

Radiation Backgrounds for the APEX experiment

Pavel Degtiarenko Radiation Physics Group at RadCon

April, 2014

Contents

- Radiation Dose Accumulation at JLAB Boundary
- Radiation Budgeting Process
- □ APEX Contribution to the Rad. Budget: Design Optimization
- Radiation Backgrounds inside the Hall
- □ Local Shielding Suggestions
- □ Summary

Shielding Design at JLab

- JLab Radiological Control Policy (ES&H Manual, Radiation Control Supplement §111-06, §211-05) sets the Design Goals:
 - maintaining individual worker dose less than
 - 250 mrem (2.5 mSv) per year (Radiological Workers)
 - 10 mrem (0.1 mSv) per year (General Employees, Population)
 - preventing degradation of groundwater quality
 - controlling contamination by engineered means where possible
 - minimizing the generation of radioactive material
- Practical Design Criteria based on the Design Goals
 - Routine Continuous Beam Operations
 - Below 250 mrem to radiation worker in a 2000 hours work year
 - Below 10 mrem to non-radiation worker in a work year
- Below 10 mrem to public beyond the fence through a full year
 - Maximum Credible Accident: limit 15 rem (0.15 Sv) per occurrence

CEBAF Area Map

RBM-3

- Environmental Radiation Boundary Monitors 1-6
 - Moderated He-3 proportional neutron counters
 - Standard Ionization Chamber Monitors
 - High Pressure Environmental IC (New)

Radiation Monitoring Online at CEBAF

G (rad52)

Environmental Neutron Dose Rates

Measurements in January – June, 2012

RBM-3: Neutron Dose Rate and Accumulation

RBM-3 location at CEBAF boundary closest to Hall C (90 m)

Environmental Dose Rates: PREX'2010

Neutron hourly dose at RBM-3

Hours in the year for the period Jan 1 through Jun 30, 2010

APEX Meeting, April 2014

Hall:	Α					RAL	DIATION BUDGET FORM	page: 1 of 1
Exp. #	E12-009	rev:			run	dates:	2012 name of liaison: B. Wojtsekhowski	
S	etup number		1	2	3	4		
beam	energy	GeV	1.100	2.200	3.300	4.400		totals:
	current	uA(CW)	50.0	70.0	80.0	60.0		
exp't	element		С	W	W	W		
target	thickness	mg/cm2	300	270	540	540		
	dist. to pivot	m	0.0	0.0	0.0	0.0		
	Ζ		6	74	74	74		
	А		12	184	184	184		
critical	radius	cm	3.5	3.5	3.5	3.5		
window	dist. to pivot	m	2.25	2.25	2.25	2.25		
scattering weig	ghting factor		0.50	0.50	0.50	0.50		
	run time	hours	144	144	144	288		720
time	(100% eff.)	days	6.0	6.0	6.0	12.0		30.0
	installation	hours						0
	time	days	0.0	0.0	0.0	0.0		0.0
dose rate at	method 1	urem/hr	0.62	2.16	4.76	3.31		
the fence post	method 2	urem/hr						
(run time)	conservative	urem/hr	0.62	2.16	4.76	3.31		
dose per setup		urem	89	310	685	954		2038
% of annual do	se budget	%	0.9	3.1	6.8	9.5		20.38
						% of a	llowed dose for the total time	247.95
						% of allo	wed dose for the run time only	247.95
					If > If	200%, dis	cuss result with Physics Research EH&S officer	
	date f	form issued:	No	vembe	r 16, 20)11	authors: P.Degtiarenko	

- ☐ First estimates done in 2011 using the standard tool ELEC5
- New calculations using the GEANT3/DINREG Monte Carlo

Vertex Distribution for Neutrons Exiting Roof

s	etup number	1	2	3	4	
beam	energy	GeV	1.100	2.200	3.300	4.400
	current	uA(CW)	50.0	70.0	80.0	60.0
exp't	element	С	W	W	W	
target	thickness	mg/cm2	300	270	540	540
	dist. to pivot	m	0.0	0.0	0.0	0.0
	Ζ		6	74	74	74
	А		12	184	184	184
	run time	hours	144	144	144	288
time	(100% eff.)	days	6.0	6.0	6.0	12.0
dose rate at	method 1	urem/hr	0.62	2.16	4.76	3.31
the fence post	method 2	urem/hr	0.31	1.98	7.46	6.51

