APEX Software

Seamus Riordan Stony Brook University seamus.riordan@stonybrook.edu

April 19, 2015

Seamus Riordan — APEX 2015 APEX Soft 1/25

- HRS VDCs and APEX
- High Rate Tracking Performance
- Optics Going Forward

Basic VDC Operation

- Tracks enter nominally 45°, produce signals on 3-7 wires
- Drift time patterns among several wires matched to construct "cluster"
- 2 U-plane and 2 V-plane clusters fit to recreate full 3D track

Modifications for performance up to 5 $\rm MHz$ (full experiment luminosity).

	Standard	APEX High Rate
HV	-4.0 kV	$-3.5 \mathrm{kV}$
Disc.	LeCroy ($I_{ m th}=$ 8 $\mu m A$)	JLab Custom ($I_{ m th}=1~\mu{ m A}$)
Gas	60-40 Ar/ CH_2	60-40 Ar/ $ m CH_2$
Max Rate	500 kHz	5 MHz
Gain	$20 imes 10^3$	$25 imes 10^3$

- Max VDC current draw $I/{
 m wire}/{
 m cm}~\sim 5~{
 m nA}$
- For APEX, $Q_{
 m VDC} < 0.1~{
 m C}$ (no serious aging)

Tracking Algorithm - Clustering

- Algorithm scans for 'V' shaped clusters in time
- Hits in each cluster must be within reasonable time constraints
- Allow for gaps of 1 wire, must have 3 \leq wires in cluster \leq 7
- Time of the cluster is offset, calculated through fit based on time-to-drift distance mapping
 - Time resolution from fit on $\sigma_t \approx 15~\mathrm{ns}$

Advanced Scanning

- Multihit TDC information used since rates are high
- Earliest hits used to fit clusters
- Several passes over data taken to maximize clusters found when separated in time, but not space

Tracking Algorithm - UV Association

- \bullet Cut on U cluster, V cluster time difference w/ trigger, $\pm40~\mathrm{ns}$
- Cluster positions must be in chamber active area

• If ambiguity in UV association, no tracks are returned

- All chamber 1 chamber 2 UV cluste built
- Sort by χ^2 based on angular information from drift time fit
- Accept as many χ^2 clusters until maximum found

Tracking Efficiency

- Tracking efficiency found in left arm for:
 - Left arm s2m scintillator trigger
 - High preshower+shower calorimeter signal (e⁻)

• Average wires in clusters become smaller at high rate due to efficiency

• Can take low rate as base and calculate how it shifts for hit inefficiencies

- Have $\sim 92\%$ hit efficiency
- Expect 2% loss of tracking efficiency with hits <3

Tracking Efficiency

• Can take low rate as base and calculate how it shifts for hit inefficiencies

- Have \sim 92% hit efficiency
- Expect 2% loss of tracking efficiency with hits < 3

• From Eric's thesis:

- Required coincident event and then frequency of how often a track was found in an arm
- $\bullet~99.0\%$ for LHRS, 98.2% for RHRS
- Close enough with simple cluster argument?

Tracking Efficiency - Losses

- Losses come from:
 - UV association ambiguity
 - No clusters found (bad timing structure, overlapping, hit inefficiency)
- LHRS, Single Arm Trigger:

• Loss goes up to 40% for highest current running

Seamus Riordan — APEX 2015 APEX Soft 12/25

Tracking Work To Do:

- UV ambiguity may be broken through use of other detectors, χ^2 fitting, geometry considerations, event distribution considerations
- Some clusters from "no cluster" events may be recovered through better cluster searching code
- Try to understand how spurious clusters are generated G4 simulation?

Overview and Strategy

- APEX has unique optics requirements
 - FOM is driven by *scattering angle* resolution rather than momentum resolution
 - Septum needed to go from 6° to 12.5°
- Requires careful examination of HRS tune to optimize
- John LeRose is gone so we have to think through much of this ourselves
- Have produced 2nd order transport matrices for ideal case as starting test ground
- Confirmation in existing ray tracing required for final result

Optics Overview

- Using idealized representation of HRS first and second order elements can be calculated
- Excellent primer for framework
- http://cds.cern.ch/record/283218/files/SLAC-75.pdf
- http://github.com/seamusriordan/hrstrans

APEX Tune - Simple Optimization Attempt

- Using first order code allows for rapid calculation of acceptance and matrix elements
- A fitter is used which
 - Preserve acceptance for target length (as seen at $6^\circ)$
 - Produce first order reconstruction matrix by inverting transport
 - Minimize reconstruction elements of $\phi_{\rm tg}$ with VDC spatial/angular resolutions
- Immediately drove $(y|y_{tg})$ coupling to zero and increased $(y|\phi)$
- About the same acceptance but serious losses in momentum and vertex resolution (> factors 2?)

