# Future Directions for APEX

Natalia Toro

#### By the way... arXiv:1404.5502v1.pdf

#### Search for light massive gauge bosons as an explanation of the $(g - 2)_{\mu}$ anomaly at MAMI

H. Merkel,<sup>1</sup>,\* P. Achenbach,<sup>1</sup> C. Ayerbe Gayoso,<sup>1</sup> T. Beranek,<sup>1</sup> J. Beričič,<sup>2</sup> J. C. Bernauer,<sup>1</sup>,<sup>†</sup> R. Böhm,<sup>1</sup> D. Bosnar,<sup>3</sup> L. Correa,<sup>1</sup> L. Debenjak,<sup>2</sup> A. Denig,<sup>1</sup> M. O. Distler,<sup>1</sup> A. Esser,<sup>1</sup> H. Fonvieille,<sup>4</sup> I. Friščić,<sup>3</sup>

M. Gómez Rodríguez de la Paz,<sup>1</sup> M. Hoek,<sup>1</sup> S. Kegel,<sup>1</sup> Y. Kohl,<sup>1</sup> D. G. Middleton,<sup>1</sup> M. Mihovilovič,<sup>1</sup>

U. Müller,<sup>1</sup> L. Nungesser,<sup>1</sup> J. Pochodzalla,<sup>1</sup> M. Rohrbeck,<sup>1</sup> G. Ron,<sup>5</sup> S. Sánchez Majos,<sup>1</sup> B. S. Schlimme,<sup>1</sup>

M. Schoth,<sup>1</sup> F. Schulz,<sup>1</sup> C. Sfienti,<sup>1</sup> S. Širca,<sup>2,6</sup> M. Thiel,<sup>1</sup> A. Tyukin,<sup>1</sup> A. Weber,<sup>1</sup> and M. Weinriefer<sup>1</sup>

(A1 Collaboration)





- [Near Term] Optimizing the APEX Run Plan
- Vertex searches?
- Muon and pion final states
- Wider angle and higher energy

# APEX in context: Dec 2010 (PAC37)



5



A good sign— Vibrant field!

A lot of progress on (the easy half) of our region of interest.

Would modified run plan explore more new ground?

e.g.
– shift settings
– more time at fewer settings

# APEX Run Plan



Would modified run plan explore more new ground?

e.g.

- shift settings
- more time at fewer settings

We need to re-evaluate APEX reach & run plan in light of new info. since PAC 37 proposal

- Detailed model of APEX septum acceptance (from John LeRose)
- Non-uniform efficiency in VDC
- Full modeling of QED backgrounds for PAC37: (no-interference)\*(constant rescaling)
- Should improve pion yield & rejection estimates and resulting bandwidth limits

*This is underway – led by James Beacham but with very limited time* 

**Prerequisite for making good decisions about run plan** 8

- [Short Term] Optimizing the APEX Run Plan
- Vertex searches?
- Muon and pion final states
- Wider angle and higher energy









### Can we do vertexing?





How clean is two-track vertex resolution?

2-track vertex (HPS, M. Graham)

## Can we do vertexing?

# APEX production target



# Fill e.g. every 3rd holder – thermal studies would need to be revisited



 – compromises bump-hunt sensitivity (but maybe not as much as we think)

- [Short Term] Optimizing the APEX Run Plan
- Vertex searches?
- Muon and pion final states
- Wider angle and higher energy



### **Branching ratios**



μ+μ- could double statistics on high-energy runs, has somewhat different mass coverage and somewhat independent search  $\pi$ + $\pi$ - could help make APEX competitive at higher energies (see next)

14

Questions



Need trigger strategy to keep  $\pi^+\pi^-$  and  $\mu^+\mu^-$  but reject  $\pi^+e^-$ Background rates for  $\pi^+\pi^-$  less known • [Short Term] Optimizing the APEX Run Plan

• Vertex searches? *positive findings could impact run plan* 

• Muon and pion final states *positive findings could impact run plan* 

• Wider angle and higher energy *more futuristic* 



- LIMIT: B field saturation in the septum even reaching 7.5° bend angle for 2.2 GeV electron/positron was
- Same field integral at 3.3 GeV would only bend by 5°
   ...so we can think about 7° opening angle
- Would require dedicated wider-angle septum, but appears achievable (perhaps can cannibalize APEX septum?)

Step 1: would such a setup have interesting reach? e.g. 4.4 and 6.6 GeV settings cover m<sub>A'</sub>~400-700 MeV and 600-1000 MeV respectively, but to what coupling? Higher-Mass A' at APEX?

Step 1: would such a setup have interesting reach? e.g. with 7.5° opening angle, 4.4 and 6.6 GeV settings cover  $m_{A'}$ ~400-700 MeV and 600-1000 MeV respectively, but to what coupling?

Ingredients:

- detect e+e– only, or also  $\mu$  and  $\pi$ ?
- pion backgrounds? e.g. WISER
- EM backgrounds? e.g. MadGraph

Progress on muon pairs for other physics (e.g. asymmetry) may make this more interesting.