APEX: Goals and Strategy

Natalia Toro (Perimeter Institute)

Collaboration Meeting April 22, 2014

Search for new forces mediated by ~100 MeV vector boson A' (*dark photon*) with weak coupling to electrons

Possible connections to dark matter and muon g-2

Search for new forces mediated by ~100 MeV vector boson A' (*dark photon*) with weak coupling to electrons

Possible connections to dark matter and muon g-2

Search for new forces mediated by ~100 MeV vector boson A' (*dark photon*) with weak coupling to electrons

Possible connections to dark matter and muon g-2

>1 *A*′/sec for 75 µA beam, 0.1 *X*₀

A' signal: small bump in e⁺e⁻ mass distribution over large but smooth background

Search for new forces mediated by ~100 MeV vector boson A' (*dark photon*) with weak coupling to electrons

Possible connections to dark matter and muon g-2

>1 *A*′/sec for 75 µA beam, 0.1 *X*₀

A' signal: small bump in e⁺e⁻ mass distribution over large but smooth background

Sensitivity controlled by
$$\frac{S}{\sqrt{B}} \sim \frac{\alpha'}{\alpha^2} \sqrt{N_{QED}} \left(\frac{m_{A'}}{\Delta m}\right)$$

Maximize e⁺e⁻ statistics and minimize mass resolution:

- Spectrometer central momentum $p \approx E_{\text{beam}}/2$ maximizes signal acceptance (and reduces many backgrounds)
- Septum magnet for forward-angle coverage increases signal acceptance
- DAQ strategy to cope with high e^- and π^+ singles rates:
 - higher-sensitivity VDC electronics
 - two-arm coincidence trigger using GC in e^+ arm
 - tight coincidence timing (10 ns)
- Optimize optics calibration for both polarities
- Multi-foil target minimizes multiple scattering in target and increases mass coverage per beam energy

APEX Run Plan

Approved by JLab PAC 37 with recommendation to run as soon as possible

Explores parameter space with **unparalleled efficiency** (particularly above ~300 MeV)

- ◆ Central momentum *p≈E*_{beam}/2 maximizes signal acceptance (and reduces many backgrounds)
- Septum magnet for forward-angle coverage increases signal acceptance
- DAQ strategy to cope with high e^- and π^+ singles rates:
 - higher-sensitivity VDC electronics
 - two-arm coincidence trigger using GC in e^+ arm
 - tight coincidence timing (10 ns)
- Optimize optics calibration for both polarities
- Multi-foil target minimizes multiple scattering in target and increases mass coverage per beam energy

Optimizing for A' Production Kinematics

A' production has distinctive kinematics:

A' is produced forward and carries majority of beam energy

Optimizing for A' Production Kinematics

A' Production

QED Backgrounds

(dominant pair background after PID)

• Central momentum $p \approx E_{\text{beam}}/2$ maximizes signal acceptance (and reduces many backgrounds)

 Septum magnet for forward-angle coverage increases signal acceptance

• DAQ strategy to cope with high e^- and π^+ singles rates:

- higher-sensitivity VDC electronics
- two-arm coincidence trigger using GC in e^+ arm
- tight coincidence timing (10 ns)
- Optimize optics calibration for both polarities
- Multi-foil target minimizes multiple scattering in target and increases mass coverage per beam energy

Septum Magnet

- Essential to design
 - Brings mass range of interest into acceptance $m_{A'} \approx E_{beam} \theta$
 - Higher A' signal acceptance at 5° than 12.5°

► Used PREX septum for test run

> APEX septum

- Designed to minimize fringe field on beamline, access small A' decay angles
- Delivery (Buckley Systems) expected July 2014
- Funded by NCCU, CMU, CSULA, SBU, UW grants
- Need to commission & develop expertise in acceptance calculations (John LeRose did this before)

- Septum magnet for forward-angle coverage increases signal acceptance
- Central momentum $p \approx E_{\text{beam}}/2$ maximizes signal acceptance (and reduces many backgrounds)

• **DAQ strategy** to cope with high e^- and π^+ singles rates:

- higher-sensitivity VDC electronics
- two-arm coincidence trigger using GC in e^+ arm
- tight coincidence timing (10 ns)
- Optimize optics calibration for both polarities
- Multi-foil target minimizes multiple scattering in target and increases mass coverage per beam energy

APEX running conditions require high singles rates:

