 3 ppm in 7 hours
- ERL has required stability

Phys. Rev. Lett. 111, 165801 (2013) Nucl. Instr. Meth A729, 233 (2013) Nucl. Instr. Meth. A729, 69 (2013)

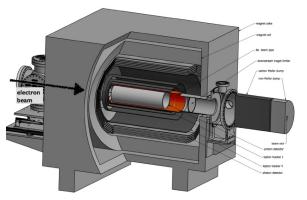

Phase 1

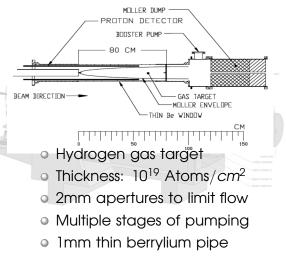
- Accelerator studies
- Measure SM physics / detector test
- Pilot DM search

Phase 2


- Full DM search
- Invisible search
- Full streaming readout

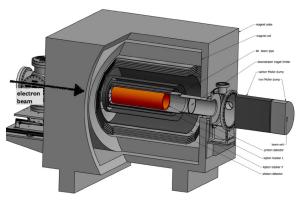
J. Balewski et al., arXiv:1412.4717 (physics.ins-det)

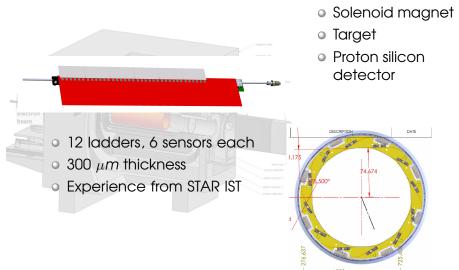

Solenoid magnet

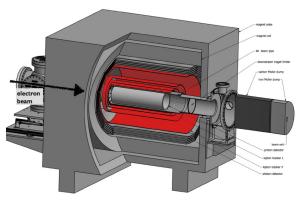

Solenoid magnet

Procured existing magnet
 0.5 Tesla max field
 Inner diameter 712mm
 Now at MIT-Bates

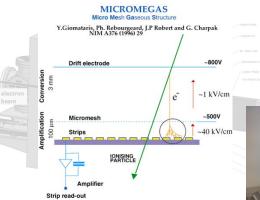
Solenoid magnet


Target

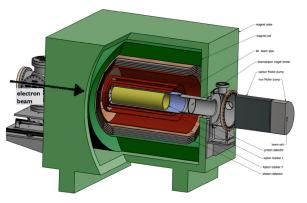

Investigating jet target


Solenoid magnet

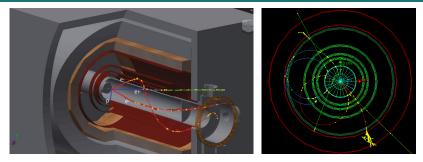
Target

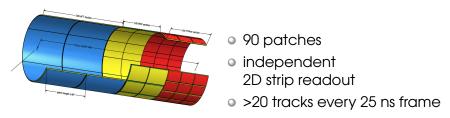


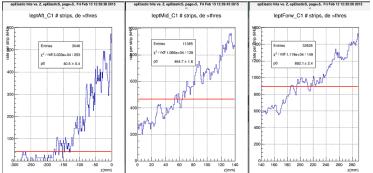
- Solenoid magnet
- Target
- Proton silicon detector

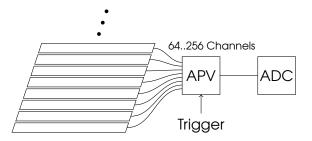

- Solenoid magnet
- Target
- Proton silicon detector
- Lepton tracker
 4 layers MicroMegas

- Thin, high rate capable
- Cylindrical detectors possible

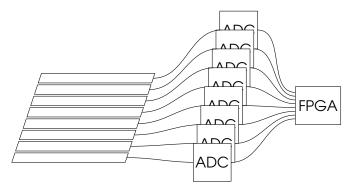

- Solenoid magnet
- Target
- Proton silicon detector
- Lepton tracker
 4 layers MicroMegas


- Solenoid magnet
- Target
- Proton silicon detector
- Lepton tracker
 4 layers MicroMegas
- Design is still in flux!