ELEC5 Calculations ~20% of Yearly Rad.Budget

~33% of Yearly Rad.Budget

Updated GEANT3/DINREG Calculations

First estimates done in 2011 using the standard tool ELEC5

■ New calculations using the GEANT3/DINREG Monte Carlo

Page 16

Bear

APEX Radiation Backgrounds in the Hall

APEX Radiation Backgrounds in the Hall

APEX Dose Rates Downstream

APEX Radiation Evaluation Results

APEX E, Current GeV, μA	Target x _{0,} t % r.l., mg/cm ²	Dose Rates: Upstream R/h, rem/h	Downstream in Shadow R/h, rem/h	Downstream no Shadow R/h, rem/h	CEBAF Boundary µrem/h
1.1GeV, 50μA	Carbon 0.7% r.l. 300 mg/cm ²	e:0.010γ:0.030n:0.170	e: 7.50 γ: 0.40 n: 0.52	e:12.0γ:2.8n:0.5	n+γ: 0.31
2.2GeV, 70μA	Tungsten 4.0% r.l. 270 mg/cm ²	 e: 0.055 γ: 0.138 n: 0.944 	e: 37.5 γ: 1.6 n: 2.6	e: 64.0 γ: 16.5 n: 2.6	n+γ: 1.98
3.3GeV, 80μA	Tungsten 8.0% r.l. 540 mg/cm ²	e: 0.173 γ: 0.350 n: 2.090	e: 90.5 γ: 3.0 n: 3.7	e: 125.0 γ: 34.0 n: 3.7	n+γ: 7.46
4.4GeV, 60μA	Tungsten 8.0% r.l. 540 mg/cm ²	 e: 0.116 γ: 0.230 n: 1.380 	e: 50.0 γ: 1.5 n: 1.9	e: 78.0 γ: 20.0 n: 1.9	n+γ: 6.51

Shielding Improvements (if Possible)

- □ Shadow shield from the target (90 degrees and back)
- ❑ Wider opening in the Septum magnet (at least vertically)
- Design critical opening aperture inside (~25 cm) the Septum magnet
- □ Shadow shield from the Septum exit to protect electronics downstream
- Shadow shield for the whole beam line to protect electronics downstream

Conclusions

- **Radiation environment for the APEX experiment was re-evaluated**
- New estimates are obtained for the radiation produced at CEBAF boundary, as well as for the general radiation background in the Hall
- Boundary Radiation Budget for this experiment is expected to consume about 33% of the yearly allocation for JLab
- The proposed experimental configuration with the critical beam dumpline opening angle of ~0.91 degrees seems to be close to optimal for this experiment, if the critical window is inside the Septum magnet
- Radiation dose rates in the Hall are expected to be severe, and shadow shielding configurations should be designed and installed to protect radiation-sensitive equipment
- The beam line exiting the Interaction Chamber, as well as the entrance aperture of the Septum magnet are expected to be activated during the experiment; measures should be provisioned to protect personnel during accesses.

Extra Slides

Facility Design Guidelines: 10CFR835

§835.1001 rule: maintain radiation exposure in controlled areas ALARA through engineered and administrative controls

§835.1002 specifies objectives for facility design and modifications:

- Use of optimization methods to achieve ALARA in developing and modification of facility design and physical controls
- The design objective for controlling personnel exposure: keep the dose accumulation ALARA, and below 1 rem in a year
- Avoid releases of airborne radioactive material to the workplace atmosphere under normal conditions
- Include in the design, and in material selection, features that facilitate operations, maintenance, decontamination, and decommissioning

Environmental Dose History 2005-2012

Environmental Gamma Dose Rates

Environmental Spectroscopic High Pressure Ionization Chambers at the boundary: RBM-3 and RBM-6 sites

Difference "Signal IC – Background IC" = SHPIC3 – SHPIC6

Same background subtraction technique applied as in the case for neutrons

Dose rates from operations visible at a level of few percent of natural background Gamma contribution to the dose at the boundary: ≈20%

Spectral HPIC Measurements: RBM3 - RBM6