- e^- (radiative elastic & inelastic) about 10⁴ x coincidence rate
- π^{\pm} rate up to 50 x **larger** than e^{+*}
 - *... but π^{\pm} rate in test run, SaGDH much lower than expectations from higher-energy fits.
- $e^{-\pi^{+}}$ accidentals dominate DAQ bandwidth

Challenging but validated in test run

- Tested tracking up to ~5 MHz e⁻ rate (highest rate expected for full run), obtained 60% track reconstruction efficiency may be improvable to 75%
- "Golden" trigger for e+e- pairs rejects e-π+ accidentals

Left S2m + Right S2m + Right Gas Cherenkov (e^+)

 10 ns online timing achieved in test-run ⇒ manageable DAQ rates (≤2.5 kHz)

- Septum magnet for forward-angle coverage increases signal acceptance
- Central momentum $p \approx E_{\text{beam}}/2$ maximizes signal acceptance (and reduces many backgrounds)
- DAQ strategy to cope with high e^- and π^+ singles rates:
 - higher-sensitivity VDC electronics
 - two-arm coincidence trigger using GC in e^+ arm
 - tight coincidence timing (10 ns)

Optimize optics calibration for both polarities

 Multi-foil target minimizes multiple scattering in target and increases mass coverage per beam energy

Magnetic Spectrometer Optics

Hall A standard:

- Removable sieve plate upstream of septum.
- Map between surveyed locations of sieve holes and reconstructions to calibrate optics

Test run: used reconstructed hole sizes to measure resolution

but this method only works for e- near elastic peak – for APEX, requires running at different beam energy.

HRS optics for APEX

"Active sieve slit": tagging by a Sci Fiber detector

- 1 mm fibers with 1/16" pitch (equivalent to 1024 sieve holes)
- Now built, still needs commissioning and readout software
- Allows optics calibration at production beam energy & for both polarities

- Septum magnet for forward-angle coverage increases signal acceptance
- Central momentum $p \approx E_{\text{beam}}/2$ maximizes signal acceptance (and rejects many backgrounds)
- DAQ strategy to cope with high e^- and π^+ singles rates:
 - new VDC electronics
 - coincidence trigger with Gas Cerenkov detector
- Optimize optics calibration in parallel-field configuration
- Multi-foil target minimizes multiple scattering in target

Target Design: Minimizing Multiple Scattering

Target designed and built by SLAC & JLab APEX groups for the test run, currently at JLab

Target Design: Minimizing Multiple Scattering

Target designed and built by SLAC & JLab APEX groups for the test run, currently at JLab

Goals:

• $\sigma(\theta)_{\text{mult scat}} \leq 0.5 \text{ mrad}$

 \Rightarrow typical e^+e^- pair must only go through 0.3% X₀ (2-pass)

- Target thickness 0.7–8% X₀ (depending on E_{beam})
- Long target extends mass range per setting
- Easy to swap in/out ribbon holders minimize radiation
 @ lower energies by using thinner targets

Summary

Test run demonstrated feasibility and power of APEX strategy to search for hidden-sector photons

Full APEX efficiently (34 days) explores new & important mass and coupling range $A' \rightarrow$ Standard Model

In many ways, ideal experiment for opportunistic running conditions of early 12 GeV era

We should be ready!

Backup Slides

Run Plan

Settings	Δ	B	C	D	Sensitivity of Proposed Run Plan
Dettings	11	D		D	0.1 0.3 0.5
Beam energy (GeV)	2.2	4.4	1.1	3.3	
Beam current (μA)	70	60	50	80	10^{-5} -10^{-5}
Nominal central angle	5.0°	5.0°	5.0°	5.0°	vity
Time Requested (hrs)					$\frac{1}{2}$
Energy change		4	4	4	
Magnet setup	4	4	4	4	
Optics calibration	16	16	16	16	$2 10^{-7}$ D 10^{-7}
$10\% \ \mathcal{L}$	2	2	2	2	
Normal \mathcal{L}	144	288	144	144	10^{-8} 10^{-8} 10^{-8}
Total	166	314	170	170	$\begin{bmatrix} 0.1 & 0.3 & 0.5 \\ a^{+}a^{-}(A^{+}) Mass (CaV) \end{bmatrix}$
	l		l		$e^+e^-(A^+)$ Mass (GeV)

6-12 days at 4 energy settings,

anticipate 8 days to swap target cartridges, check alignment, and calibrate optics

41 days total (33 days beam)