

APEX Resonance Search

New York University

James Beacham (NYU)

1

Outline

- 1) APEX resonance search
 - Objectives of resonance search
 - Procedure
 - Optimization for binned analysis
 - Characteristics of limit plots
 - Test run unblinding and final results
 - Plans for full run analysis

2) In progress: Update of reach calculation for full run using new acceptance

The Objectives

- Identify the small, narrow A' resonance on a smooth, high-statistics background spectrum
- Determine an upper limit on the number of signal events, S, consistent with background
- Upper limit on $S \rightarrow$ upper limit on coupling

$$\frac{d\sigma(A')}{d\sigma(\gamma^*)} = \left(\frac{3\pi\epsilon^2}{2N_{\text{eff}}\alpha}\right)\frac{m_{A'}}{\delta m} = \frac{S_{\delta m}}{B_{\delta m}^{\gamma^*}}$$

(See APEX proposal)

Normalize all backgrounds to γ^* background

• Ratio *f* of radiative-only cross section to full trident cross section determined via Monte Carlo to vary linearly from 0.21 to 0.25 across APEX mass range

The Procedure

window and 7th order polynomial background fit.

APEX -- Resonance Search and Statistics

James Beacham (NYU)

Test statistic based on **Profile Likelihood Ratio** Probability model:

 $P(m_{e^+e^-} \mid m_{A'}, \sigma, S, B, a_i) = \frac{S \cdot N(m_{e^+e^-} \mid m_{A'}, \sigma) + B \cdot Polynomial(m_{e^+e^-}, a_i)}{S + B}$

This becomes a likelihood function, L, as a function of the model parameters.

- Separate parameters into
 - Parameters of interest (physics parameters: mass, # signal events, etc.)
 - Nuisance parameters (systematics, i.e., everything else: background shape, etc.)

A test statistic that incorporates nuisance parameters is the **profile likelihood ratio**:

The PLR is the maximum likelihood under the null hypothesis as a fraction of its largest possible value; large values of λ indicate that the null is reasonable

Parameters of interest (POI),
set to values for null
hypothesis (
$$S = 0$$
)
 $\lambda(S) = \frac{L(S, \hat{B}, \hat{a_i})}{L(\hat{S}, \hat{B}, \hat{a_i})}$
Conditional MLE of
nuisance parameters
(i.e., for $S = 0$)
MLE of POI

Test statistic is then
$$-2 \log \lambda$$

Wilks's Theorem: $-2 \log \lambda$ is distributed as a χ^2 with # d.o.f. = # POI

Upper limit on S yields an upper limit on ϵ^2

$$\epsilon^2(m_{A'}) = \frac{S_{\delta m}}{B_{\delta m}} \frac{F(m_{A'}) \,\delta m}{m_{A'}} \left(\frac{2N_{\text{eff}}\alpha}{3\pi}\right)$$

 $\delta m = \text{mass window} = 2.56 \times \sigma$ $\sigma = \text{width of Gaussian} \sim 1 \text{ MeV (mass-dependent)}$ Background factor: $F \sim 5$ (mass-dependent) $N_{\text{eff}} = 1$

James Beacham (NYU)

Setting limit on S: Binned analysis

We would ideally do an unbinned analysis; such a large number of events makes this intractably time consuming. A binned analysis is manageable and any pulls due to choice of statistical tool (ROOT, Mathematica, etc.) can be made negligible by choosing small enough bins.

Example: With ROOT, do ensemble studies at a representative mass point; pseudodata sets based on spectrum of 10% of test run data, scaled up

Here, $S_{inserted} = 0$; large pulls for 0.5 MeV bins; pulls negligible at 0.06/0.05 MeV bins

James Beacham (NYU)

APEX -- Resonance Search and Statistics

CENTER FOR Cosmology and Particle Physics

James Beacham (NYU)

APEX Collaboration Meeting -- JLab -- 23 April 2014

10

Setting limit on S: Window size and polynomial order

30 MeV window with 7th order polynomial (dark green line) optimizes between sensitivity in S and minimal pull

James Beacham (NYU)

Characteristics of limit plots

Particular choice of polynomial basis and order captures the shape of the actual data or MC to a greater or lesser extent

James Beacham (NYU)

Characteristics of limit plots

Particular choice of polynomial basis and order captures the shape of the actual data or MC to a greater or lesser extent

James Beacham (NYU)

Characteristics of limit plots

James Beacham (NYU)

Blind analysis: Nine histograms; eight pseudodata, one real

Blind analysis: Nine histograms; eight pseudodata, one real

James Beacham (NYU)

Results from scan of test run data: S, P-values

Two-sided central limit; plot in paper is constrained to physical values of S

Upper limit on coupling

Plans for full run

- Look closer at unbinned analysis
 - Should be possible to address computational issues
- Compare multiple methods for binned analysis
- Investigate mass-dependent window sizes
- Full MC needed to complement resonance search

In progress: Update of reach estimate for full run Proposal-style reach calculation, with the inclusion of new LeRose acceptance

- Monte Carlo events are simulated for the Bethe-Heitler, radiative tridents, and the continuum trident background including the full interference effects between the diagrams. The latter background is computationally intensive, and only a small statistics sample is generated, sufficient to obtain the cross-section from MadEvent.
- The cross-section ratio of the full continuum background (with interference effects) to the sum of the Bethe-Heitler and radiative tridents is calculated, and represents a multiplicative factor by which the latter must be multiplied to get the background cross-section.
- The rates of all reactions impinging the spectrometer acceptance were calculated by integrating over a chosen target profile, which usually extended from 4.5 to 5.5 degrees. For Bethe-Heitler, radiative tridents, and the continuum trident background, the calculation of the rate was performed as a function of invariant mass.
- Using the expressions in Appendix B, we calculated the mass resolution δ_m . We then tiled the acceptance region with bins of size $2.5 \times \delta_m$ in invariant mass.
- As a function of α'/α , the total number of signal (S) and background (B) events was calculated with the help of the formulas in §3 for each bin.

• We then set $S/\sqrt{B} = 2$, and solved for α'/α .

APEX PAC37

Changes from this prescription:

- Monte Carlo for radiative trident and Bethe-Heitler backgrounds, generated at four beam energies (not necessarily those being used for full run), including correction factors for interference effects
- Ten foils/angular settings between 4.5 and 5.5 degrees Utilize MC multiple times
- Each "run" gives an unbinned dataset of invariant masses; tile the spectrum in bins of 2.5*(mass resolution) and calculate 2σ reach in ϵ^2
- New here is the imposition of the LeRose S80 acceptance numbers
- The following is pre-preliminary

In progress: Update of reach estimate for full run

James Beacham (NYU)

In progress: Update of reach estimate for full run

Monte Carlo for radiative trident and Bethe-Heitler backgrounds	${f E}_{{ t beam}}$	$p_0 = 0.99 * E_{beam}/2$	Time [days]	Current [µA]	T [rad. lengths]
	1.056	0.523	6	65	0.007
	2.056	1.018	6	70	0.04
	3.056	1.513	6	80	0.08
	4.056	2.008	12	60	0.08

In progress: Update of reach estimate for full run

Backups

Asimov data is the limit of an ensemble

Asimov data is the limit of an ensemble

Asimov data is the limit of an ensemble

Asimov data is the limit of an ensemble