APEX Tune - Simple Optimization Attempt

- Using first order code allows for rapid calculation of acceptance and matrix elements
- A fitter is used which
 - Preserve acceptance for target length (as seen at 6°)
 - Produce first order reconstruction matrix by inverting transport
 - Minimize reconstruction elements of $\phi_{\rm tg}$ with VDC spatial/angular resolutions
- Immediately drove (y|ytg) coupling to zero and increased (y|φ)
- About the same acceptance but serious losses in momentum and vertex resolution (> factors 2?)

Summary and Work To Do

- Tracking generation for trying to match all clusters is about 60% at 5 MHz trigger, can this be understood?
- John LeRose's files were recovered and are available I have access to SNAKE and the files used for standard tune, PREX, and have been using them
- Need to include our new septum, produce full polynomial transport, verify acceptance and reconstruction
- I believe this is a project which we can handle on our own and this is at a point where a grad students could get involved

BACKUP SLIDES

HRS Vertical Drift Chambers

• Requested for test run by PAC:

Prove that the vertical drift chambers (VDCs) can operate at a rate higher that 20 kHz/wire (that, according to the TAC report, is the maximum Hall A has operated till now).

- VDCs had not been run at such high rate (for extended period of time)
- Required to go to $\sim 5 \text{ MHz} (75 \text{ kHz/wire})$
- Requires hardware modifications to run efficiently without severe aging

Timing Offset Calibration

- VDC requires software offsets for drift time
- Calibrated in groups of 16 wires (discriminator inputs)

• Calibration done by fitting time dist. peak and fixed at 1.4 σ earlier from peak (arbitrary)

Timing Offset Calibration Results

- $\bullet\,$ Calibration is done to $\sim\,$ $\,{\rm ns}\,$ level
- Offsets may be different for different triggers
 - $\bullet\,$ Minimized in hardware to \sim 10 $\rm ns$ level, fully corrected in software

Drift Time-to-Distance

- Drift time-to-distance conversion follows form:
- Theta dependence:

$$v_{2}t < 0 : d = v_{2}t$$

$$0 < v_{2}t < a_{1} : d = v_{1}t = v_{2}t\left(1 + \frac{a_{2}}{a_{1}}\right)$$

$$a_{1} < v_{2}t : d = v_{2}t + a_{2}$$

• a_1 and a_2 carry $\tan \theta = \frac{\Delta z}{\Delta r}$ dependence (r = u or v)

$$a_1 = \sum_{i=0}^{3} a_{1,i} \tan^i \theta$$
$$a_2 = \sum_{i=0}^{3} a_{2,i} \tan^i \theta$$

TTD Calibration

- No serious differences between high and low rate data
- Restricting to slice in incident angle θ :

Low Rate, 0.4 MHz

High Rate, 4.6 $\rm MHz$

• Small recalibrations for θ dependence are necessary

TTD Calibration

- Requires some θ dependence re-fitting
- $\bullet\,$ Discrepancies are in the tail on the level of 20 μm

Tracking Resolutions

• Track resolutions found through residuals of full χ^2 fit

- Second, broader Gaussian distribution appears at high rate
- Should be fitting to students t distribution with mult scatt
- \bullet Corresponds to 100 μm , 0.3 m rad detector resolution

Tracking Efficiency

- Tracking efficiency found in left arm for:
 - Left arm s2m scintillator trigger
 - High preshower+shower calorimeter signal (e⁻)

 Average wires in clusters become smaller at high rate due to efficiency

Event distribution

- Event distribution has small distortions due to non-uniform efficiency
- How does this affect the acceptance?

Standard Tune Comparison

- Framework does a reasonably good job of recreating first order elements
- $\bullet\,$ Acceptance $\sim\,6$ msr using simple aperture cuts

APEX Tune

 APEX test run ran with special tune which nominally reproduces standard tune optics and acceptance but with pure (y|φ) coupling

Seamus Riordan — APEX 2015 APEX Soft 30/25

APEX Tune

 APEX test run ran with special tune which nominally reproduces standard tune optics and acceptance but with pure (y|φ) coupling