Kinematics


- © Can detect full final state
- © Large acceptance
- How to trigger?
 - Signal tracks do not reach beyond lepton tracker
 - Can not identify reaction on trigger level
 - Can not trigger on "3 particles": background to high

Background rates: Elastic scattering



Normal electronics

- APV/DREAM/... multiplex N channels to 1 ADC
- Theoretical maximum readout rate: 1/N of ADC clock

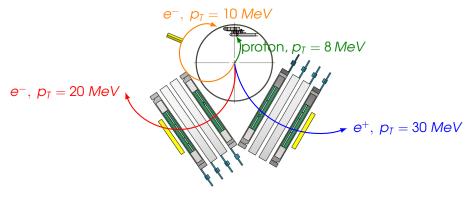
Streaming front end electronics: NSA Scale

- Continuous readout
 80k ch, 40 MSps @ 12 bit ⇒ 4.8 Terabyte/s
 ~ 80 M ch, 40 KSps
 ⇒Listening to every German citizen in CD quality.
- Zero suppression: 250 Gigabyte/s

Streaming back end electronics

- Transport data from FEE to CPU farm
- Solve transposition problem ("Event building")
 - Data aggregated per channel
 - Must be processed by time slice

Streaming back end electronics


- Transport data from FEE to CPU farm
- Solve transposition problem ("Event building")
 - Data aggregated per channel
 - Must be processed by time slice

Common problem at intensity frontier

- Solve once and reuse
- Open design
 - wire protocol
 - hardware
- Use standard hardware
 - cheaper
 - easier to extend

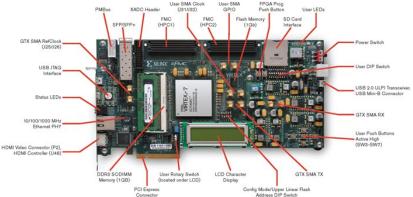
- Beryllium \longrightarrow Aluminum pipe
- Cylindrical MicroMegas \longrightarrow planar GEMs
- Only one proton detector ladder
- Only partial streaming readout

Phase 1 current design

- Tripple coincidence to select QED background / A' candidate events at reasonable rates
- Investigate if we can run double coincidence
- Run APV in quasi-streaming mode free running trigger, mutiple frames

- Phase 1:
 - Proof of target concept
 - SM processes: Møller, elastic scattering
 - DM search mock up
 - Prototyping of streaming readout
 - Will run 2016
- Phase 2:
 - Full acceptance with full streaming readout
 - Visible and invisible search

Low energy, intense beam physics


Intense Electron Beams Workshop Cornell University, June 17-19, 2015

http://www.classe.cornell.edu/NewsAndEvents/IEBWorkshop

27

Current status: Hardware

- Xilinx Virtex-7 development board: VC 707
 - XC7VX485T-2FFG1761
 - Gigabit Ethernet + SFP/SFP+
 - FMC connectors

Current status: Hardware

- Xilinx Virtex-7 development board: VC 707
 - XC7VX485T-2FFG1761
 - Gigabit Ethernet + SFP/SFP+
 - FMC connectors
- TI AD\$5295 evaluation module + adapter board
 - 8 channels
 - 80 MSPS / 12 bit

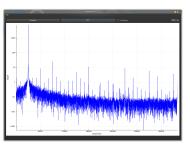
Current status: Hardware

- Xilinx Virtex-7 development board: VC 707
 - XC7VX485T-2FFG1761
 - Gigabit Ethernet + SFP/SFP+
 - FMC connectors
- TI ADS5295 evaluation module + adapter board
 - 8 channels
 - 80 MSPS / 12 bit
 - Signed up for Xilinx university program
 - XUP donated hardware & software

Current status: FPGA firmware

Milestones:

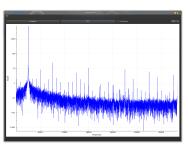
- Setup
- Ethernet send/receive
 - OSI layer 2



Current status: FPGA firmware

Milestones:

- Setup
- Ethernet send/receive
 - OSI layer 2
- Readout of ADC:
 - Full data of 1 ch.
 - 8 ch. with zero suppression



Current status: FPGA firmware

Milestones:

- Setup
- Ethernet send/receive
 - OSI layer 2
- Readout of ADC:
 - Full data of 1 ch.
 - 8 ch. with zero suppression
- Planned:
 - Partial streaming readout for DL phase 1
 - Full streaming readout for DL phase 2

